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1 Introduction

In this paper, we consider the two-dimensional Camassa—Holm (2D CH) equation
[17,18,23]

ad
Em+u-vm+vuT~m+m(Divu)=O, (1.1)
where u = (uq, ug)T is velocity and

m = (m;, m>)’ =u— Grad Div u (1.2)

is momentum. In coordinates x, y, the equation reads as follows:

om| n om| n am n oup + duy " oup ouy 0 (1.3)
— dtu— Fur—+m—+my—+m; | — +—1, =0, )
ar | ax Ty Pox T T G T Ty
omo omo omo oup duy ouq oun
2 2 4, T2 S, 22 LA o (14
o +u; oz +up oy +m18y +m28y +m2(3x+8y) (1.4)
where
32 32
mip=uy — o~ S22 (L5)
axZ  9xdy
32 82
my =y — —2L 242 (1.6)
0xdy  0dy?

The Camassa—Holm (CH) equation was derived as a model to describe the propagation
of the gravitational waves in the shallow water. The CH equation has a very intriguing
structure, it models wave breaking for a large class of the initial data and is completely
integrable. This equation is very important in the literature.

Equation (1.1) is also called Euler—Poincaré equations associated with the diffeo-
morphism group (EPDiff), which has the same form with the CH equation except for
the momentum velocity relationship in two-dimensional case. The CH equation in
one-dimensional case is the same as EPDiff equation when the momentum velocity
relationship is defined by the Helmholtz equation m = u — uy, [17]. But the EPDiff
equations with the Helmholtz relation between velocity and momentum are not quite
the CH equations for surface waves in two-dimensional case. The shallow water wave
relation in the 2D CH approximation would be:

m = u — Grad Div u, (1.7)
rather than the Helmholtz operator form:
m = u — Div Grad u. (1.8)
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The corresponding Lagrangians for the 2D CH equation are:

Leu(u) = %//(Iulz + (Div u)?)dxdy, (1.9)

instead of Lagrangians for the EPDiff equations

1
Leppif (0) = 3 / / lu]? + (Grad u)’dxdy. (1.10)

This difference was noted in [17,23]. Holm and Marsden studied the momentum maps
and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation
in [17]. Kraenkel and Zenchuk studied the two-dimensional integrable generalization
of the Camassa—Holm equation in [21], and the Lie symmetry analysis and reductions
of a two-dimensional integrable generalization of the Camassa—Holm equation in [22].
Kruse proved the symmetry and perturbation theory of a two-dimensional version of
the Camassa—Holm equation in [23].

There are lots of numerical works in the literature to solve the CH equation in one
dimension, for example finite difference schemes [3,5,8,9,13,16,20,24,27,35-38],
finite-volume schemes [1], finite element schemes [29,30], discontinuous Galerkin
(DG) schemes [26,28,33] and other methods [7,15,19,24,25,32]. But there is only a
few work for the 2D CH equation. The work in [4,6,14,17] presented the numerical
simulations for EPDiff equations.

In this paper, we develop a class of local discontinuous Galerkin (LDG) methods by
for the 2D CH equation (1.1)—(1.2), which is using completely discontinuous piece-
wise polynomial space for the numerical solution and the test functions in the spatial
variables. The idea of LDG methods is to suitably rewrite a higher-order partial dif-
ferential equations into a first-order system, then apply the DG method to the system.
A key ingredient for the success of such methods is the correct design of interface
numerical fluxes. The resulting scheme is high-order accurate, nonlinear stable and
flexible for arbitrary & and p adaptivity. The peakon solution is typical solution for
this type nonlinear dispersive equation, which is lack of smoothness, and often causes
high-frequency dispersive errors into the calculation. The stable and accurate numeri-
cal schemes are very important for solving these equations. Comparing with the LDG
scheme for 1D CH equation in [33], the main difference between 1D and 2D is that there
are a lot of cross terms in the 2D CH equation and it needs to introduce more auxiliary
variables, which brings a lot of trouble for the proof of the stability and numerical test.

The LDG techniques have been developed for nonlinear wave equations with high-
order derivatives [34]. The stable LDG methods for general nonlinear wave equations
which may be system or multidimensional case have been developed. One of the advan-
tage of DG discretization results in an extremely local, element-based discretization,
which is maintaining high-order accuracy on unstructured meshes and is beneficial
for parallel computing. Furthermore, the proofs of the nonlinear L? stability of these
methods and successful numerical experiments are also given. These results can prove
that the LDG method is an effective tool for nonlinear equations. More detailed infor-
mation about DG method can be found in [10-12].
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This paper is organized as follows. We present our LDG method for the 2D CH
equation (1.1)—(1.2) and describe the detailed implementation of the method in Sect. 2.
In Sect. 3, we prove the energy stability of the LDG method. In Sect. 4, we present
the numerical results to demonstrate the capability and the accuracy of the method.
Section 5 is concluding remarks.

2 The LDG Method for the 2D CH Equation
2.1 Notation

For a rectangular partition of [0, Ly] x [0, Ly], we denote the mesh by [; ; =

[x;_ |,xl+] [yj yl+|]f0rz_1 .,Nyand j =1, ..., Ny. The cell lengths

are denoted by h} = Xipl =X and hj =Vipl =y We define the piecewise

polynomial space V}, as the space of piecewise polynomials of degree up to k, i.e.,
Vi={v:ve P, Y,y elij,i=1,...,Ny, j=1,....,N)}. (2.1

To simplify the notation we still use u to denote the numerical solution.
We denote by u* Wiy and u i1y the values of u at x; +ls from the right cell 1; 1 ;

and from the left cellzl, .jwheny e [y 1], 0on all Vertlcal edges, respectively.

1y
J+3
Similarly, we denote by ux’H_ ! and ux’j+§ the values of u at y fue from the top cell

I;,j+1 and from the bottom cell /; j, when x € [x;_1, x;, 1], on all horizontal edges,
2

1
+5
reSpeCtively. V‘Ve use the usual nOtatiOIlS

+ + -
uj. 1 =Uu. . u 1 =u-_ | —u .
[ ]1+7,y l+%,y l+§’y’ [ ]x,/-i-j x’]_;’_% x,j+%

to denote the jump of the function u, at each element boundary. Define the inner
product over the interval /;; and its sides by:

X1yl
(v, w);j :/ +2/’+2 vwdxdy, 2.2)
X 1 Y. 1
) )
Vit - +
Wk = 7 (0w g, —vwt 1y ) d, 2.3)
yi_l
2
Yird _ T
(v, w)yij = ; (vw |X’j+% —vw |x’j_%)dx. 2.4)

For simplicity, we use (v, w), (v, w)y, (v, w), toreplace (v, w);;, (v, W)x ij, (v, W)y ij
in the rest of this paper.
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2.2 The LDG Method

In this section, we define our LDG method for the 2D CH equation (1.1)—(1.2), written
in the following form:

32141 32142

-y — -, 2.5
= ax2 dxdy 2.5)
82u1 82u2 (2 6)
my = uy — - —, .
S dxdy  09y?

ami  Afuy) 92 duy 19 (ou\> 9% (0w
— At )t ) - —u
at ax ax ax 20x \ ox dxdy \ dx

9 0%un d(uiuz) d? duy
- — Ml _l’_ — M2—

ax axady ay dxady dy

1ou 19 [dur)?
e R R ) 2.7
+28x+28x<8y @D

amy,  Af(ua) 92 dur\ 19 [dun\> 9% [Ou»
— + — s == ) - —uj
ot dy dy ay 2dy \ dy dxdy \ dy
B 3%u, d(uiuz) 92 du
- — M2 _|_ — ul_
ay dyadx dax dydx ax

1au? 19 [ou)?
I R ) ) 2.8)
2 dy 29y \ ox

3
with f(u) = zuz, the initial conditions

ui(x, y,0) =uiolx,y), uz(x,y,0)=uzo(x,y) (2.9)
and periodic boundary conditions. Notice that the assumption of periodic boundary
conditions is for simplicity only and is not essential, in fact, the method can be easily
designed for nonperiodic boundary conditions.

2.2.1 LDG Schemes for Equations (2.5) and (2.6)

To define the LDG method, we further rewrite (2.5) and (2.6) as a first-order system:

0
my =u; — — (1 +q2), (2.10)
0x
d
my = uy — —(r1 +q2), (2.11)
dy
S (2.12)
ax
ouy
@ =——. (2.13)
dy
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The LDG methods for (2.10)—(2.13), where m |, m, are assumed known and we would
want to solve for uy, u, are formulated as follows: Find u1, u», r1, g2 € Vj, such that
for all test functions ¢1, ¢2, @3, 4 € Vj,

0
(m1,¢1)=(u1,¢1)—(ﬁ+6727¢1)x+<r1+612,%), (2.14)
~ o~ o)
(ma, $2) = (uz, $2) — (r1 +q2, P2)y + (rl + g2, E) , (2.15)
0
(r1, ¢3) = (i1, ¢3)x — (ul, %) , (2.16)
X
d
(2, ¢2) = (iD2, pa)y — (uz, ai;) 2.17)

The “hat” terms in (2.14)—(2.17) in the cell boundary terms from integration by parts
are called numerical fluxes, which are functions defined on the cell edges and should
be designed differently for different equations to ensure stability. For (2.14)—(2.17)
we can take the choices such that

_ + —~ _ —_ o~ _ -
wilipd y = uyliel o Filiel y = lisl s @lixl, = a0 lixl )

~ _ + ~ _ - ~ _ -
uz'x,j:l:% =i |x,jj:%’ rl'x,j:t% =n |x,jj:%’ qz'x,jj:% =49 |x,jj:%'

(2.18)
2.2.2 LDG Schemes for Equation (2.7)
For (2.7), we can rewrite it into a first-order system:
am a 0
—— + = (fw) = P—S8— L)+ —(B(r1) + B(uz) + B(q2))
at 0x 0x
]
+5(A(u1,uz)—M)=0, (2.19)
0A(uy,
p_ AW _ g (2.20)
0x
0A(r1,
g AL u) 0. 2.21)
dy
dL3
M- —=0, (2.22)
ax
0
q1 — K 0, (2.23)
0x
]
n— Il _, (2.24)
dy
Lo —uitp =0, (2.25)
L3 —uzqr =0, (2.26)

where A(x, y) = xy, B(x) = %xz and ry, go are defined in (2.12)—(2.13).
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Now we can define the LDG method for (2.19)—(2.26), resulting in the following
scheme: Find m1, P, S, M, q1, t2, L2, L3 € V), such that, for all test functions p1, ¢1,
®3, ¥s5, ¥3, Y6, 62, 53 € Vi,

e Scheme for Equation (2.19)

aml —_— -~ -~ —_— 8p1
<8—,p1>+(f(u1)—P—S—L2,p1)x—<f(u1)—P—S—L2,—)
t 0x

—_— —_— —_— 8
+(B(r1) + B(uz) + B(q2), p1)x — <B(r1) + B(u2) + B(q2), %)

— ~ ap

where

P|i:|:%,y = P_lij:%,y’ S|i:|:%,y = S_lii%,y’ Lz'i:l:%,y = Lz_lii%,y’

— _ — 1 _
BOrolisyy=BoDlsy By = 505u)|

¥’

ith,y
— 1,
B(q2) = 5(‘]2 qz)‘i:t%,f
y L -
Al u)l, ) = E(u1u2—ku1u2)LJi%, Ml oy =Ml 0y 229)

Here f(uf, uf) is numerical flux for nonlinear term f (x#1). One can choose mono-
tone numerical flux for solving conservation laws: It is Lipschitz continuous in both
arguments, consistent (f(ul, u1) = f(u1)), nondecreasing in the first argument, and
nonincreasing in the second argument. We could use the simple Lax—Friedrichs flux
which is dissipative numerical flux

S 1
FraDley, =5 (Fah) + f@D) —atf —uD) | || o = max| f/@)l

41

it5,y
(2.29)
The other way is to choose conservative numerical flux as in [2]
- 1
- o+ +12 + - —\2
Far Dy, = 5 (@) +ufuy + @) )L%,y' (230)
e Schemes for Equations (2.20)—(2.26)
— dg
(P’(pl)=<A(ulyr])7§01>X_ A(ul’rl)’a )
— 1
_ + 4 oyt
Mmﬂ%%,—?m-wﬂmmﬁy (2.31)
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— 8(/73
(S, 03) = (A(r1, u2), @3)y — | A(r1, u2), oy )
o —(u2 iy )( . (2.32)
X, jt5 VE )

—_— a(ps —_—
(Ma (pS) = <L37 (p5> <L37 ax > L3|ii%’y = L;'ii%’yv (233)

Y3

(511, ¢3) = <L/t\2’ 1/f3>x - <M2, 3) 5 @'ii%’y = u;'ii%’y’ (234)

. 96 ~ _
(t21 ¢6) = <417 w6>y - (qlv _y> ’ ql'x’ji% = ql |x,jil’ (235)

(L2, &) = (112, &), (2.36)
(L3, &) = (u2q2, &3). (2.37)

2.2.3 LDG Schemes for Equation (2.8)

For (2.8), we can rewrite it into a first-order system:

om d
-t —(f(uz) 0 =T = L)+ 5 (Bv) + Bu) + B@2)
+£(A(u1, uz) — N) =0, (2.38)
0A(uy,
dy
0A
p_ 9AWLg) _ 0. (2.40)
ox
oL
N-Z2L o, (2.41)
dy
duy
- 2L, (2.42)
dy
ad
n-2=0, (2.43)
0x
Ll —Uuiry = 0, (2.44)
Ly —urt; =0, (2.45)

where A(x,y) = xy, B(x) = —x and rq, g are defined in (2.12)—(2.13).
Now we can define the LDG method for (2.38)—(2.45), resulting in the following
scheme: Find my, Q, T, N, r2, t1, L1, L4 € Vy such that, for all test functions pz, @2,

V4, Y6, V2, ¥s, &1, &4 € Vi,
e Scheme for Equation (2.38)

9 — A A~ a
(% ,02> +(fu2) — 0T — La. po)y — (f(uz) QT - L, ,02)
t dy
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e~ — —— 0
+(B(@r1) + B(u1) + B(q2), p2)y — <B(r1) + B(u1) + B(q2), %)

S ~ 0
+ (A(u1,u2) = N, p2)x — (A(ul, uz) — N, %) =0, (2.46)

where

Q'x,j:l:% = Q_|x,j:t%’ Tlx,j:l:% = T_|x,j:t%’ L4|x,j:t% =L, |x,j:t%’

_— I
B(rl)lx,ji% = E(rl r )

10
x,jt5

— 1 _ e~ _
B(Ml)lx,ji% = E(uf»ul )‘x el 3(42)|x,ji% = B(QZ )|x,ji%’
’ 2

— 1 o - _
Al u)lgy, = S0 uf + u| o Mgy =Ny, (2.47)
23

—

The numerical flues for f'(u;, u; ) can be chosen as

— Dissipative numerical flux:

— 1 _ _
P )], ey = 5D+ ) —a =) o= max|f @),
o (2.48)
— Conservative numerical flux:
W ! 2 - —\2
Fig U, gy = 5@ + ufut + ) ))mi%. (2.49)
e Scheme for Equations (2.39)—(2.45)
— I
(Q’ (ﬂ2) = <A(M2, qZ)v ¢2>y - A(uz’ QZ), W )
A a)| |, = 5aF +au) (2.50)
’ x,j:l:% 2 2 2772 x,j:ﬁ:% ’ '
— 094
(T7 §04) = <A(Ll1, q2)9 (p4>x - A(ulv Q2)7 a_x 5
— 1
_ + + - =
A, =50ia +ua|, @51)

— 8§06 —
(N, ¢0) = (L1, ge)y — <L1, W) » Dl juy =Ll . 252)

- Y2 -
(r2, ¥2) = (u1, ¥2)y — (u1, E) ily jut = MTIx’ji%, (2.53)

~ 0Ys - _
(t1, ¥s) = (r2, ¥5)x — (rz, W) , rzll»i%,y =r, Iii%,y, (2.54)
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(L1, &) = (u1r1, &1), (2.55)
(L4, &4) = (uaty, &4). (2.56)

We remark that the choices of the fluxes in (2.27)—(2.35) and (2.46)—(2.54) are not
unique. There are several choices to ensure the stability.

2.3 Algorithm Flowchart

In this section, we give details related to the implementation of the method.
First, from (2.14)—(2.18), we get my, in the following matrix form:

my;, = Auy, (2.57)
where my, = (my, m2)", wy, = (uy, uz)7.
Second, from (2.27)—(2.37) and (2.46)—(2.56), we obtain the LDG discretization in

the following form:
(my); = res(uy). (2.58)

Then, we combine (2.57) and (2.58) to get
A(up); = res(uy). (2.59)
Finally, we use a time discretization method to solve
(up); = A 'res(uy,). (2.60)

In this paper, we use the Runge—Kutta methods, in fact any standard ODE solvers can
be used here.

3 Energy Stability of the LDG Method

In this section, we prove the energy stability of the LDG method for the 2D CH
equation. The Lagrangians for the 2D CH equation are:

Lep(u) = %//(|u|2 + (Div u)?)dxdy. 3.1

More details can be seen in [17]. The energy stability of the 2D CH equation is that:

Ly Ly 8u1 duyp
ut +ud+ " + - oy dxdy = 0. (3.2)

We will prove energy stability of the corresponding numerical solutions of LDG
scheme in the following proposition.
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Proposition 3.1 The solution to the schemes (2.27)—(2.37) and (2.46)—(2.56) satisfies
the energy stability:

e For dissipative numerical fluxes in (2.29) and (2.48),

d Ly Ly
- / (u% +ud 4+ qz)z) dxdy < 0. (3.3)
0 0

e For conservative numerical fluxes in (2.30) and (2.49),

d Ly Ly
- / (u% Fud 4G+ q2)2> dxdy = 0. (3.4)
0 0

To prove the energy stability of the LDG method, we need to choose proper test
functions in the LDG scheme.

e Test Functions in Schemes (2.14) and (2.17)
For (2.14) and (2.15), we first take the time derivative and get:

am duy or1 ¢ ary  dqx 09
a0 = q. 0 -\ 5 YRR . BT E) 3-5
< ot ¢‘) <3t ¢‘> <8t * o ¢1>x+<az T ) Y

dmy dur ar1  Aqn art gy d¢n
VYRR = PN —\ 5 > v s |- 3.6
( ot ¢2> (8t ¢2> <8t o ¢2>y+<3t oy ) GO

We choose the test function as follows: (3.5) with ¢ = u, (3.6) with ¢ = uy, (2.16)

ol 9 o 9
with ¢ =—ﬂ—%—P—s—Lz,(z.n)withm:—ﬂ—ﬂ—Q—T—u,

aml 3141 3}7] 36}5 3}”1 36]2 8u1

- =\—- Nt —+—= ), @37
( ot ul) < at ul) < at + ot u1>x'+ ( at + at  ox 7
omo ous ort ¢ ory  dq2 Oup

a. = 5. 0 -\ 5 YRR a. o, 0 a4 s 3'8
( ot ”2> <3t ”2> <8t * “2>y+<at oy 38

ory  9q2
(. =2+ 24 P+S5+L
(rl 8t+8t+ + 35+ 2)
. or 0
R (Rt iy JRY S
Jat ot +

+ O (I 0 pygyy (3.9)
o o T 2)) '

TR RN S
=—u’— _
29 T or *l

d [dr] g2
,— | —+— T+ L . 3.10
+<u2 8y<3[+8t+Q+ + 4)) ( )
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o Test Function in Schemes (2.27)-(2.37)

We choose the test function as follows: (2.27) with p; = uj, (2.31) with ¢1 = ry,
(2.32) with @3 = rq, (2.33) with o5 = 1o, (2.34) with 3 = — N, (2.35) with g = L1,

P — N~
(%,ul)+<f(u1)—P—S—Lz,u1>x
duy
- <f(u1)—P—S—L2, —)
dx

—_— —_— —_— 8
+(B(r1) + B(uz) + B(q2), u1)x — (B(rl) + B(u2) + B(q2), %)

+ (A, ur) — M, uy)y — <A<u2,u1)—M, %) =0, 3.11)
— ary
(P,r1) = (A(uyr,r1), ri)x — (A(ul,rl), 8_x> , (3.12)
—_— 3}”1
(S,r1) = (A(r1,u2), r1)y — <A("1, uz), E) , (3.13)
— ar
(M, r2) = (L3, r2)x — (Ls, 8_> , (3.14)
X
IN
—(Q1,N)=—(@,N)x+(u2, 8_) (3.15)
X
- aLy
(tzsLl): (CllsLl>y_ (qlv a_> (316)
y

e Test Functions in Schemes (2.46)—(2.56)

(2.46) with py = uy, (2.50) with g2 = g2, (2.51) with o4 = g2, (2.52) with g = q1,
(2.53) with Y, = —M, (2.54) with {5 = Lj.

8m2 —_ ~ -~ — 8142
<a—,u2)+<f(uz)— Q—T — L uz)y — (f(uz)— Q—T — Ly, —)
t dy
e~ — d
+(B(r1) + Bur) + B(q2), u2)y — <B(r1) + B(u1) + B(ga), aiyz)
+(AGu1, u2) = Nyu)y — <A(u1, ) — N, %) =0, (3.17)
— 92
(Q» CIZ) = <A(Ll2, 92)7 Q2)y - A(”Zv Q2)7 g ) (318)
— 992
(Ts QZ) - (A(ulv C]2)a Q2>x - A(I/l], CI2)’ W ) (319)
- 41
(N,q1) =(L1,q1)y — LI»E , (3.20)
~ oM
— (2, M)=—(M1,M)y+(ul,¥), (3.21)
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- dL3
(t1, L3) = (r2, L3)x — (rz, 8_> . (3.22)
X

e Main Energy Equation

Adding equations from (3.7) to (3.22), we can get the main energy equation for proving
L? stability.
The left side of the equation is:

am am ar d ar ad
<a_z1 ”1> + <a_r2”2> N (”’ 81‘1 + %) (qz’ 3t1 + %)
+(P,ry) — (r1, P) + (S, r1) — (r1, 8) + (N, q1) — (g1, N)
+ (12, Ly) — (r1, L2)
+(0,92) — (g2, Q) + (T, q2) — (g2, T) + (M, r2) — (r2, M)
+(t1, L3) — (g2, L4)

M )+ (2 g L1+ ) (3.23)
=|—.u —up ) —|r , —(r , .
a1 1 a1 2 1 q2 Y 1 q2
where we use the following equality:

(tz, L) = (2, uyry) = (r1, urtz) = (r1, L), (3.24)
(t1, L3) = (t1, u2g2) = (g2, uz2t1) = (g2, L4). (3.25)

The right side of the equation is:

oup n duy n 3m1 n ono
or ! ar 02 TR ar 2

+A;;j+B;;+C;+D;; +E; ; +F ;, (3.26)
where
0
Ay = (Fun,m)y — (f(uo ﬂ) (3.27)
0
Bi; = (f(u2). ua), ( (u2). ﬂ) (3.28)
— duy
Ci,j = (A, r)), ri)x — (A(Ml,rl) ) B(l’l) ui)x <B(F1), W)
+ (AT 1), 12)s — (A<u1,u2> aa )—l—(B/(M\z) uthe (B(un,%)

+<A(Lt1, Q2)7 Q2)x - A(U19CI2)1 W +<B(512)7M1)x - B(CIZ)
(3 29)

D;j = (A(uz, ). 1)y — (A(uz,ul), 81;) + (B(uy), ua)y (B(uo %)
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— 0 — 0
+ (A2, 42), q2)y — (A(uz, 7). %) + (B(q2). u2)y — (B(qz>, ﬂ)
y dy

— 9 — 0
(A, r1). 1)y — (A(Mz, )., %) +(B(r). u2)y — (B(rl), ﬂ) ,
y dy

(3.30)
u . oP
]Ez/ = —(P,u1)x + <Ps _1> — (uy, P)x + <u1» _>
0x ax
ou N 0S8
— (S, u1)x + <S7 _]> — (uy, S)x + (L‘l’ _)
0x dax
— ou - JaL
— (L2, u1)x + <L2, 8_]> — (i1, La)y + (ul, —2>
X 0x
~ ou . N
—(N,ua)e + (N, Z2) = (@3, N)i + (o,
0x 0
ar

<8f] > or 8u1> <A 8r1> ( B (8r1 )
- _’ u] _’ ~ - u]’ I + u]’ - P
Jat . ot 0x ot [, 0x t

Jd [0

—_ E)ql —~ 8L1
Fij = (Li,q1)y — (Ll, E) +{q1, L1)y — (611, W)
~ u - 00
—(Q.ua)y + (0. 52 ) — (i3, Oy + w2, ==
dy dy
~ duy - oT
— (T, uz)y + <T, E) —(u2, T)y + (uz, E)
oun - 0Ly
— (L4, uz)y + (L4, E) — (U2, Lg)y + (uz, W)
~ oup - oM
—(M,u)y + ( E) — (u1, M)y + (btl, W)

or N ary dun - on N a9 [0r
—(=—u —. | —(u2, — uy, — | —
or ), ar ay ar ], ax \ar
942 dqa duy ~ g d (9gq2
— (2=, N I —(Z2)). @32
<ar ”2>y+<ar 8y> <2 ar [, T\ U (3-32)

Combining Egs. (3.23) and (3.26), we get the main energy equation
duq n ouy n n d 1 + )
—,u —u r , —(r
o o1 2 1+ q2 5 1 q2
+A ;+B;; +C;+D;j +E; ; +F; ; =0. (3.33)

@ Springer



Local Discontinuous Galerkin Methods for the... 373

e Proof for Ai,j + Bi,j + (Ci,j + ]Di,j + Ei,j + Fi,j terms in (3.33)

In the following, we will prove A; ; +B; ; + C; ; + D; ; + E; ; + IF; ; terms in
(3.33) are nonnegative or zero.

Lemma 3.2 With the dissipative numerical fluxes in (2.29) and (2.48) or conservative
numerical fluxes in (2.30) and (2.49), we have

ZALJ > 0, ZIB%,;./ > 0, dissipative numerical fluxes,

iJ ij

or
E A; =0, E B; ; = 0, conservative numerical fluxes.
ij ij

Proof Dissipative numerical fluxes

As for A; ;:
Ai’j:\Ili—i-%,j_\pi—%,j_'_@i—%,j’ (3.34)
where
Vil -
Y :/y ’17 (f(ul)ul —F(ul)> g1y 49, (3.35)
-2
Yipl —
Oy = [ (P = Fantu) |y, (3.36)
=z

and F(u) = f “ f(t)dt. With the monotonicity of ﬁu\l), we have

Pt = Fantinl = [ () = Furapas =0 63

Then we can finally get ©,_ 1 > 0. Summing up (3.34) over i, j and taking into
account the periodic boundary condition, we obtain

Z A,’, j = 0.
iJ
Using the same argument, we immediately know

Z Bi,]‘ > 0.
iJ

Conservative numerical fluxes
Proof is similar to the monotone case and [2], we omit the detail of the proof. O
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Lemma 3.3 [f the numerical fluxes are chosen as

Au, v =Lt puom B(v) = Lty- 3.38
W, v) |41 = E(” viFuTv ) gy BO) 1= FUTv livl,y (3:38)
or
— Loy oy — B
A(M7 U) |i+%’y: E(v + v )M |i+%’yv B(U) |i+%’y: B(U ) |i+%,y’ (339)

then we have

— ov — ou
Z ((A(u, V), V) — (A(u, v), a) + (B(), u)y — <B(v), a)) =0.

i,j

Proof Similar to the proof in Lemma 3.2.

<A(Ma U), U>x - (A(l/l, U), %) + (B(v)a u)x - <B(U), %)

=W~V 181 (3.40)
where

y'+l —_— _ — _ _ _

oy =ff12 (A(u,v)v +Bu~ — B )u )|i+%,y dy, (3.41)
=2
Vil —_— —_—

o 1 :/ ith (_A(u, 0[] — Bl + [B(v)u]) i1y dy. (G42)
yj,%

With numerical fluxes in (3.38) or (3.39) and algebraic calculation, we easily obtain:
— Au, »)[v] — BQ)[u] + [B@)u] = 0.

Summing up (3.40) over i, j and taking into account the periodic boundary condition,
we obtain

— v —_ ou
Z ((A(I/l, U)’ U)x - (A(M, U), a) + (B(U), u)x - <B(U), a)) =0.

iJj

O

Lemma 3.4 [f the numerical fluxes are chosen as
A(u, v = L wtot furo- B(v) = Lyt 3.43
W, 0) [y =S @) | BOY L =0T |, (343)
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o1
v xsj % ! v xaj 5’ ij é v -xvj é’ :

then we have
— v — ou
Z (A(u,v),v)y — | A, v), — | +(B(), u)y — | B(v), — =0.
Y ay ay
Proof The proof is similar to Lemma 3.3. O

Corollary 3.5 With the definition of numerical fluxes in schemes (2.27)—(2.35) and

(2.46)—(2.54), we have
> Cij=0, Y Di;=0.
i,J i,J

Proof The results in this Corollary can be obtained by using Lemma 3.3 and Lemma
3.4. u|

Lemma 3.6 [f the numerical fluxes are chosen as

-~ _ — o~ _ +
u |i+%,y_ u |i+%,y’ v |i+%,y_ v |i+%,y’ (3.45)
or
o~ _ + o~ —
Wit y=u L1y Vgt =0 g1, (3.46)
then we have
. v . u
Z u,v)y —(u, — )|+ @, u)y — v, — =0
0x 0x

Proof Similar to the proof in Lemma 3.3

@ = (150 ) + @ = (055 ) =¥y, =Wy 40y GAD)

dx ox 24/
where

ik o o _

\Iji+%,j= , (uv +vu" —vu )|i+%’ydy, (3.48)
Yol
Vipd

®i—%,j = (—ulv] — v[u] + [vu]) |i_%’y dy. (3.49)
Vil
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Fig. 1 Peakon solution u; for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.5), periodic
boundary condition, uniform meshes with 80 x 80, P* elements over [— 10, 10] x [— 10, 10] for Example
42.auy,t =0buy,t=1cuj,t=2duy,t =4

With numerical fluxes in (3.45) or (3.46) and algebraic calculation, we easily obtain:
—u[v] — olu] + [vu] = 0.

Summing up (3.47) over ij and taking into account the periodic boundary condition,

we obtain 5 5
~ v ~ u .
> <<u, v)x — (u 5) + (0, u) — (v, 5)) =0.

ij
O
Lemma 3.7 [f the numerical fluxes are chosen as
o~ — o~ +
Bl =0 e Ol =071, (3.50)
or
ﬁlx)]+l u |x‘j+%s %\'X,‘]+%_ U7 |)C,j+%’ (35])
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Fig. 2 Peakon solution u, for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.5), periodic
boundary condition, uniform meshes with 80 x 80, P4 elements over [— 10, 10] x [— 10, 10] for Example
42, aup,t =0bur,t =1cup,t =2duy,t =4

then we have

Z(Tiv)— ua—v + (U, u)y — va—u =0

- ’ y ’ ay ’ y k] 8y - .

ij

Proof The proof is similar to Lemma 3.6. O

Corollary 3.8 With the definition of numerical fluxes in schemes (2.27)—(2.35) and

(2.46)—(2.54), we have
Y Eij=0, ) Fij=0.
i,j i,j

Proof The results in this Corollary can be obtained by using Lemmas 3.6 and 3.7. It is
worth to mention that although the terms regarding the derivatives of ¢ in Egs. (3.31)
and (3.32) look a little different from the terms in Lemmas 3.6 and 3.7, we just need
to treat the terms regarding the derivatives of # as normal terms, then Lemmas 3.6 and
3.7 also work. O
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Fig. 3 Peakon solution for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.7). Dirichlet
boundary condition. Uniform meshes with 80 x 80, P* elements over [— 10, 10] x [— 10, 10] for Example
43.at=0,br=+2/2,ct =~2,d1 =22

Summing up the main energy equation (3.33) over ij and taking into account the
periodic boundary condition, we obtain the following results by using Lemma 3.2,
Corollarys 3.5 and 3.8.

e For dissipative numerical fluxes,
Z(Ai,j +Bi+Ci;j+D;;+E; ;+F ;) >0.
i,j
Then we have

Z duy n ouy n n d "
) 5 5 12 r 612,501 q2)

ij
== (Aij+Bi;+Cij+Dij+E;+Fi))
i,J
<0. (3.52)
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Fig.4 Two-peakon interaction solutions for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.8).
Periodic boundary condition. Uniform meshes with 160 x 160, P* elements over [— 20, 20] x [— 20, 20]
for Example44.at=0,bt =1,ct =3,dt =8

e For conservative numerical fluxes,

Z (Aij+Bi;+Cij+Dij+E;; +F; ;) =0.
ij
Then we have

2((Ge)+ () (v g v )
. 31‘71“ 3t’u2 B Clz,atrl q2

L]
== (Aij+Bi;+Cij+Dij+E;+F))
ij
—0. (3.53)

This gives the energy stability results in (3.3) and (3.4). O
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Fig. 5 Two-peakon interaction solutions for the 2D CH equation (2.5)—(2.8) with the initial conditions
(4.11). Periodic boundary condition. Uniform meshes with 160 x 160, P* elements over [— 20, 20] x
[—20, 20] for Example 4.5.a¢t=0,btr=1,ct=3,dt =8

4 Numerical Results

In this section, we give numerical solutions for different initial value to demonstrate
the accuracy and capability of the LDG method. In this paper, we use the third-order
explicit TVD Runge—Kutta method [31] as time discretization. The CFL number is
0.01, and time step is At = 0.01 A x.

Example 4.1 Smooth solution

In this example, we test the smooth solution to calculate the order of the LDG scheme
for the 2D CH equation with right-hand source terms

0
am+u-vm+vuT.m+m(divu):f 4.1
with the exact solutions:

up =sin(x +y—+1), up=sin(x —y-+t), “4.2)
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(@) ui,t=0 (b)ur,t=1

(€) ui,t=2 (d)u,t =4

Fig. 6 Peakon solution u for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.15), Dirichlet
boundary condition, uniform meshes with 80 x 80, P* elements over [— 10, 10] x [— 10, 10] for Example
46.aup,t =0,buy,t=1cu,t=2,duy,t =4

initial conditions:
up =sin(x +y), wup =sin(x —y), 4.3)

and periodic boundary condition over [0, 2] x [0, 27r] . We can see that the method
with P¥ elements gives a uniform (k + 1)-th order of accuracy for 1 and u, in Table 1.

Example 4.2 Peakon solution for the simplest case
The peakon solutions of the 2D CH equation are well known and we first display the
simplest case that | doesn’t have y, and u> doesn’t have x whose exact solutions read
as:

ul = e‘_lt—xl’ u2 = e_lt_yl (44)

with the initial conditions:

up=e M, uy=eV (4.5)
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Fig. 7 Peakon solution u; for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.15), Dirichlet
boundary condition, uniform meshes with 80 x 80, P* elements over [— 10, 10] x [— 10, 10] for Example
4.6.auy,t =0,buy,t =1,cuy,t =2,duy,t =4

and periodic boundary condition. Uniform meshes with 80 x 80, P*# elements over
[— 10, 10] x [— 10, 10]. We can see the solutions in Figs. 1 and 2. We can find that
the peakon is moving evenly over time.

Example 4.3 Peakon solution when the angle is 45°

In this example, we test the peakon solution for the 2D CH equation (2.5)—(2.8) with
exact solutions read as:

V2. A2
Uy =up = e 1TTEFTY (4.6)
and the initial conditions
V2.2 V2.2
up = e Ty, = eI 4.7

with Dirichlet boundary condition. Uniform meshes with 80 x 80, P* elements over
[— 10, 10] x [— 10, 10]. Since the solutions of #; and u, are the same, we only present
the solution for 1. We can see the solutions in Fig. 3. This kind of one peakon solution
will propagate with the velocity in the direction with an angle to the positive x-axis.
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200 20 20 20

(c) (d)

Fig. 8 Peakon solution u for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.17), Dirichlet
boundary condition, uniform meshes with 160 x 160, P4 elements over [— 20, 20] x [— 20, 20] for Example
47.auy,t =0,buy,t=1,cuy,t =2,duy,t =4

Example 4.4 Two-peakon interaction for simplest case

In this example, we consider the two-peakon interaction of the 2D CH equation with
the initial conditions:

up =¢1(x,y) +Pa(x,y), uzr=e¢i(x,y)+e(x,y), (4.8)

where
b1(x,y) = are™™ hy(x, y) = azel T2, (4.9)
P1(x,y) = b1 ™ gy (x, y) = byel T2, (4.10)

where a) = 2,)(1 = 5,a2 = l,xz = 0, b] = 2, y1 = 5,b2 = 1, Y2 = 0. Periodic
boundary condition. Uniform meshes with 160 x 160, P4 elements over [— 20, 20] x
[— 20, 20]. Since the solutions of u| and u, are the same, we only present the solution
for u1. The two-peakon interaction att = 0, 1, 3, and 8 is shown in Fig. 4. We can see
clearly that the moving peakon interaction is resolved very well.
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Fig. 9 Peakon solution u; for the 2D CH equation (2.5)—(2.8) with the initial conditions (4.17), Dirichlet
boundary condition, uniform meshes with 160 x 160, P* elements over [— 20, 20] x [— 20, 20] for Example
47.aup,t =0,bur,t =1,cur,t =2, duy,t =4

Example 4.5 Two-peakon interaction when the angle is 45°

In this example, we also consider the two-peakon interaction of the 2D CH equation
with the initial conditions:

U= G, )+ $a(x. ) uz = @1(x.y) + @a(x. y), @.11)

where
$1(x.y) = e T g(x,y) = apel Bl (412
01(x, y) = byel FHEVH () — ol F bl (413)

where a) = 2,6‘1 = 3«/5,612 = 1,62 = O,bl = 2,d1 = 3«/§,b2 = 1,d2 = 0.
Periodic boundary condition. Uniform meshes with 160 x 160, P* elements over
[— 20, 20] x [— 20, 20]. Since the solutions of #| and u, are the same, we only present
the solution for u. The solutions are shown in Fig. 5 with the two-peakon interaction
att =0, 1, 3, and 8. We can see clearly that the moving peakon interaction is also
resolved very well.

@ Springer



386 T.Ma, Y. Xu

Example 4.6 Peakon solution when uj # us

In this example, we display the peakon solutions when u; # 1y whose exact solutions
read as:

V5o 25 V5. 25
uyp = e TSIy = 2oL (4.14)
with the initial conditions:
NI 5,205
up = e 15Ty = 27 IS AT (4.15)

and Dirichlet boundary condition. Uniform meshes with 80 x 80, P* elements over
[— 10, 10] x [—10, 10]. We can see the solutions in Figs. 6 and 7. We can find that the
peakon is moving evenly over time.

Example 4.7 Two-peakon interaction when u| # u;

In this example, we display two-peakon interaction when u1 # u> whose exact solu-
tions read as:

Uy = 2612 CAD-BLOH| 4 P2y
Uy = 4e—|2t—§(x+3)—2%f5(y+3)| + 26—|t—§x—¥y|7 (4.16)

with the initial conditions:

uy = 20 R CIITEEG 4 -1 F 2y

)

Uy = 4o PEEEIEEOIN | 91K x+ 201 (4.17)

and Dirichlet boundary condition. Uniform meshes with 160 x 160, P* elements over

[— 20, 20] x [—20, 20]. We can see the solutions in Figs. 8 and 9. We can find that
the peakon is moving evenly over time.

5 Conclusion

In this paper, we have developed an LDG method for solving the 2D CH equation
and proved the energy stability for this method. The main difference of CH equation
between 1D and 2D is there have a lot of cross terms in the 2D CH equation, which
brings much trouble for the proof of the stability and numerical test. We have also
given several numerical simulation results to illustrate accuracy and capability of the
LDG method. In future, the conservative schemes in time and the theoretical analysis
for the LDG scheme, such as error estimates, will be our further research topics.
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