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250 K. Chen et al.

1 Introduction

In this paper we study the Oort conjecture for some Shimura curves. We prefer the
following equivalent formulation rather than the original one, also known as the
Coleman–Oort conjecture:

Conjecture 1.1 Let T ◦
g be the open Torelli locus in the Siegel modular varietyAg. Then

for g sufficiently large, the intersection of T ◦
g with any Shimura subvariety M � Ag

of strictly positive dimension is NOT Zariski open in M.

Here T ◦
g is the scheme-theoretic image of the Torelli morphismMg → Ag , where

Ag is the Siegel modular variety with suitably chosen level structure so that corre-
sponding moduli functor is representable, and the similar constraint on level structure
is understood forMg .

The André–Oort conjecture holds for Ag , regardless of the level structures, cf.
[17], and it implies the equivalence of Conjecture 1.1 with the original conjecture of
Coleman claiming the finiteness of CM points in T ◦

g for g sufficiently large. In the
particular case of dimension one, the Oort conjecture predicts that for g sufficiently
large, T ◦

g meets any Shimura curve in at most finitely many points.
Previous works, cf. [3,4], etc., have proved the conjecture for certain Shimura

subvarieties whose canonical Higgs bundles contain large unitary subbundles, and the
main technique is motivated from surface fibration. Roughly speaking, if a Shimura
subvariety M of dimension > 0 is contained generically in T ◦

g , then one finds a curve
C of generic position lying in M ∩ T ◦

g , such that

• the inclusion C ⊂ T ◦
g lifts C into a curve inMg which, after suitable compactifi-

cation and normalization, supports a semi-stable surface fibration f : S → C , and
inequality of Xiao’s type bounds the maximal slope in the Hodge bundle f ∗ωS/C

in terms of the degree of f ∗ωS/C , which leads to an upper bound on the rank of
unitary part in the Hodge bundle;

• on the other hand, the Hodge bundle above is induced from the Hodge bundle on
C due to the modular interpretation of C ↪→ M ↪→ Ag , and a fine description of
the symplectic representation defining M ↪→ Ag leads to an explicit lower bound
of the unitary part in the Hodge bundle.

Combining these two ingredients one reaches the generic exclusion of Shimura curves
when the unitary part in the canonical Higgs bundle is large.

In this paper we are interested in the case of Shimura curves whose canonical Higgs
bundles only contain a small portion of unitary subbundles:

Theorem 1.2 Let C ⊆ Ag be any Shimura curve whose associated logarithmic Higgs
bundle (EC , θC ) decomposes as

(EC , θC ) = (AC , θC |AC
) ⊕ (FC , 0),

where A1,0
C

is ample and FC is the maximal unitary flat subbundle. Assume that

rank F1,0
C

≤ 2g−22
7 (equivalently, rank A1,0

C
>

5g+22
7 ). Then C is not contained gener-

ically in the Torelli locus Tg of curves of genus g.
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The Oort Conjecture for Shimura Curves of Small Unitary… 251

Mumford has considered embeddings of Shimura curves intoAg using symplectic
representations defined by corestriction of quaternion algebras, which is different from
the construction using restriction of scalars. In this paper we consider an interpolation
between restriction and corestriction, called “partial corestriction,” and the unitary por-
tion in theHiggs bundles on Shimura curves embedded in this way could be small upon
suitable choice of parameters, terminology and details for which are given in Sect. 4:

Corollary 1.3 Let C ↪→ Ag be a Shimura curve defined in the following way:

(i) either C is associated with a quaternion F-algebra over a totally real field F , or
C is associated with an Hermitian form h : E2 × E2 → E for some CM field E
of totally real part F , and the embedding C ↪→ Ag is associated with the partial
corestriction of index t ;

(ii) or C is associated with a quaternion division E-algebra for some CM field E of
totally real part F and some Hermitian pairing A × A → A, and C ↪→ Ag is
associated with the partial corestriction of index t.

Here t is a positive integer not exceeding the degree d = [F : Q]. Then C is NOT
contained generically in T ◦

g as long as t
d > 5

7 + 22
7g , where g = 2t

(d
t

)
in case (i) and

g = 4t
(d
t

)
in case (ii).

The notion of partial corestriction is defined in Sect. 4 as an interpolation between
the usual notions of restriction and corestriction of semi-simple algebras, and t is a
positive integer not exceeding d.

The material is organized as follows. Section 2 recalls preliminaries on Shimura
curves and Higgs bundles, including a description of forms of SL2,F that could define
Shimura curves. Section 3 contains the proof of themain theorem on the generic exclu-
sion of Shimura curves from T ◦

g with small unitary part in the canonical Higgs bundle.
Section 4 discusses the notion of partial corestriction, the related Hermitian forms giv-
ing rise to symplectic representations, and ends with an elementary computation for
Corollary 1.3.

Notations

We write S for Deligne’s torus ResC/RGm. If σ : k → K is a homomorphism of rings
andH is a k-scheme, then we writeH(K , σ ) for the set of K -valued points ofH with
respect to the structure of k-algebra given by σ ; this is often the case when we need to
distinct the k-structures on H(K ) involving different embeddings of fields k ↪→ K .

2 Preliminaries on Shimura Curves and Higgs Bundles

2.1 Shimura Curves and Quaternion Algebras

We refer to [3] for our convention on notions such as Shimura (sub)data and Shimura
(sub)varieties. In particular, the Siegel modular varietyAg := �\H+

g is the connected
Shimura variety associated with the connected Shimura datum (GSp2g,Hg;H+

g ),
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252 K. Chen et al.

whereH+
g is the Siegel upper half space of genus g, and we choose � to be a torsion-

free congruence subgroup in Sp2g(Z), so that the smooth quasi-projective variety Ag

represents the corresponding moduli problem (with level-� structure).
By Shimura curves, we mean connected Shimura varieties of dimension one. Such

a curve is defined by a connected Shimura datum (G, X; X+), where X+ is a one-
dimensional Hermitian symmetric domain, namely the Poincaré upper half planeH+.

This already forces Gder to be a Q-simple Q-group, and according to [5] it has to
be of the form ResF/QH for some F-group H which remains simple after the base
change F ↪→ F̄ . Here F is a totally number field, and F̄ is a fixed separable closure
of F . Since X+ is the Poincaré upper half plane, the F-group H has to be a simple
F-group of type A1, i.e., it is an F-form of either SL2,F or PGL2,F . Moreover, among
the real embeddings {τ } of F ↪→ R, there is exactly one embedding giving rise to a
non-compact Lie group H(R, τ ) isomorphic to SL2(R) or PGL2(R), and the other
embeddings τ ′ lead to compact Lie groups H(R, τ ′).

One is mainly interested in Shimura curves C inside a Siegel modular variety Ag

defined by some inclusion of the form (G, X; X+) ↪→ (GSp2g,Hg;H+
g ), and the

modular interpretation of the inclusion C ↪→ Ag gives the canonical Q-VHS of
weight 1 on C , whose associated Higgs bundle EC plays an essential role in our work.
Various properties of the Higgs bundles are read from the algebraic representation
G ↪→ GSp2g . If the F-groupH above were an F-form of PGL2,F , then the algebraic
representationG ↪→ GSp2g would not produce Q-VHS of odd weights. HenceH has
to be an F-form of SL2,F .

The following classification of forms of SL2,F is found in [16], divided into the
inner and outer cases. For simplicity we use the following convention of notation:

(i) If B is a finite-dimensional unital k-algebra (not necessarily commutative), k
being a fixed base field, we write G

B/k
m for the linear k-group sending a k-algebra

R to (B ⊗k R)×, and sometimes we write GB
m if k is clear from the context. If

k′ ⊂ k is a subfield with [k : k′] < ∞, then we have G
B/k′
m  Resk/k′GB/k

m .

(ii) If B is a central simple k-algebra of dimension m2, then G
B/k
m is a k-form of

GLm,k , endowed with the reduced norm NmB/kG
B
m → Gm,k which is a k-form

of the determinant map det : GLm → Gm, and we denote its kernel by UB/k ,
which is a k-form of SLm .

We also write H for Hamilton’s quaternion division R-algebra, associated with
which we have SU2  UH/R.

Case (1):
The inner case of the classification involves a central simple F-algebra A, and we

have H  U
A/F
m . Note that A splits over F , i.e., A  Mat2(F), if and only if H splits

over F , i.e., H  SL2,F .
Case (2):
The outer case involves an Hermitian form, and we recall the more general descrip-

tion for outer forms of SLmn,F : there exists some quadratic extension E of F , a central
simple E-algebra D of E-dimension n2 which is a skew field, endowed with an invo-
lution of second kind (i.e., restricting to the F-conjugate on E), and an Hermitian
pairing H : D⊕m × D⊕m → D of Hermitian matrix � under the natural D-basis of

123



The Oort Conjecture for Shimura Curves of Small Unitary… 253

D⊕m , such that the following group functorU� is an F-form ofGLmn,F : an F-algebra
R is sent to

{
g ∈ Matm(D) : g∗�g = �, g invertible

}

and its derived part is an F-form of SLmn,F . The constraint mn = 2 thus leads to:

(2-1) either n = 1 and m = 2: namely H is an Hermitian form E2 × E2 → E ,
(v,w) �→ v̄t�w for some Hermitian matrix � = �̄t ;

(2-2) or n = 2 and m = 1: namely D is a quaternion division E-algebra and H :
D × D → D is of the form (a, b) �→ a∗δb for some δ = δ∗ in D.

Note that in (2-2), D is of dimension 4 over E , and the composition h = trD/E ◦ H
of H with the reduced trace of D over E is an Hermitian form D × D → E , and the
outer form in this case is an F-subgroup of the unitary F-group Uh .

In our case of interest for Shimura curves, we have a Q-group G with Gder =
ResF/QH for F a totally real field of degree d, such thatGder(R)+ defines a connected
Hermitian symmetric domain of dimension 1, namely the Poincaré upper half plane.
Write τ1, . . . , τd for the real embeddings of F , we haveGder(R)  ∏

i=1,...,d H(R, τi ),
whereH(R, τi ) stands for the R-points ofH with respect to the F-structure τi : F ↪→
R on R, and we may rearrange the subscripts so that

• H(R, τ1) = SL2(R);
• H(R, τi ) = SU2(R) for i = 2, . . . , d.

Thus for the F-forms described above for H, we have:

(1) in the inner case, A is an quaternion F-algebra such that A ⊗F,τ1 R  Mat2(R)

and A ⊗F,τi R  H for i = 2, . . . , d;
(2) in the outer case:

(2-1) either H is associated with an Hermitian form h : E2 × E2 → E which
is indefinite (i.e., of signature (1, 1)) along τ1, giving rise to a factor
SU(1, 1)  SL2,R, and definite along τ2, . . . , τd giving rise to the com-
pact factor SU2(R); note that K has to be purely imaginary over F in this
case, and thus K is a CM field of real part F ;

(2-2) or H is associated with an Hermitian form H : A × A → A with A a
quaternion division E-algebra whose signatures follow the same pattern as
above: becoming SU(1, 1) along τ1 and SU2(R) along τ2, . . . , τd , and E is
a CM field.

For the construction of Shimura data (G, X; X+), we follow the construction in
[9] so that G only differ from ResF/QH by a central Q-torus. For example, in the
outer case H : D × D → D, we may compose H with the reduced trace D → E
and get an Hermitian form h : D × D → E whose imaginary part is a symplectic
F-form D × D → F . The F-group of unitary similitudeH′ of H differs fromH by a
central F-torusGmF . Taking trace again from F toQ gives a symplecticQ-form on D
(viewing as a Q-vector space), and we may takeG to be the Q-subgroup of ResF/QH′
which only differs from ResF/QH by the central Q-torus GmQ in ResF/QGmF . This
is often used in the construction of Shimura subdata of (GSp2g,Hg;H+

g ), cf. [9].
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Finally, it should be mentioned that quaternion algebras and Shimura curves from
Case (1) can be reduced to Case (2-1): for the application we have in mind, the field
F in Case (1) is a totally real number field, and by choosing E a CM number field of
totally real part F such that A ⊗F E  Mat2(E), we obtain an involution of second
kind on Mat2(E) which is the transposed conjugate on coordinates with fixed part
isomorphic to A, and UA/F can be identified with the special unitary F-group SUh

of the standard Hermitian form E2 × E2 → E, (u, v) �→ ūtv. It even suffices to
take E to be F ⊗Q K with K some imaginary quadratic number field, similar to the
construction used in [2], which realizes Shimura curves in Case (1) as a Shimura curve
of PEL-type in Case (2).

2.2 Decomposition of Higgs Bundles

Let (V , ψ) be a symplecticQ-space giving rise to a Shimura datum (GSpV ,HV ;H+
V )

and the Siegel modular variety AV = �\H+
V for suitable torsion-free congruence

subgroup � in SpV (Q), and we may assume that � stabilizes a Z-structure VZ for
V . For M ↪→ AV a Shimura subvariety defined by some subdatum (G, X; X+), the
modular interpretation of AV gives a universal abelian M-scheme f : A → M and a
Q-PVHS on M , whose underlying local system in Q-vector spaces VM = R f∗QA is
determined by the representation of fundamental group π1(M) → GLV (Q), which in
turn is determined by the algebraic representation Gder → SpV . The Hodge filtration
of VM := VM ⊗QM OM gives

0 → R0 f∗�M/A → VM → R1 f∗OA → 0,

and we have the canonical Higgs bundle EM = E0,1
M ⊕ E1,0

M with E0,1
M = R1 f∗OA

and E1,0
M = R0 f∗�1

A/M . More generally, the graded quotient of the Hodge filtration
F ·V for any PVHS V on M is a Higgs bundle on M , and for smoothly compactified
Shimura varieties (by joining boundary divisors using toroidal compactification) we
have a similar notion of Higgs bundles with logarithmic poles.

The theory of Simpson correspondence implies that, upon suitable choice of smooth
compactification, there is an equivalence of categories between finite-dimensional C-
linear representations of π1(M) and logarithmic Higgs bundles on M . In particular,
Higgs subbundles of EM (or rather, its logarithmic version over smooth compactifi-
cation) associated with sub-R-PVHS of (VM , VM ⊗QM RM ) corresponds to R-linear
subrepresentations of π1(M) → GLR(VR), which are in turn characterized by alge-
braic subrepresentations of Gder

R
↪→ SpVR,R. Such a Higgs subbundle is unitary if

and only if the corresponding R-subrepresentation factors through a compact linear
R-group.

3 Generic Exclusion of Shimura Curves

In this section we prove Theorem 1.2 by contradiction. The strategy is along a similar
way as that of [12], where the special case with trivial unitary part has been considered.
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Assume that such a Shimura curve C is contained generically in the Torelli locus Tg .
Since suitable level structures are pre-attached in our setting, one may represent C by
a semi-stable family f : S → B of curves of genus g as in [12, §3]. The contradiction
is deduced by studying the slope inequality of such a semi-stable family together with
the logarithmic Miyaoka–Yau inequality.

3.1 Setups

Given such a Shimura curveC contained generically in theTorelli locusTg , one obtains
as in [12, §3] a semi-stable family f : S → B of curves of genus g representing C
by taking suitable level structure into account. The natural map

f̄ ∗A1,0
B

↪→ f̄ ∗ f̄∗ωS/B −→ ωS/B

induces a rational map �A : S ��� PB(A1,0
B

) over B. By resolution of possible

singularities on the image and a suitable sequence of blowing-ups σ : S̃ → S (which
does not affect the general fiber F), the above rational map becomes a morphism
�̃ : S̃ → Ỹ .

S̃ �̃

f̃ := f̄ ◦σ

Ỹ

h̃

B

By contracting vertical exceptional curves,wemay assume that h̃ is relativelyminimal.
Let M ∈ Pic (S̃) be the moving part of the pull-back of the tautological line bundle H
on PB(A1,0

B
). Denote by � the image of the general fiber F , and γ = g(�). Then

h0(F, M |F ) ≥ h0(�, H |�) ≥ r := rank A1,0
B

= rank A1,0
C

. (3.1)

Lemma 3.1 If r >
5g+22

7 , then deg �̃ ≤ 2. Moreover, if deg �̃ = 2, then h̃ is locally
trivial with

γ <
2g − 22

7
, (3.2)

where γ is the genus of a general fiber of h̃.

Proof Let�0 : F → � ⊆ Pr−1 be the restricted morphism on the general fiber. Then
it is clear that deg(�̃) = deg(�0). By construction,

2g − 2 ≥ deg(M |F ) = deg(�0) · deg(H |�)

≥ deg(�0) · (
h0(�, H |�) − 1

)

> deg(�0) ·
(5g + 22

7
− 1

)
.
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Hence deg(�̃) = deg(�0) ≤ 2 as required. Moreover, if deg �̃ = 2 and h̃ is locally
trivial, then the Hodge bundle h̃∗ωỸ/B is flat of rank γ , and hence (3.2) follows since

the pull-back of h̃∗ωỸ/B under �̃∗ is a direct summand of f̄∗ωS/B . Therefore, it

remains to show that h̃ is locally trivial if deg �̃ = 2.
The decomposition

f̄∗ωS/B = A1,0
B

⊕ F1,0
B

(3.3)

corresponds to a decomposition on V := H0(F, ωF ):

V = VA ⊕ VF .

The map �0 is exactly the map defined by the linear subsystem �A ⊆ |ωF | corre-
sponding to VA. If deg(�0) = 2, it induces an involution τ on F . It is clear that the
subsheaf A1,0

B
, which is the ample part, is invariant under the induced action of τ on

f̄∗ωS/B . Hence VA is also invariant under the induced action of τ on H0(F, ωF ), i.e.,
τ ∗(ω) ∈ VA for any ω ∈ VA.

We claim that the induced action of τ on VA is the multiplication by (− 1). We
prove the claim by contradiction. Since VA is invariant under the induced action of τ ,
it admits a basis consisting of eigenvectors of τ . Let {ω1, . . . , ωr } be such a basis of
VA, and Di = div (ωi ). Let D0 be the fixed part of �A. Then there exists a divisor �i

on � for each 1 ≤ i ≤ r such that

Di = D0 + �∗
0(�i ).

Since τ is an involution, without loss of generality we may assume that τ ∗ω1 = ω1
if the claim does not hold. It follows that ω1 = �∗

0(ω
′
1) for some ω′

1 ∈ H0(�, ω�).
Equivalently,

D1 = R + �∗
0

(
D′
1

)
,

where D′
1 = div (ω′

1) and R is the ramification divisor of �0. Therefore,

D0 + �∗
0(�1) = R + �∗

0

(
D′
1

)
.

Taking any point p ∈ R and q = �0(p), let a ≥ 0 be the multiplicity of p in D0, and
b and c be the multiplicities of q in �1 and D′

1 respectively. Then the above equality
implies that a + 2b = 1 + 2c. It follows that a ≥ 1. Hence D0 ≥ R; equivalently,
VA ⊆ �∗

0H
0(�, ω�). In particular, r = dim VA ≤ γ , which is a contradiction.

Coming back to the proof, the above claim implies that the induced action of τ on
A1,0
B

is also the multiplication by (− 1). Note that h̃∗ωỸ/B can be naturally viewed as

a subsheaf of f̄∗ωS/B and that τ acts trivially on h̃∗ωỸ/B . Hence h̃∗ωỸ/B ⊆ F1,0
B

. In

particular, deg(h̃∗ωỸ/B) = 0, and hence h̃ is locally trivial as required. ��
Thus the proof of Theorem 1.2 is divided into two cases according to the value of

deg �̃.
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3.2 The Case when deg(˜8) = 1

Proof of Theorem 1.2 when deg(�̃) = 1. We mimic the proof as in [12]. It suffices to
prove the following strict Arakelov inequality for the semi-stable fibration f̄ : S → B
representing the Shimura curve C generically in Tg .

deg f̄∗ωS/B <
r

2
·
(
deg�1

B
(log�nc) − |�|

)
, where r = rank A1,0

C
, (3.4)

where ϒnc → �nc is the singular locus of f̄ with non-compact Jacobian, and � ⊆ B
is the ramification divisor of the double cover jB : B → C as in [12, §3].

According to [12, Theorem4.2] together with Theorem 3.2 below, one obtains

deg f̄∗ωS/B ≤ 4r(g − 1)

3g + 7r − 12
·
(
deg�1

B
(log�nc) − |�|

)
+ 4r

3g + 7r − 12
· |�|.

Note that ω2
S/B

≤ 12 deg f̄∗ωS/B by Noether’s equality. Hence from (3.5) it follows

that

|�| ≤ 17r − 3g + 12

4r(g − 2)
· deg f̄∗ωS/B .

Therefore,

deg f̄∗ωS/B ≤ 4r(g − 1)(g − 2)

(7g − 31)r + 3(g − 1)(g − 4)
·
(
deg�1

B
(log�nc) − |�|

)
,

=
(
r

2
− r

2
· (7g − 31)r − (g − 1)(5g − 4)

(7g − 31)r + 3(g − 1)(g − 4)

)

·
(
deg�1

B
(log�nc) − |�|

)
,

<
r

2
·
(
deg�1

B
(log�nc) − |�|

)
, since r >

5g + 22

7
.

This proves (3.4). ��
To finish the proof, it remains to prove the following slope inequality.

Theorem 3.2 Let f̄ : S → B be the family of semi-stable genus-g curves representing
a Shimura curve C � Tg , and �̃ : S̃ → Ỹ be the morphism induced by A1,0

B
as above.

Assume that deg �̃ = 1. Then

ω2
S/B

≥ 7r + 3g − 12

2r
deg f̄∗ωS/B + 2(g − 2) · |�|

+
∑

p∈�ct ∩�

2
(
lh(Fp) + l1(Fp) − 1

) +
∑

p∈�ct\�

(
3lh(Fp) + 2l1(Fp) − 3

)
.

(3.5)
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Here � ⊆ B is the ramification divisor of the double cover jB : B → C as in [12,
§3], ϒct → �ct are the singular fibers with compact Jacobians, li (Fp) is the number
of components of geometric genus equal to i in Fp, and lh(Fp) = ∑

i≥2 li (Fp).

Proof The proof is quit similar to [12, Theorem5.2]. It is based on analyzing the
following natural multiplication

� : S2
(
f̄∗ωS/B

)
−→ f̄∗

(
ω⊗2
S/B

)
, (3.6)

where S2
(
f̄∗ωS/B

)
is the symmetric power of f̄∗ωS/B .

As deg �̃ = 1, f̄ is non-hyperelliptic. Hence the morphism � in (3.6) is generically
surjective by Noether’s theorem (cf. [1, § III.2]). Let I be the image of �. Then one
gets an exact sequence as below:

0 −→ I −→ f̄∗
(
ω⊗2
S/B

) −→ S −→ 0,

where S is the cokernel of �, which is a torsion sheaf. So

deg f̄∗
(
ω⊗2
S/B

) = deg I + degS.

Hence it suffices to prove

deg(I) ≥ 9r + 3g − 12

2r
deg f̄∗ωS/B . (3.7)

Let
�1 : S2A1,0

B
↪→ S2

(
f̄∗ωS/B

)
−→ I,

and

�2 : A1,0
B

⊗ f̄∗ωS/B −→ S2
(
f̄∗ωS/B

)
−→ I,

be the induced maps. Denote by μ̃1 = 2 deg f̄∗ωS/B
r and μ̃2 = deg f̄∗ωS/B

r . Then
μ f (Im(�1)) ≥ μ̃1 and μ f (Im(�2)) ≥ μ̃2, where

μ f (E) = max{degF | E ⊗ F∨ is semi-positive}, ∀ locally free sheaf E .

Since the map �0, as well as �̃, is birational, one has
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

rank (Im(�1)) ≥ 3r − 3, by the Clifford plus theorem, cf. [1, § III.2],

rank (Im(�2)) ≥ g + deg(M |F ) + r − 1 − s, by [14, Lemma3.10],

≥ g + g + 3s − 4

2
+ r − 1 − s, by Castelnuovo’s bound, cf. [1, § III.2],

≥ 3g + 3r − 6

2
, where s := h0

(
F, M |F

) ≥ r .

Hence (3.7) follows from the next proposition. ��
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S St
φt

π̃=πt

St−1
φt−1

πt−1

· · · φ2
S1

φ1

π1

S0

π0

Yt
ψt

Yt−1
ψt−1 · · · ψ2

Y1
ψ1

Y0 Y

Fig. 1 Canonical resolution

The next proposition was stated for f∗
(
ω⊗2
X/B

)
in [13, Proposition2.5]. But we note

that the proof is still valid if we replace f∗
(
ω⊗2
X/B

)
by the image I.

Proposition 3.3 Let μ̃1 > · · · > μ̃k ≥ 0 (resp. 0 < r̃1 < · · · < r̃k ≤ 3g − 3) be any
decreasing (resp. increasing) sequence of rational (resp. integer) numbers. Assume
that there exists a subsheaf Fi ⊆ I such that μ f (Fi ) ≥ μ̃i and rankFi ≥ r̃i for each
i . Then

deg(I) ≥
k∑

i=1

r̃i (μ̃i − μ̃i+1), where μ̃k+1 = 0.

3.3 The Case when deg(˜8) = 2

In this case, we have to consider the slope of semi-stable double cover fibrations. We
first recall some facts about the double cover fibrations from [14].

One starts from a relatively minimal fibration h̃ : Ỹ → B of genus γ > 0 and a
reduced divisor R̃ ∈ Pic (Ỹ ) with R̃ · �̃ = 2g + 2 − 4γ and OỸ (R̃) ≡ L̃⊗2 for some
line bundle L̃ , where �̃ is a general fiber of h̃. From these data one constructs a double
cover π0 : S0 → Y0 = Ỹ . By the canonical resolution, one gets a smooth fibered
surface f̃ : S̃ → B, and by contracting further (− 1)-curves contained in the fibers
one obtains a relatively minimal fibration f̄ : X → B of genus g. We call f̄ a double
cover fibration of type (g, γ ) (Fig. 1).
Hereψi s are successive blowing-ups resolving the singularities of R̃, andπi : Si → Yi
is the double cover determined by OYi (Ri ) ≡ L⊗2

i with

Ri = ψ∗
i (Ri−1) − 2[mi−1/2] Ei , Li = ψ∗

i (Li−1) ⊗ OYi

(
E−[mi−1/2]
i

)
,

where Ei is the exceptional divisor of ψi ,mi−1 is the multiplicity of the singular point
yi−1 in Ri−1 (also called the multiplicity of the blowing-up ψi ), [ ] stands for the
integral part, R0 = R̃ and L0 = L̃ . A singularity y j ∈ R j ⊆ Y j is said to be infinitely
near to yi ∈ Ri ⊆ Yi ( j > i), if ψi+1 ◦ · · · ◦ ψ j (y j ) = yi .

We remark that the order of these blowing-ups contained in ψ = ψ1 ◦ · · · ◦ ψt is
not unique. If yi−1 is a singular point of Ri−1 of odd multiplicity 2k + 1 (k ≥ 1) and
there is a unique singular point y of Ri on the exceptional curve Ei of multiplicity
2k + 2, then we always assume that ψi+1 : Yi+1 → Yi is a blowing-up at yi = y.
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We call such a pair (yi−1, yi ) a singularity of R of type (2k + 1 → 2k + 1), and yi−1
(resp. yi ) the first (resp. second) component.

Definition 3.4 ([14, Definition4.1]) For any singular fiber F of f and j ≥ 2, we define

• if j is odd, s j (F) equals the number of ( j → j) type singularities of R over the
image f (F);

• if j is even, s j (F) equals the number of singularities of multiplicity j or j + 1
of R over the image f (F), neither belonging to the second component of type
( j − 1 → j − 1) singularities nor to the first component of type ( j + 1 → j + 1)
singularities.

Let hi : Yi → B be the induced fibration, ωhi = ωYi ⊗ h∗
i ω

−1
B

and R′
t = Rt \ Vt ,

where Vt is the union of vertical isolated (− 2)-curves in Rt . Here a curve C ⊆ Rt is
called to be isolated in Rt , if there is no other curve C ′ ⊆ Rt such that C ∩ C ′ �= ∅.
We define

s2 := (
ωht + R′

t

) · R′
t + 2

∑

F is singular

s2(F),

s j :=
∑

F is singular

s j (F), ∀ j ≥ 3.

Note that the contractionψ is unique since γ > 0 (although the order of these blowing-
ups contained in ψ is not unique). Hence the invariants s j s are well defined.

Theorem 3.5 ([14, Theorem4.3]) Let f̄ be a double cover fibration of type (g, γ ).
Then

(2g + 1 − 3γ )ω2
S/B

= x ·
ω2
Ỹ/B

γ − 1
+ yT + zs2 +

∑

k≥1

aks2k+1 +
∑

k≥2

bks2k,

(2g + 1 − 3γ ) deg f̄∗ωS/B = x̄ ·
ω2
Ỹ/B

γ − 1
+ 2(2g + 1 − 3γ ) deg h̃∗ωỸ/B + ȳT

+ z̄s2− 2g + 1−3γ

4
· n2+

∑

k≥1

āks2k+1 +
∑

k≥2

b̄ks2k,

where we set
ω2
Ỹ/B

γ−1 = 0 if γ = 1, n2 the number of vertical isolated (− 2)-curves of

R̃, and

x = (3g + 1 − 4γ )(g − 1)

2
, y = 3

2
, z = g − 1;

x̄ = (g + 1 − 2γ )2

8
, ȳ = 1

8
, z̄ = g − γ

4
.

ak = 12āk − (2g + 1 − 3γ ), bk = 12b̄k − 2(2g + 1 − 3γ ),

āk = k
(
g − 1 + (k − 1)(γ − 1)

)
, b̄k = k

(
g − 1 + (k − 2)(γ − 1)

)

2
,
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T = −
(
(g + 1 − 2γ )ωỸ/B − (γ − 1)R

)2

γ − 1
− 2(γ − 1)n2 ≥ 0.

In the case when the fibration h̃ is locally trivial, it is clear that

n2 = ω2
Ỹ/B

= deg h̃∗ωỸ/B = 0. (3.8)

Moreover, similar to [10], one proves that

Lemma 3.6 Let f̄ : S → B be a double cover fibration as above. If h̃ is locally trivial
and f̄ is semi-stable, then

δ0 = s2 +
∑

k≥2

2s2k, δi = s2i+1 + s2(g−i)+1, if i > 0. (3.9)

Here δi is the number of nodes of type i contained in the singular fibers of f̄ , and
a node p in a singular fiber F of f̄ is called of type 0 (resp. i with 0 < i ≤ g/2)
if the partial normalization of F at p is connected (resp. consists of two connected
components of arithmetic genera i and g − i).

Proposition 3.7 Let f̄ : S → B be a double cover fibration as above. Assume that h̃
is locally trivial and f̄ is semi-stable.

(1) Let δh = ∑

i≥2
δi . Then it holds

ω2
S/B

≥ 4(g − 1)

g − γ
deg f̄∗ωS/B + 3δ1 + 7δh . (3.10)

(2) If δ0 = 0, then

ω2
S/B

≥ 3(2g + 3γ − 5)

g − 1
deg f̄∗ωS/B + 2δ1 + 5δh . (3.11)

(3) If γ < q f̄ , then

ω2
S/B

≥ 1

3

(8(g − 1)

g − γ
+ 6g + 4γ − 10

g − 1

)
deg f̄∗ωS/B + 2δ1 + 14

3
δh . (3.12)

Proof The first two inequalities follow directly from Theorem 3.5 together with (3.8)
and (3.9). For the third one, one first notes thatwhen γ < q f̄ , the double cover fibration

f̄ is irregular, and hence by [14, Theorem4.10],

ω2
S/B

≥ 6g + 4γ − 10

g − 1
deg f̄∗ωS/B .

Combining this with (3.10), one proves (3.12). ��
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We can now finish the proof of Theorem 1.2.

Proof of Theorem 1.2 when deg(�̃) = 2. Let f : S → B be the semi-stable family
of curves of genus g representing the Shimura curve C � Tg as above, and assume
that deg(�̃) = 2, where �̃ is the map induced by A1,0

B
in Sect. 3.1. By Lemma 3.1,

f̄ is a double cover fibration and the quotient fibration h̃ is locally trivial. Note that
rank A1,0

C
≤ g. Hence the assumption rank A1,0

C
>

5g+22
7 implies in particular that

g ≥ 12. Thus we may assume that γ > 0 by [12], where γ is the genus of a general
fiber of h̃. We claim that

Claim 3.8 The family f̄ : S → B contains no hyperelliptic fiber with compact Jaco-
bian, equivalently, it holds � = ∅, where � ⊆ B is the ramification divisor of the
double cover jB : B → C as in ([12], §3).

Proof of Claim 3.8 We prove by contradiction. Assume there exists a hyperelliptic fiber
F0 with compact Jacobian. Let τ and ι be the two involutions on F0, such that F0/〈τ 〉
is of arithmetic genus γ and F0/〈ι〉 is of arithmetic genus zero.

First it is easy to see that F0 is not smooth; in fact, if F0 is smooth, it admits
two different double covers to � and P1 respectively, and hence g ≤ 2γ + 1 by the
Castelnuovo–Severi inequality (cf. [8, ExerciseV.1.9]), a contradiction to (3.2).

We now assume that F0 is singular, and let F0 = ∑
Ci . Since F0 has a compact

Jacobian, F0 is a tree of smooth curves. We divide the proof into two cases according
to whether there exists a component Ci of positive genus such that Ci is invariant
under τ with g

(
Ci/〈τ 〉) = 0.

If there is no component of positive genus invariant under τ with g
(
Ci/〈τ 〉) = 0,

then F0 contains at most two components whose genera are positive since the quotient
F0/〈τ 〉 contains only one component whose genus is positive (its genus is γ ). If there
is only one such a component, then again g ≤ 2γ + 1 by the Castelnuovo–Severi
inequality, which gives a contradiction; if there are two such components, then τ

exchanges them and both of them are of genus γ , and hence g = 2γ , which again
contradicts (3.2).

We assume now that there is one component, saying C1, of positive genus invariant
under τ with g

(
C1/〈τ 〉) = 0.We first claim that g(C1) = 1; indeed, since the quotient

C1/〈τ 〉 is also of genus zero, it follows thatC1 admits two different double toP1, which
implies g(C1) = 1. As two different involutions on C1, τ and ι have no common fixed

points. According to the proof of [12, Lemma5.7], every point in (F0 \ C1) ∩ C1 is
a fixed point of ι. It follows that there is no component except C1 invariant under τ .
Thus, besides C1, F0 consists of exactly two other components, saying C2 and C3, of
positive genus, which are the pre-image of the component of positive genus in F0/〈τ 〉.
Therefore, g(C2) = g(C3) = γ , and g = 2γ + 1. It again contradicts (3.2). ��

Coming back to the proof of Theorem 1.2. We consider first the case when the
Shimura curve C is compact, i.e., the family f̄ : S → B has no singular fiber
with non-compact Jacobian, or equivalently δ0 = 0. By (3.11) together with [12,
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Theorem4.1], one obtains that

deg f̄∗ωS/B ≤ 2(g − 1)2

3(2g + 3γ − 5)
deg�1

B
<

r

2
deg�1

B
.

The last inequality follows from the assumption that r = rank A1,0
C

>
5g+22

7 . This is
a contradiction to [12, Corollary3.6], since � = ∅ by Claim 3.8.

In the rest part of the proof, we assume that C is not compact. Hence the family
f̄ : S → B admits singular fibers with non-compact Jacobians, and hence we may
assume that the flat factor F1,0

C
is trivial up to a suitable base change, cf. [18, §4].

Under this assumption, we claim that

Claim 3.9
γ ≥ g − r − 1

2
. (3.13)

Proof of Claim 3.9 Since F1,0
C

is trivial, F1,0
B

is also trivial. By [6], this is equivalent to
saying that the relative irregularity q f̄ = g − r .

Assume on the contrary that γ <
g−r−1

2 . Then q(S̃) − q(Ỹ ) ≥ q f̄ − γ > γ + 1.

Thus by [14, Lemma4.8], the image J0(S̃) ⊆ Alb0(S̃) is a curve of genus at least
q f̄ − γ , where J0 : S̃ → Alb0(S̃) is the relative Albanese map with respect to the

double cover �̃ as defined in [14, §4.2]. On the other hand, one knows that any fiber
of f̄ over �nc is of geometric genus equal to q f̄ [11, Corollary1.7]. Therefore one

sees that the restricted map J0
∣∣
F0

: F0 → J0(S̃) ⊆ Alb0(S̃) is of degree one. This

implies that S̃ is birational to B × J0(S̃), which is a contradiction. ��
By (3.11) together with [12, Theorem4.1] and (3.13), one gets

deg f̄∗ωS/B <
6(g − 1)

8(g−1)
g−γ

+ 6g+4γ−10
g−1

deg�1
B
(log�nc) <

r

2
deg�1

B
(log�nc).

Since � = ∅ by Claim 3.8, this is again a contradiction to [12, Corollary3.6]. ��
Remark 3.10 When the unitary part satisfies rank F1,0

C
≤ �(g + 1)/2�, we refer to

[7] for some results on the restriction of a possible Shimura curve generically in the
Torelli locus.

4 Partial Corestriction and Associated Symplectic Representations

In this section we discuss a variant from the construction in [15] which produced
symplectic representations from corestriction of central simple algebras.

4.1 Partial Corestriction

For a finite separable extension of fields F ⊃ L and A a central simple F-algebra, we
have the notion of restriction and corestriction:
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• the restriction of scalars for A along L ↪→ F is the semi-simple L-algebra
ResF/L A, which splits into AEmbL (F)

L̄
after the base change L ↪→ L̄ , and we

may equally write

ResF/L A ⊗L L̄ =
⊕

σ∈EmbL (F)

σ ∗A

• the corestriction for A along L ↪→ F is a central simple L-algebra D, uniquely
characterized by

DL̄ 
⊗

σ∈EmbL (F)

σ ∗A

up to isomorphism.

Here L̄ is a fixed separable closure of L and EmbL(F) is the set of L-embeddings of
F into L̄ , with σ ∗A = A ⊗F,σ L̄ .

For the restriction we have an evident diagonal homomorphism A → ResF/L A⊗L

F of F-algebras by the adjunction between restriction and tensor product, and for the
corestriction we still have a multiplicative map A → CorF/L A = D, which is the
multiplicative diagonal map a �→ ⊗σ∈EmbL (F)σ

∗(a) viewed in AL̄ → DL̄ . Both lead

to homomorphisms of linear L-groups: the restriction gives G
A/F
m → G

A/L
m ⊗L F ,

and the corestriction gives G
A/L
m → G

D/L
m .

We would like to consider the following construction as an interpolation between
restriction and corestriction: for F/L a finite separable extension of fields of degree
r and t ∈ {1, . . . , r}, together with A a central simple F-algebra, we define the t th
partial corestriction of A along L ↪→ F to be the semi-simple L-algebra D(t) with

D(t) ⊗L L̄ =
⊕

T

⊗

σ∈T
σ ∗A,

where the summation
⊕

T is taken over all subsets T in EmbL(F) of cardinality t ,
and σ ∗A = A ⊗F,σ L̄ . It is clear that D(t) is unique up to L-isomorphism, with
D(1)  ResF/L A and D(t)  CorF/L A as the extremal examples.

For t fixed as above and each T ⊂ EmbL(F) of cardinality t , we have a multiplica-
tive map

A →
⊗

σ∈T
σ ∗A, a �→ ⊗σ ∗(a).

They sum up to a multiplicative map

(A ⊗L L̄)× →
∏

T

(
⊗

σ∈T
σ ∗A

)×

and it sheafifies into a homomorphism of linear L-group G
A/L
m → G

D(t)/L
m .
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We may also use a single Gal(L̄/L)-orbit in EmbL(F) instead of summing over
all subsets of given cardinality. For example, let � be a Gal(L̄/L)-orbit in EmbL(F),
in the sense that � = {g(T0) : g ∈ Gal(L̄/L)} for some T0 ⊂ EmbL(F) non-empty,
and we define D(�) to be the semi-simple L-algebra characterized as:

D(�) ⊗L L̄ =
⊕

T∈�

⊗

σ∈T
σ ∗A,

which is unique up to L-isomorphism. The homomorphismof linear L-groupG
A/L
m →

G
D(�)/L
m is constructed in a parallel way.

4.2 Construction of Representations via Hermitian Forms

In this section we focus on the case of symplectic representations defining Shimura
curves inAg which are associatedwith partial corestrictions.We fix ι : L ↪→ F a finite
separable extension of totally real number fields. Write Q for the algebraic closure
of Q in C, and we may identify Emb(F) = HomQ(F, Q) the set of embeddings
of F into Q with HomQ(F, C) and HomQ(F, R), together with a transitive action
of Gal(Q/Q). Similarly, fix L ↪→ C with L̄ the separable closure of L in C, we
may identity EmbL(F) the set of L-embeddings of F into L̄ with HomL(F, C) and
HomL(F, R), and the evident transitive action of Gal(L̄/L) on EmbL(F) passes on.
We are given an F-formH ofSL2,F , andwewrite {σ1, . . . , σs} for the real embeddings
of L , {τi,1, . . . , τi,r } for the real embeddings of F extending σi , such thatH(R, τ1,1) 
SL2(R) and H(R, τi, j ) = SU2(R) for (i, j) �= (1, 1). Also write J = ResF/LH with
J(R, σi ) = ∏

j=1,...,r H(R, τi, j ) for i = 1, . . . , s.
We proceed to the construction of symplectic representations associatedwith partial

corestrictions of quaternion algebras defining Shimura curves.
Case (1)+ (2-1):
Following the discussion in Sect. 2.1, Cases (1) and (2-1) are treated together. We

are given a CM field of the form E = F ⊗L K of real part F , with K a CM field
of real part L , and h : V × V → E an Hermitian form on V = E2, of signature
(1, 1) along τ1,1, definite along the other real embeddings of F , and H = SUh . For
T ⊂ EmbL(F) non-empty, we have an Hermitian form hT : VT × VT → L̄ ⊗L K
with respect to L̄ ↪→ L̄ ⊗L K , where VT is the L̄-linear tensor product of V ⊗F,τ L̄
over τ ∈ T , and J(L̄) preserves hT , with its action on VT through the projection
J(L̄)  ∏

τ∈EmbL (F) H(L̄, τ ) → ∏
τ∈T H(L̄, τ ). Taking orthogonal direct sum over

the Gal(L̄/L)-orbit � of T in EmbL(F), we obtain an Hermitian space h� : V� ×
V� → L̄⊗L K with V� = ⊕

T∈�

⊗
τ∈T τ ∗V on which J(L̄) acts by automorphisms,

and the Gal(L̄/L)-invariance descends it into anHermitian space with respect to K/L ,
whichwe still denote as h� : V�×V� → K . Again J preserves h� and a further scalar
restriction from L to Q gives ResF/QH = ResL/QJ ↪→ ResL/QSUh� . In particular,
J preserves the imaginary part of h� which is a symplectic L-form, the L/Q-trace
of which is a symplectic Q-form ψ on M the Q-vector space underlying V� and is
preserved by ResF/QH.
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Note that M = ResK/QV� is of Q-dimension 2 · 2t s · #�, where s = [L : Q]
and t is the common cardinality of T ∈ �. Let C× act on V ⊗F,τi, j R through the
similitude by the normC× → R× if (i, j) �= (1, 1), and act on V ⊗F,τ1,1 R preserving
the Hermitian form up to C× → R×, then we obtain a homomorphism S → G where
G is the Q-subgroup of GSpM extending ResF/QH by a central Q-torus Gm. This
gives rise to an inclusion of Shimura datum (G, X; X+) ↪→ (GSpM ,HM ;H+

M ) and
a Shimura curve C in AM . Note that the symplectic R-representation of Gder(R) on
M ⊗Q R admits a decomposition M ⊗Q R  ⊕

i=1,...,s V ⊗L,σi R, with Gder(R)

acting on V ⊗L,σi R through J(R, σi ), which is non-compact for i = 1 and compact
for i = 2, . . . , s. Hence

⊕
i �=1 V� ⊗L,σi R only contribute to the unitary part in the

canonical Higgs bundle on C .
The remainingR-subrepresentationV�⊗L,σ1R = ⊕

T∈� VT ⊗L,σ1R is isomorphic
to

⊕
T∈�(C2)⊗T , with Gder(R) acting on (C2)⊗T via the projection through the

product of those H(R, τ1, j ) corresponding to τ ∈ T . Upon the natural identification
of {τ1,1, . . . , τ1,r } with EmbL(F), we see that the summand (C2)⊗T contributes to
the unitary part in the canonical Higgs bundle if and only if τ1,1 does not appear in T ;
when it appears (C2)⊗T is an Hermitian space of signature (2t−1, 2t−1) (t = #T ).

It is in general difficult to compute the unitary rank for an arbitrary Gal(L̄/L)-orbit
� as above. We may still treat the simpler case using the representation V (t): t is a
fixed integer in [1, r ] (r = [F : L]), and V (t) is an Hermitian space for K/L with
V (t) ⊗L L̄ = ⊕

#T=t
⊗

σ∈T V ⊗L,σ L̄ using orthogonal direct sum of Hermitian
spaces constructed as above. Again write M for the Q-vector space underlying V (t),
which is of Q-dimension 2 · 2t(rt

)[L : Q], we see the contribution to the unitary part
of the Higgs bundle associated with M are from:

• V (t) ⊗L,σi R with i = 2, . . . , s;
• those (C2)⊗T with T ⊂ EmbL(F) of cardinality t in which the embedding corre-
sponding to τ1,1 does not appear; each of these tensor product is of C-dimension
2t on which Gder(R) acts through a compact group, and there are

(r−1
t

)
such

summands.

Those (C2)⊗T with τ1,1 appearing in T ⊂ EmbL(F) of cardinality t do not contribute
to the unitary part: Gder(R) preserves an Hermitian form of signature (2t−1, 2t−1) on
such an summand, and there are

(r−1
t−1

)
such summands.

To summarize, the unitary part in the Higgs bundle associated with M =
ResK/QV (t) in this case is of rank rank M

s (s − 1 + (r−1
t )

(rt)
) = rank M

s (s − t
r ) =

rank M(1 − t
d ) with d = rs = [F : Q].

Case (2-2):
In this case we have a CM field E of totally real part F , a quaternion division

E-algebra A carrying an involution of second kind which extends the F-conjugation
on E , and an Hermitian pairing H : A × A → A. A further composition with the
reduced trace gives an Hermitian form h : A × A → E , which is preserved by
H the outer form of SL2,F as we have seen in Sect. 2. Along the real embedding
τ1,1 we have τ ∗

1,1A = A ⊗F,τ1,1 R  C4, on which H(R, τ1,1)  SU(1, 1) has
a faithful action preserving τ ∗

1,1h = h ⊗F,τ1,1 R: this forces τ ∗
1,1A  (C2)⊕2 as

a direct sum of two copies of the standard representation of SU(1, 1) on C2, and
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τ ∗
1,1h has to be an Hermitian form of signature (2, 2). The other real embeddings
only lead to definite Hermitian spaces preserved by compact Lie groups H(R, τi, j )

((i, j) �= (1, 1)).
Given a finite extension of fields K ↪→ E and � a Gal(K̄/K )-orbit of some non-

empty subset T0 in EmbK (E) we have the partial corestriction D(�). In order to have
natural Hermitian spaces on suitable modules over D(�), we assume for simplicity
that K is also a CM field, and the extension K ↪→ E is extended from an extension of
totally real fields L ↪→ F with L the real part of K and E  F ⊗L K , and we identify
EmbK (E) with EmbL(F). Thus the Gal(K̄/K )-orbit � above can be identified as a
Gal(L̄/L)-orbit in EmbL(F), which is again denoted as �.

The semi-simple K -algebra D(�) is characterized by the isomorphism

D(�) ⊗K K̄ 
⊕

T∈�

⊗

τ∈T
τ ∗A.

Write V for the E-module underlying A, and we also have the following D(�)-
module V (�) again characterized as V (�) ⊗K K̄ = ⊕

T∈�

⊗
τ∈T τ ∗V which is

just the K -vector space underlying D(�). The Hermitian structure h : V × V → E
passes to an Hermitian form h� on V (�) similar to Cases (1)+(2-1) using orthogonal
direct sums of Hermitian structures on the summands, and it is preserved by J =
ResF/LH. Taking a further scalar restriction we obtain an action of ResF/QH on
M = ResK/QV (�) preserving the symplecticQ-structure induced from the imaginary
part of h�. Arguments parallel to the previously established case produce a Shimura
datum (G, X; X+) ↪→ (GSpM ,HM ;H+

M ) defining a Shimura curve C .
The computation of unitary rank in the canonical Higgs bundle associated with

G ↪→ GSpM on C is similar:

• the embeddings σ2, . . . , σd correspond to summands V (�) ⊗E,σi C on which
Gder(R) acts through a compact quotient, which only contribute to the unitary
Higgs bundle;

• inside V (�) ⊗E,σ1 C, the summands
⊗

τ1, j∈T τ ∗
1, j V contributes to the unitary

part if and only if τ1,1 ∈ T ; here we identify {τ1, j : j = 1, . . . , [E : K ]} with
EmbK (E), similar to Case (1)+(2-1).

The case D(t) remains computable: we fix t an integer in [1, r ] (r = [E : K ]),
and we have the semi-simple K -algebra D(t) = [⊕T

⊗
τ∈T τ ∗A]Gal(K̄/K ) with T

running through subsets of EmbL(K ) of cardinality t , and the K -vector space V (t)
underlying D(t) carries an Hermitian form h(t), obtained as orthogonal direct sums⊕

h� taken over Gal(K̄/K )-orbits considered as above. Write M for the Q-vector
space underlying V (t), it carries a symplecticQ-form preserved by ResF/QH, induced
from the imaginary part of h(t), and we obtain a Shimura subdatum (G, X; X+) ↪→
(GSpM ,HM ;H+

M ) defining a Shimura curve C . In this case, the unitary part of the
canonical Higgs bundle associated with G → GSpM is computed similarly: its rank
equals rank (M)(1 − t

d ) with d = rs = [F : Q]. The Q-dimension of M is clearly
2 · 4t s(rt

)
.

123



268 K. Chen et al.

4.3 End of the Proof

So far the rank 2g of M is 2 · 2t(rt
)
s in Case (1)+(2-1) and 2 · 4t(rt

)
s in Case (2-2), and

the ample part A1,0
C

is of rank g t
d ≤ g

[L:Q] . Theorem 1.2 affirms the generic exclusion

of such a Shimura curve from T ◦
g as soon as g t

d >
5g+22

7 . Note that we are only
interested in the Coleman–Oort conjecture for g ≥ 7, and Theorem 1.2 would not
be applicable for L �= Q. Hence we assume L = Q and Corollary 1.3 is clear for
t
d > 5

7 + 22
7g .

Remark 4.1 The symplectic representation V (t) is in general reducible: given T ⊂
EmbL(F) we have at most r = [F : L] Galois conjugates of T inside EmbL(F),
while V (t) is a direct sum over

(r
t

)
such subsets. We have restricted to this case only

for the simplicity of computation; the case of a general Gal(L̄/L)-orbit of a given
subset in EmbL(F) remains unclear for the moment.
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