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1 Introduction

In this paper, we consider the two-dimensional Camassa–Holm (2D CH) equation
[17,18,23]

∂

∂t
m + u · �m + �uT · m + m(Div u) = 0, (1.1)

where u = (u1, u2)
T is velocity and

m = (m1, m2)
T = u − Grad Div u (1.2)

is momentum. In coordinates x, y, the equation reads as follows:

∂m1

∂t
+ u1

∂m1

∂x
+ u2

∂m1

∂y
+ m1

∂u1

∂x
+ m2

∂u2

∂x
+ m1

(
∂u1

∂x
+ ∂u2

∂y

)
= 0, (1.3)

∂m2

∂t
+ u1

∂m2

∂x
+ u2

∂m2

∂y
+ m1

∂u1

∂y
+ m2

∂u2

∂y
+ m2

(
∂u1

∂x
+ ∂u2

∂y

)
= 0, (1.4)

where

m1 = u1 − ∂2u1

∂x2
− ∂2u2

∂x∂y
, (1.5)

m2 = u2 − ∂2u1

∂x∂y
− ∂2u2

∂y2
. (1.6)

The Camassa–Holm (CH) equationwas derived as amodel to describe the propagation
of the gravitational waves in the shallow water. The CH equation has a very intriguing
structure, it models wave breaking for a large class of the initial data and is completely
integrable. This equation is very important in the literature.

Equation (1.1) is also called Euler–Poincaré equations associated with the diffeo-
morphism group (EPDiff), which has the same form with the CH equation except for
the momentum velocity relationship in two-dimensional case. The CH equation in
one-dimensional case is the same as EPDiff equation when the momentum velocity
relationship is defined by the Helmholtz equation m = u − uxx [17]. But the EPDiff
equations with the Helmholtz relation between velocity and momentum are not quite
the CH equations for surface waves in two-dimensional case. The shallow water wave
relation in the 2D CH approximation would be:

m = u − Grad Div u, (1.7)

rather than the Helmholtz operator form:

m = u − Div Grad u. (1.8)
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The corresponding Lagrangians for the 2D CH equation are:

LCH(u) = 1

2

∫ ∫
(|u|2 + (Div u)2)dxdy, (1.9)

instead of Lagrangians for the EPDiff equations

LEPDiff(u) = 1

2

∫ ∫
|u|2 + (Grad u)2dxdy. (1.10)

This difference was noted in [17,23]. Holm andMarsden studied the momentummaps
andmeasure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation
in [17]. Kraenkel and Zenchuk studied the two-dimensional integrable generalization
of the Camassa–Holm equation in [21], and the Lie symmetry analysis and reductions
of a two-dimensional integrable generalization of the Camassa–Holm equation in [22].
Kruse proved the symmetry and perturbation theory of a two-dimensional version of
the Camassa–Holm equation in [23].

There are lots of numerical works in the literature to solve the CH equation in one
dimension, for example finite difference schemes [3,5,8,9,13,16,20,24,27,35–38],
finite-volume schemes [1], finite element schemes [29,30], discontinuous Galerkin
(DG) schemes [26,28,33] and other methods [7,15,19,24,25,32]. But there is only a
few work for the 2D CH equation. The work in [4,6,14,17] presented the numerical
simulations for EPDiff equations.

In this paper, we develop a class of local discontinuous Galerkin (LDG)methods by
for the 2D CH equation (1.1)–(1.2), which is using completely discontinuous piece-
wise polynomial space for the numerical solution and the test functions in the spatial
variables. The idea of LDG methods is to suitably rewrite a higher-order partial dif-
ferential equations into a first-order system, then apply the DG method to the system.
A key ingredient for the success of such methods is the correct design of interface
numerical fluxes. The resulting scheme is high-order accurate, nonlinear stable and
flexible for arbitrary h and p adaptivity. The peakon solution is typical solution for
this type nonlinear dispersive equation, which is lack of smoothness, and often causes
high-frequency dispersive errors into the calculation. The stable and accurate numeri-
cal schemes are very important for solving these equations. Comparing with the LDG
scheme for 1DCHequation in [33], themain difference between1Dand2D is that there
are a lot of cross terms in the 2D CH equation and it needs to introduce more auxiliary
variables, which brings a lot of trouble for the proof of the stability and numerical test.

The LDG techniques have been developed for nonlinear wave equations with high-
order derivatives [34]. The stable LDG methods for general nonlinear wave equations
whichmaybe systemormultidimensional case have been developed.One of the advan-
tage of DG discretization results in an extremely local, element-based discretization,
which is maintaining high-order accuracy on unstructured meshes and is beneficial
for parallel computing. Furthermore, the proofs of the nonlinear L2 stability of these
methods and successful numerical experiments are also given. These results can prove
that the LDG method is an effective tool for nonlinear equations. More detailed infor-
mation about DG method can be found in [10–12].
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362 T. Ma, Y. Xu

This paper is organized as follows. We present our LDG method for the 2D CH
equation (1.1)–(1.2) and describe the detailed implementation of themethod in Sect. 2.
In Sect. 3, we prove the energy stability of the LDG method. In Sect. 4, we present
the numerical results to demonstrate the capability and the accuracy of the method.
Section 5 is concluding remarks.

2 The LDG Method for the 2D CH Equation

2.1 Notation

For a rectangular partition of [0, Lx ] × [0, L y], we denote the mesh by Ii, j =
[xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], for i = 1, . . . , Nx and j = 1, . . . , Ny . The cell lengths

are denoted by hx
i = xi+ 1

2
− xi− 1

2
and hy

j = y j+ 1
2

− y j− 1
2
. We define the piecewise

polynomial space Vh as the space of piecewise polynomials of degree up to k, i.e.,

Vh = {v : v ∈ Pk(Ii, j ), ∀ (x, y) ∈ Ii, j , i = 1, . . . , Nx , j = 1, . . . , Ny}. (2.1)

To simplify the notation, we still use u to denote the numerical solution.
We denote by u+

i+ 1
2 ,y

and u−
i+ 1

2 ,y
the values of u at xi+ 1

2
, from the right cell Ii+1, j

and from the left cell Ii, j when y ∈ [y j− 1
2
, y j+ 1

2
], on all vertical edges, respectively.

Similarly, we denote by u+
x, j+ 1

2
and u−

x, j+ 1
2
the values of u at y j+ 1

2
, from the top cell

Ii, j+1 and from the bottom cell Ii, j , when x ∈ [xi− 1
2
, xi+ 1

2
], on all horizontal edges,

respectively. We use the usual notations

[u]i+ 1
2 ,y = u+

i+ 1
2 ,y

− u−
i+ 1

2 ,y
, [u]x, j+ 1

2
= u+

x, j+ 1
2

− u−
x, j+ 1

2

to denote the jump of the function u, at each element boundary. Define the inner
product over the interval Ii j and its sides by:

(v,w)i j =
∫ x

i+ 1
2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

vwdxdy, (2.2)

〈v,w〉x,i j =
∫ y

j+ 1
2

y
j− 1

2

(
vw− |i+ 1

2 ,y −vw+ |i− 1
2 ,y

)
dy, (2.3)

〈v,w〉y,i j =
∫ x

i+ 1
2

x
i− 1

2

(
vw− |x, j+ 1

2
−vw+ |x, j− 1

2

)
dx . (2.4)

For simplicity,weuse (v,w), 〈v,w〉x , 〈v,w〉y to replace (v,w)i j , 〈v,w〉x,i j , 〈v,w〉y,i j

in the rest of this paper.
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2.2 The LDG Method

In this section, we define our LDGmethod for the 2DCH equation (1.1)–(1.2), written
in the following form:

m1 = u1 − ∂2u1

∂x2
− ∂2u2

∂x∂y
, (2.5)

m2 = u2 − ∂2u1

∂x∂y
− ∂2u2

∂y2
, (2.6)

∂m1

∂t
+ ∂ f (u1)

∂x
− ∂2

∂x2

(
u1

∂u1

∂x

)
+ 1

2

∂

∂x

(
∂u1

∂x

)2

− ∂2

∂x∂y

(
∂u1

∂x
u2

)

− ∂

∂x

(
u1

∂2u2

∂x∂y

)
+ ∂(u1u2)

∂y
− ∂2

∂x∂y

(
u2

∂u2

∂y

)

+ 1

2

∂u2
2

∂x
+ 1

2

∂

∂x

(
∂u2

∂y

)2

= 0, (2.7)

∂m2

∂t
+ ∂ f (u2)

∂y
− ∂2

∂y2

(
u2

∂u2

∂y

)
+ 1

2

∂

∂y

(
∂u2

∂y

)2

− ∂2

∂x∂y

(
∂u2

∂y
u1

)

− ∂

∂y

(
u2

∂2u1

∂y∂x

)
+ ∂(u1u2)

∂x
− ∂2

∂y∂x

(
u1

∂u1

∂x

)

+ 1

2

∂u2
1

∂y
+ 1

2

∂

∂y

(
∂u1

∂x

)2

= 0, (2.8)

with f (u) = 3

2
u2, the initial conditions

u1(x, y, 0) = u1,0(x, y), u2(x, y, 0) = u2,0(x, y) (2.9)

and periodic boundary conditions. Notice that the assumption of periodic boundary
conditions is for simplicity only and is not essential, in fact, the method can be easily
designed for nonperiodic boundary conditions.

2.2.1 LDG Schemes for Equations (2.5) and (2.6)

To define the LDG method, we further rewrite (2.5) and (2.6) as a first-order system:

m1 = u1 − ∂

∂x
(r1 + q2), (2.10)

m2 = u2 − ∂

∂y
(r1 + q2), (2.11)

r1 = ∂u1

∂x
, (2.12)

q2 = ∂u2

∂y
. (2.13)
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The LDGmethods for (2.10)–(2.13), where m1, m2 are assumed known and we would
want to solve for u1, u2, are formulated as follows: Find u1, u2, r1, q2 ∈ Vh such that
for all test functions φ1, φ2, φ3, φ4 ∈ Vh ,

(m1, φ1) = (u1, φ1) − 〈r̂1 + q̂2, φ1〉x +
(

r1 + q2,
∂φ1

∂x

)
, (2.14)

(m2, φ2) = (u2, φ2) − 〈r̃1 + q̃2, φ2〉y +
(

r1 + q2,
∂φ2

∂y

)
, (2.15)

(r1, φ3) = 〈û1, φ3〉x −
(

u1,
∂φ3

∂x

)
, (2.16)

(q2, φ4) = 〈ũ2, φ4〉y −
(

u2,
∂φ4

∂y

)
. (2.17)

The “hat” terms in (2.14)–(2.17) in the cell boundary terms from integration by parts
are called numerical fluxes, which are functions defined on the cell edges and should
be designed differently for different equations to ensure stability. For (2.14)–(2.17)
we can take the choices such that

û1|i± 1
2 ,y = u+

1 |i± 1
2 ,y, r̂1|i± 1

2 ,y = r−
1 |i± 1

2 ,y, q̂2|i± 1
2 ,y = q−

2 |i± 1
2 ,y,

ũ2|x, j± 1
2

= u+
2 |x, j± 1

2
, r̃1|x, j± 1

2
= r−

1 |x, j± 1
2
, q̃2|x, j± 1

2
= q−

2 |x, j± 1
2
.

(2.18)

2.2.2 LDG Schemes for Equation (2.7)

For (2.7), we can rewrite it into a first-order system:

∂m1

∂t
+ ∂

∂x
( f (u1) − P − S − L2) + ∂

∂x
(B(r1) + B(u2) + B(q2))

+ ∂

∂y
(A(u1, u2) − M) = 0, (2.19)

P − ∂ A(u1, r1)

∂x
= 0, (2.20)

S − ∂ A(r1, u2)

∂y
= 0, (2.21)

M − ∂L3

∂x
= 0, (2.22)

q1 − ∂u2

∂x
= 0, (2.23)

t2 − ∂q1
∂y

= 0, (2.24)

L2 − u1t2 = 0, (2.25)

L3 − u2q2 = 0, (2.26)

where A(x, y) = xy, B(x) = 1
2 x2 and r1, q2 are defined in (2.12)–(2.13).
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Now we can define the LDG method for (2.19)–(2.26), resulting in the following
scheme: Find m1, P , S, M , q1, t2, L2, L3 ∈ Vh such that, for all test functions ρ1, ϕ1,
ϕ3, ϕ5, ψ3, ψ6, ξ2, ξ3 ∈ Vh ,

• Scheme for Equation (2.19)

(
∂m1

∂t
, ρ1

)
+ 〈̂f (u1) − P̂ − Ŝ − L̂2, ρ1〉x −

(
f (u1) − P − S − L2,

∂ρ1

∂x

)

+〈 ̂B(r1) + ̂B(u2) + ̂B(q2), ρ1〉x −
(

B(r1) + B(u2) + B(q2),
∂ρ1

∂x

)

+〈 ˜A(u1, u2) − M̂, ρ1〉y −
(

A(u1, u2) − M,
∂ρ1

∂y

)
= 0, (2.27)

where

P̂|i± 1
2 ,y = P−|i± 1

2 ,y, Ŝ|i± 1
2 ,y = S−|i± 1

2 ,y, L̂2|i± 1
2 ,y = L−

2 |i± 1
2 ,y,

̂B(r1)|i± 1
2 ,y = B(r−

1 )|i± 1
2 ,y,

̂B(u2)|i± 1
2 ,y = 1

2
(u+

2 u−
2 )

∣∣∣
i± 1

2 ,y
,

̂B(q2) = 1

2
(q+

2 q−
2 )

∣∣∣
i± 1

2 ,y
,

˜A(u1, u2)|x, j± 1
2

= 1

2
(u+

1 u+
2 + u−

1 u−
2 )

∣∣∣
x, j± 1

2

, M̂|x, j± 1
2

= M−|x, j± 1
2
. (2.28)

Here f̂ (u−
1 , u+

1 ) is numerical flux for nonlinear term f (u1). One can choose mono-
tone numerical flux for solving conservation laws: It is Lipschitz continuous in both
arguments, consistent ( f̂ (u1, u1) = f (u1)), nondecreasing in the first argument, and
nonincreasing in the second argument. We could use the simple Lax–Friedrichs flux
which is dissipative numerical flux

̂f (u−
1 , u+

1 )|i± 1
2 ,y = 1

2

(
f (u+

1 ) + f (u−
1 ) − α(u+

1 − u−
1 )

) ∣∣∣
i± 1

2 ,y
, α = max | f ′(u1)|.

(2.29)
The other way is to choose conservative numerical flux as in [2]

̂f (u−
1 , u+

1 )|i± 1
2 ,y = 1

2

(
(u+

1 )2 + u+
1 u−

1 + (u−
1 )2

) ∣∣∣
i± 1

2 ,y
. (2.30)

• Schemes for Equations (2.20)–(2.26)

(P, ϕ1) = 〈 ̂A(u1, r1), ϕ1〉x −
(

A(u1, r1),
∂ϕ1

∂x

)
,

̂A(u1, r1)
∣∣∣
i± 1

2 ,y
= 1

2
((r+

1 + r−
1 )u+

1 )

∣∣∣
i± 1

2 ,y
, (2.31)
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(S, ϕ3) = 〈 ̂A(r1, u2), ϕ3〉y −
(

A(r1, u2),
∂ϕ3

∂y

)
,

̂A(u2, r1)
∣∣∣
x, j± 1

2

= 1

2
(u+

2 r+
1 + u−

2 r−
1 )

∣∣∣
x, j± 1

2

, (2.32)

(M, ϕ5) = 〈L̂3, ϕ5〉x −
(

L3,
∂ϕ5

∂x

)
, L̂3|i± 1

2 ,y = L+
3 |i± 1

2 ,y, (2.33)

(q1, ψ3) = 〈û2, ψ3〉x −
(

u2,
∂ψ3

∂x

)
, û2|i± 1

2 ,y = u+
2 |i± 1

2 ,y, (2.34)

(t2, ψ6) = 〈q̂1, ψ6〉y −
(

q1,
∂ψ6

∂y

)
, q̂1|x, j± 1

2
= q−

1 |x, j± 1
2
, (2.35)

(L2, ξ2) = (u1t2, ξ2), (2.36)

(L3, ξ3) = (u2q2, ξ3). (2.37)

2.2.3 LDG Schemes for Equation (2.8)

For (2.8), we can rewrite it into a first-order system:

∂m2

∂t
+ ∂

∂y
( f (u2) − Q − T − L4) + ∂

∂y
(B(r1) + B(u1) + B(q2))

+ ∂

∂x
(A(u1, u2) − N ) = 0, (2.38)

Q − ∂ A(u2, q2)

∂y
= 0, (2.39)

T − ∂ A(u1, q2)

∂x
= 0, (2.40)

N − ∂L1

∂y
= 0, (2.41)

r2 − ∂u1

∂y
= 0, (2.42)

t1 − ∂r2
∂x

= 0, (2.43)

L1 − u1r1 = 0, (2.44)

L4 − u2t1 = 0, (2.45)

where A(x, y) = xy, B(x) = 1
2 x2 and r1, q2 are defined in (2.12)–(2.13).

Now we can define the LDG method for (2.38)–(2.45), resulting in the following
scheme: Find m2, Q, T , N , r2, t1, L1, L4 ∈ Vh such that, for all test functions ρ2, ϕ2,
ϕ4, ϕ6, ψ2, ψ5, ξ1, ξ4 ∈ Vh ,

• Scheme for Equation (2.38)

(
∂m2

∂t
, ρ2

)
+ 〈̂f (u2) − Q̂ − T̂ − L̂4, ρ2〉y −

(
f (u2) − Q − T − L4,

∂ρ2

∂y

)
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+〈 ˜B(r1) + ̂B(u1) + ˜B(q2), ρ2〉y −
(

B(r1) + B(u1) + B(q2),
∂ρ2

∂y

)

+〈 ̂A(u1, u2) − N̂ , ρ2〉x −
(

A(u1, u2) − N ,
∂ρ2

∂x

)
= 0, (2.46)

where

Q̂|x, j± 1
2

= Q−|x, j± 1
2
, T̂ |x, j± 1

2
= T −|x, j± 1

2
, L̂4|x, j± 1

2
= L−

4 |x, j± 1
2
,

˜B(r1)|x, j± 1
2

= 1

2
(r+

1 r−
1 )

∣∣∣
x, j± 1

2

,

̂B(u1)|x, j± 1
2

= 1

2
(u+

1 u−
1 )

∣∣∣
x, j± 1

2

, ˜B(q2)|x, j± 1
2

= B(q−
2 )|x, j± 1

2
,

̂A(u1, u2)|i± 1
2 ,y = 1

2
(u+

1 u+
2 + u−

1 u−
2 )

∣∣∣
i± 1

2 ,y
, N̂ |i± 1

2 ,y = N−|i± 1
2 ,y . (2.47)

The numerical flues for ̂f (u−
2 , u+

2 ) can be chosen as

– Dissipative numerical flux:

̂f (u−
2 , u+

2 )|x, j± 1
2

= 1

2
( f (u+

2 )+ f (u−
2 )−α(u+

2 −u−
2 ))

∣∣∣
x, j± 1

2

, α = max | f ′(u2)|.
(2.48)

– Conservative numerical flux:

̂f (u−
2 , u+

2 )|x, j± 1
2

= 1

2
((u+

1 )2 + u+
1 u−

1 + (u−
1 )2)

∣∣∣
x, j± 1

2

. (2.49)

• Scheme for Equations (2.39)–(2.45)

(Q, ϕ2) = 〈 ̂A(u2, q2), ϕ2〉y −
(

A(u2, q2),
∂ϕ2

∂y

)
,

̂A(u2, q2)
∣∣∣
x, j± 1

2

= 1

2
((q+

2 + q−
2 )u+

2 )

∣∣∣
x, j± 1

2

, (2.50)

(T, ϕ4) = 〈 ̂A(u1, q2), ϕ4〉x −
(

A(u1, q2),
∂ϕ4

∂x

)
,

̂A(u1, q2)
∣∣∣
i± 1

2 ,y
= 1

2
(u+

1 q+
2 + u−

1 q−
2 )

∣∣∣
i± 1

2 ,y
, (2.51)

(N , ϕ6) = 〈L̂1, ϕ6〉y −
(

L1,
∂ϕ6

∂y

)
, L̂1|x, j± 1

2
= L+

1 |x, j± 1
2
, (2.52)

(r2, ψ2) = 〈ũ1, ψ2〉y −
(

u1,
∂ψ2

∂y

)
, ũ1|x, j± 1

2
= u+

1 |x, j± 1
2
, (2.53)

(t1, ψ5) = 〈r̂2, ψ5〉x −
(

r2,
∂ψ5

∂x

)
, r̂2|i± 1

2 ,y = r−
2 |i± 1

2 ,y, (2.54)
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(L1, ξ1) = (u1r1, ξ1), (2.55)

(L4, ξ4) = (u2t1, ξ4). (2.56)

We remark that the choices of the fluxes in (2.27)–(2.35) and (2.46)–(2.54) are not
unique. There are several choices to ensure the stability.

2.3 Algorithm Flowchart

In this section, we give details related to the implementation of the method.
First, from (2.14)–(2.18), we get mh in the following matrix form:

mh = Auh, (2.57)

where mh = (m1, m2)
T , uh = (u1, u2)

T .
Second, from (2.27)–(2.37) and (2.46)–(2.56), we obtain the LDG discretization in

the following form:
(mh)t = res(uh). (2.58)

Then, we combine (2.57) and (2.58) to get

A(uh)t = res(uh). (2.59)

Finally, we use a time discretization method to solve

(uh)t = A−1res(uh). (2.60)

In this paper, we use the Runge–Kutta methods, in fact any standard ODE solvers can
be used here.

3 Energy Stability of the LDG Method

In this section, we prove the energy stability of the LDG method for the 2D CH
equation. The Lagrangians for the 2D CH equation are:

LC H (u) = 1

2

∫ ∫
(|u|2 + (Div u)2)dxdy. (3.1)

More details can be seen in [17]. The energy stability of the 2D CH equation is that:

d

dt

∫ Lx

0

∫ L y

0

(
u2
1 + u2

2 +
(

∂u1

∂x
+ ∂u2

∂y

)2
)
dxdy = 0. (3.2)

We will prove energy stability of the corresponding numerical solutions of LDG
scheme in the following proposition.
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Proposition 3.1 The solution to the schemes (2.27)–(2.37) and (2.46)–(2.56) satisfies
the energy stability:

• For dissipative numerical fluxes in (2.29) and (2.48),

d

dt

∫ Lx

0

∫ L y

0

(
u2
1 + u2

2 + (r1 + q2)
2
)
dxdy ≤ 0. (3.3)

• For conservative numerical fluxes in (2.30) and (2.49),

d

dt

∫ Lx

0

∫ L y

0

(
u2
1 + u2

2 + (r1 + q2)
2
)
dxdy = 0. (3.4)

To prove the energy stability of the LDG method, we need to choose proper test
functions in the LDG scheme.

• Test Functions in Schemes (2.14) and (2.17)

For (2.14) and (2.15), we first take the time derivative and get:

(
∂m1

∂t
, φ1

)
=

(
∂u1

∂t
, φ1

)
−

〈
∂ r̂1
∂t

+ ∂ q̂2
∂t

, φ1

〉
x

+
(

∂r1
∂t

+ ∂q2
∂t

,
∂φ1

∂x

)
, (3.5)

(
∂m2

∂t
, φ2

)
=

(
∂u2

∂t
, φ2

)
−

〈
∂ r̃1
∂t

+ ∂q̃2
∂t

, φ2

〉
y
+

(
∂r1
∂t

+ ∂q2
∂t

,
∂φ2

∂y

)
. (3.6)

We choose the test function as follows: (3.5) with φ1 = u1, (3.6) with φ2 = u2, (2.16)

with φ3 = −∂r1
∂t

− ∂q2
∂t

− P − S − L2, (2.17) with φ4 = −∂r1
∂t

− ∂q2
∂t

− Q − T − L4,

(
∂m1

∂t
, u1

)
=

(
∂u1

∂t
, u1

)
−

〈
∂ r̂1
∂t

+ ∂ q̂2
∂t

, u1

〉
x

+
(

∂r1
∂t

+ ∂q2
∂t

,
∂u1

∂x

)
, (3.7)

(
∂m2

∂t
, u2

)
=

(
∂u2

∂t
, u2

)
−

〈
∂ r̃1
∂t

+ ∂ q̃2
∂t

, u2

〉
y
+

(
∂r1
∂t

+ ∂q2
∂t

,
∂u2

∂y

)
, (3.8)

−
(

r1,
∂r1
∂t

+ ∂q2
∂t

+ P + S + L2

)

= −
〈
û1,

∂r1
∂t

+ ∂q2
∂t

+ P + S + L2

〉
x

+
(

u1,
∂

∂x

(
∂r1
∂t

+ ∂q2
∂t

+ P + S + L2

))
, (3.9)

−
(

q2,
∂r1
∂t

+ ∂q2
∂t

+ Q + T + L4

)

= −
〈
ũ2,

∂r1
∂t

+ ∂q2
∂t

+ Q + T + L4

〉
y

+
(

u2,
∂

∂y

(
∂r1
∂t

+ ∂q2
∂t

+ Q + T + L4

))
. (3.10)

123



370 T. Ma, Y. Xu

• Test Function in Schemes (2.27)–(2.37)

We choose the test function as follows: (2.27) with ρ1 = u1, (2.31) with ϕ1 = r1,
(2.32) with ϕ3 = r1, (2.33) with ϕ5 = r2, (2.34) withψ3 = −N , (2.35) withψ6 = L1,

(
∂m1

∂t
, u1

)
+ 〈̂f (u1) − P̂ − Ŝ − L̂2, u1〉x

−
(

f (u1) − P − S − L2,
∂u1

∂x

)

+〈 ̂B(r1) + ̂B(u2) + ̂B(q2), u1〉x −
(

B(r1) + B(u2) + B(q2),
∂u1

∂x

)

+〈 ˜A(u2, u1) − M̂, u1〉y −
(

A(u2, u1) − M,
∂u1

∂y

)
= 0, (3.11)

(P, r1) = 〈 ̂A(u1, r1), r1〉x −
(

A(u1, r1),
∂r1
∂x

)
, (3.12)

(S, r1) = 〈 ̂A(r1, u2), r1〉y −
(

A(r1, u2),
∂r1
∂y

)
, (3.13)

(M, r2) = 〈L̂3, r2〉x −
(

L3,
∂r2
∂x

)
, (3.14)

− (q1, N ) = −〈û2, N 〉x +
(

u2,
∂ N

∂x

)
, (3.15)

(t2, L1) = 〈q̂1, L1〉y −
(

q1,
∂L1

∂y

)
. (3.16)

• Test Functions in Schemes (2.46)–(2.56)

(2.46) with ρ2 = u2, (2.50) with ϕ2 = q2, (2.51) with ϕ4 = q2, (2.52) with ϕ6 = q1,
(2.53) with ψ2 = −M , (2.54) with ψ5 = L3.

(
∂m2

∂t
, u2

)
+ 〈̂f (u2) − Q̂ − T̂ − L̂4, u2〉y −

(
f (u2) − Q − T − L4,

∂u2

∂y

)

+〈 ˜B(r1) + ̂B(u1) + ˜B(q2), u2〉y −
(

B(r1) + B(u1) + B(q2),
∂u2

∂y

)

+〈 ̂A(u1, u2) − N̂ , u2〉x −
(

A(u1, u2) − N ,
∂u2

∂x

)
= 0, (3.17)

(Q, q2) = 〈 ̂A(u2, q2), q2〉y −
(

A(u2, q2),
∂q2
∂y

)
, (3.18)

(T, q2) = 〈 ̂A(u1, q2), q2〉x −
(

A(u1, q2),
∂q2
∂x

)
, (3.19)

(N , q1) = 〈L̂1, q1〉y −
(

L1,
∂q1
∂y

)
, (3.20)

− (r2, M) = −〈ũ1, M〉y +
(

u1,
∂ M

∂y

)
, (3.21)
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(t1, L3) = 〈r̂2, L3〉x −
(

r2,
∂L3

∂x

)
. (3.22)

• Main Energy Equation

Adding equations from (3.7) to (3.22), we can get themain energy equation for proving
L2 stability.
The left side of the equation is:

(
∂m1

∂t
, u1

)
+

(
∂m2

∂t
, u2

)
−

(
r1,

∂r1
∂t

+ ∂q2
∂t

)
−

(
q2,

∂r1
∂t

+ ∂q2
∂t

)

+ (P, r1) − (r1, P) + (S, r1) − (r1, S) + (N , q1) − (q1, N )

+ (t2, L1) − (r1, L2)

+ (Q, q2) − (q2, Q) + (T, q2) − (q2, T ) + (M, r2) − (r2, M)

+(t1, L3) − (q2, L4)

=
(

∂m1

∂t
, u1

)
+

(
∂m2

∂t
, u2

)
−

(
r1 + q2,

∂

∂t
(r1 + q2)

)
, (3.23)

where we use the following equality:

(t2, L1) = (t2, u1r1) = (r1, u1t2) = (r1, L2), (3.24)

(t1, L3) = (t1, u2q2) = (q2, u2t1) = (q2, L4). (3.25)

The right side of the equation is:

(
∂u1

∂t
, u1

)
+

(
∂u2

∂t
, u2

)
+

(
∂m1

∂t
, u1

)
+

(
∂m2

∂t
, u2

)

+ Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j , (3.26)

where

Ai, j = 〈̂f (u1), u1〉x −
(

f (u1),
∂u1

∂x

)
, (3.27)

Bi, j = 〈̂f (u2), u2〉y −
(

f (u2),
∂u2

∂y

)
, (3.28)

Ci, j = 〈 ̂A(u1, r1), r1〉x −
(

A(u1, r1),
∂r1
∂x

)
+ 〈 ̂B(r1), u1〉x −

(
B(r1),

∂u1

∂x

)

+〈 ̂A(u1, u2), u2〉x −
(

A(u1, u2),
∂u2

∂x

)
+ 〈̂B(u2), u1〉x −

(
B(u2),

∂u1

∂x

)

+〈 ̂A(u1, q2), q2〉x −
(

A(u1, q2),
∂q2
∂x

)
+ 〈̂B(q2), u1〉x −

(
B(q2),

∂u1

∂x

)
,

(3.29)

Di, j = 〈 ˜A(u2, u1), u1〉y −
(

A(u2, u1),
∂u1

∂y

)
+ 〈̂B(u1), u2〉y −

(
B(u1),

∂u2

∂y

)
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+〈 ̂A(u2, q2), q2〉y −
(

A(u2, q2),
∂q2
∂y

)
+ 〈˜B(q2), u2〉y −

(
B(q2),

∂u2

∂y

)

+〈 ̂A(u2, r1), r1〉y −
(

A(u2, r1),
∂r1
∂y

)
+ 〈 ˜B(r1), u2〉y −

(
B(r1),

∂u2

∂y

)
,

(3.30)

Ei, j = −〈P̂, u1〉x +
(

P,
∂u1

∂x

)
− 〈û1, P〉x +

(
u1,

∂ P

∂x

)

−〈Ŝ, u1〉x +
(

S,
∂u1

∂x

)
− 〈û1, S〉x +

(
u1,

∂S

∂x

)

−〈L̂2, u1〉x +
(

L2,
∂u1

∂x

)
− 〈û1, L2〉x +

(
u1,

∂L2

∂x

)

−〈N̂ , u2〉x +
(

N ,
∂u2

∂x

)
− 〈û2, N 〉x +

(
u2,

∂ N

∂x

)

+〈L̂3, r2〉x −
(

L3,
∂r2
∂x

)
+ 〈r̂2, L3〉x −

(
r2,

∂L3

∂x

)

−
〈
∂ r̂1
∂t

, u1

〉
x

+
(

∂r1
∂t

,
∂u1

∂x

)
−

〈
û1,

∂r1
∂t

〉
x

+
(

u1,
∂

∂x

(
∂r1
∂t

))

−
〈
∂q̂2
∂t

, u1

〉
x

+
(

∂q2
∂t

,
∂u1

∂x

)
−

〈
û1,

∂q2
∂t

〉
x

+
(

u1,
∂

∂x

(
∂q2
∂t

))
, (3.31)

Fi, j = 〈L̂1, q1〉y −
(

L1,
∂q1
∂y

)
+ 〈q̂1, L1〉y −

(
q1,

∂L1

∂y

)

−〈Q̂, u2〉y +
(

Q,
∂u2

∂y

)
− 〈ũ2, Q〉y +

(
u2,

∂ Q

∂y

)

−〈T̂ , u2〉y +
(

T,
∂u2

∂y

)
− 〈ũ2, T 〉y +

(
u2,

∂T

∂y

)

−〈L̂4, u2〉y +
(

L4,
∂u2

∂y

)
− 〈ũ2, L4〉y +

(
u2,

∂L4

∂y

)

−〈M̂, u1〉y +
(

M,
∂u1

∂y

)
− 〈ũ1, M〉y +

(
u1,

∂ M

∂y

)

−
〈
∂ r̃1
∂t

, u2

〉
y
+

(
∂r1
∂t

,
∂u2

∂y

)
−

〈
ũ2,

∂r1
∂t

〉
y
+

(
u2,

∂

∂x

(
∂r1
∂t

))

−
〈
∂q̃2
∂t

, u2

〉
y
+

(
∂q2
∂t

,
∂u2

∂y

)
−

〈
ũ2,

∂q2
∂t

〉
y
+

(
u2,

∂

∂x

(
∂q2
∂t

))
. (3.32)

Combining Eqs. (3.23) and (3.26), we get the main energy equation

(
∂u1

∂t
, u1

)
+

(
∂u2

∂t
, u2

)
+

(
r1 + q2,

∂

∂t
(r1 + q2)

)

+ Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j = 0. (3.33)
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• Proof for Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j terms in (3.33)

In the following, we will prove Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j terms in
(3.33) are nonnegative or zero.

Lemma 3.2 With the dissipative numerical fluxes in (2.29) and (2.48) or conservative
numerical fluxes in (2.30) and (2.49), we have

∑
i, j

Ai, j ≥ 0,
∑
i, j

Bi, j ≥ 0, dissipative numerical fluxes,

or ∑
i, j

Ai, j=0,
∑
i, j

Bi, j = 0, conservative numerical fluxes.

Proof Dissipative numerical fluxes
As for Ai, j :

Ai, j = 	i+ 1
2 , j − 	i− 1

2 , j + 
i− 1
2 , j , (3.34)

where

	i+ 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(
̂f (u1)u

−
1 − F(u−

1 )
)

|i+ 1
2 ,y dy, (3.35)


i− 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(
[F(u1)] − ̂f (u1)[u1]

)
|i− 1

2 ,y dy (3.36)

and F(u) = ∫ u f (t)dt . With the monotonicity of ̂f (u1), we have

[F(u1)] − ̂f (u1)[u1] =
∫ u+

1

u−
1

( f (s) − f̂ (u−
1 , u+

1 ))ds ≥ 0. (3.37)

Then we can finally get 
i− 1
2 , j ≥ 0. Summing up (3.34) over i , j and taking into

account the periodic boundary condition, we obtain

∑
i, j

Ai, j ≥ 0.

Using the same argument, we immediately know

∑
i, j

Bi, j ≥ 0.

Conservative numerical fluxes
Proof is similar to the monotone case and [2], we omit the detail of the proof. 
�
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Lemma 3.3 If the numerical fluxes are chosen as

̂A(u, v) |i+ 1
2 ,y=

1

2
(u+v+ + u−v−) |i+ 1

2 ,y,
̂B(v) |i+ 1

2 ,y=
1

2
v+v− |i+ 1

2 ,y, (3.38)

or

̂A(u, v) |i+ 1
2 ,y=

1

2
(v+ + v−)u+ |i+ 1

2 ,y,
̂B(v) |i+ 1

2 ,y= B(v−) |i+ 1
2 ,y, (3.39)

then we have

∑
i, j

(
〈 ̂A(u, v), v〉x −

(
A(u, v),

∂v

∂x

)
+ 〈̂B(v), u〉x −

(
B(v),

∂u

∂x

))
= 0.

Proof Similar to the proof in Lemma 3.2.

〈 ̂A(u, v), v〉x −
(

A(u, v),
∂v

∂x

)
+ 〈̂B(v), u〉x −

(
B(v),

∂u

∂x

)

= 	i+ 1
2 , j − 	i− 1

2 , j + 
i− 1
2 , j , (3.40)

where

	i+ 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(
̂A(u, v)v− + ̂B(v)u− − B(v−)u−)

|i+ 1
2 ,y dy, (3.41)


i− 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(
− ̂A(u, v)[v] − ̂B(v)[u] + [B(v)u]

)
|i− 1

2 ,y dy. (3.42)

With numerical fluxes in (3.38) or (3.39) and algebraic calculation, we easily obtain:

− ̂A(u, v)[v] − ̂B(v)[u] + [B(v)u] = 0.

Summing up (3.40) over i , j and taking into account the periodic boundary condition,
we obtain

∑
i, j

(
〈 ̂A(u, v), v〉x −

(
A(u, v),

∂v

∂x

)
+ 〈̂B(v), u〉x −

(
B(v),

∂u

∂x

))
= 0.


�
Lemma 3.4 If the numerical fluxes are chosen as

̂A(u, v) |x, j+ 1
2
= 1

2
(u+v+ + u−v−) |x, j+ 1

2
, ̂B(v) |x, j+ 1

2
= 1

2
v+v− |x, j+ 1

2
, (3.43)
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or

̂A(u, v) |x, j+ 1
2
= 1

2
(v+ + v−)u+ |x, j+ 1

2
, ̂B(v) |x, j+ 1

2
= B(v−) |x, j+ 1

2
, (3.44)

then we have

∑
i, j

(
〈 ̂A(u, v), v〉y −

(
A(u, v),

∂v

∂y

)
+ 〈̂B(v), u〉y −

(
B(v),

∂u

∂y

))
= 0.

Proof The proof is similar to Lemma 3.3. 
�
Corollary 3.5 With the definition of numerical fluxes in schemes (2.27)–(2.35) and
(2.46)–(2.54), we have ∑

i, j

Ci, j = 0,
∑
i, j

Di, j = 0.

Proof The results in this Corollary can be obtained by using Lemma 3.3 and Lemma
3.4. 
�
Lemma 3.6 If the numerical fluxes are chosen as

û |i+ 1
2 ,y= u− |i+ 1

2 ,y, v̂ |i+ 1
2 ,y= v+ |i+ 1

2 ,y, (3.45)

or
û |i+ 1

2 ,y= u+ |i+ 1
2 ,y, v̂ |i+ 1

2 ,y= v− |i+ 1
2 ,y, (3.46)

then we have

∑
i, j

(
〈̂u, v〉x −

(
u,

∂v

∂x

)
+ 〈̂v, u〉x −

(
v,

∂u

∂x

))
= 0.

Proof Similar to the proof in Lemma 3.3

〈̂u, v〉x −
(

u,
∂v

∂x

)
+ 〈̂v, u〉x −

(
v,

∂u

∂x

)
= 	i+ 1

2 , j − 	i− 1
2 , j + 
i− 1

2 , j , (3.47)

where

	i+ 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(̂
uv− + v̂u− − v−u−) |i+ 1

2 ,y dy, (3.48)


i− 1
2 , j =

∫ y
j+ 1

2

y
j− 1

2

(−û[v] − v̂[u] + [vu]) |i− 1
2 ,y dy. (3.49)
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Fig. 1 Peakon solution u1 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.5), periodic
boundary condition, uniform meshes with 80× 80, P4 elements over [− 10, 10] × [− 10, 10] for Example
4.2. a u1, t = 0 b u1, t = 1 c u1, t = 2 d u1, t = 4

With numerical fluxes in (3.45) or (3.46) and algebraic calculation,we easily obtain:

− û[v] − v̂[u] + [vu] = 0.

Summing up (3.47) over i j and taking into account the periodic boundary condition,
we obtain ∑

i, j

(
〈̂u, v〉x −

(
u,

∂v

∂x

)
+ 〈̂v, u〉x −

(
v,

∂u

∂x

))
= 0.


�

Lemma 3.7 If the numerical fluxes are chosen as

û |x, j+ 1
2
= u− |x, j+ 1

2
, v̂ |x, j+ 1

2
= v+ |x,i+ 1

2
, (3.50)

or
û |x, j+ 1

2
= u+ |x, j+ 1

2
, v̂ |x, j+ 1

2
= v− |x, j+ 1

2
, (3.51)
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Fig. 2 Peakon solution u2 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.5), periodic
boundary condition, uniform meshes with 80× 80, P4 elements over [− 10, 10] × [− 10, 10] for Example
4.2. a u2, t = 0 b u2, t = 1 c u2, t = 2 d u2, t = 4

then we have

∑
i, j

(
〈̂u, v〉y −

(
u,

∂v

∂y

)
+ 〈̂v, u〉y −

(
v,

∂u

∂y

))
= 0.

Proof The proof is similar to Lemma 3.6. 
�
Corollary 3.8 With the definition of numerical fluxes in schemes (2.27)–(2.35) and
(2.46)–(2.54), we have ∑

i, j

Ei, j = 0,
∑
i, j

Fi, j = 0.

Proof The results in this Corollary can be obtained by using Lemmas 3.6 and 3.7. It is
worth to mention that although the terms regarding the derivatives of t in Eqs. (3.31)
and (3.32) look a little different from the terms in Lemmas 3.6 and 3.7, we just need
to treat the terms regarding the derivatives of t as normal terms, then Lemmas 3.6 and
3.7 also work. 
�
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Fig. 3 Peakon solution for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.7). Dirichlet
boundary condition. Uniform meshes with 80× 80, P4 elements over [− 10, 10]× [− 10, 10] for Example
4.3. a t = 0, b t = √

2/2, c t = √
2, d t = 2

√
2

Summing up the main energy equation (3.33) over i j and taking into account the
periodic boundary condition, we obtain the following results by using Lemma 3.2,
Corollarys 3.5 and 3.8.

• For dissipative numerical fluxes,

∑
i, j

(
Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j

) ≥ 0.

Then we have

∑
i, j

((
∂u1

∂t
, u1

)
+

(
∂u2

∂t
, u2

)
+

(
r1 + q2,

∂

∂t
(r1 + q2)

))

= −
∑
i, j

(
Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j

)

≤ 0. (3.52)
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Fig. 4 Two-peakon interaction solutions for the 2DCHequation (2.5)–(2.8)with the initial conditions (4.8).
Periodic boundary condition. Uniform meshes with 160 × 160, P4 elements over [− 20, 20] × [− 20, 20]
for Example 4.4. a t = 0, b t = 1, c t = 3, d t = 8

• For conservative numerical fluxes,

∑
i, j

(
Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j

) = 0.

Then we have

∑
i, j

((
∂u1

∂t
, u1

)
+

(
∂u2

∂t
, u2

)
+

(
r1 + q2,

∂

∂t
(r1 + q2)

))

= −
∑
i, j

(
Ai, j + Bi, j + Ci, j + Di, j + Ei, j + Fi, j

)

= 0. (3.53)

This gives the energy stability results in (3.3) and (3.4). 
�
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Fig. 5 Two-peakon interaction solutions for the 2D CH equation (2.5)–(2.8) with the initial conditions
(4.11). Periodic boundary condition. Uniform meshes with 160 × 160, P4 elements over [− 20, 20] ×
[− 20, 20] for Example 4.5. a t = 0, b t = 1, c t = 3, d t = 8

4 Numerical Results

In this section, we give numerical solutions for different initial value to demonstrate
the accuracy and capability of the LDG method. In this paper, we use the third-order
explicit TVD Runge–Kutta method [31] as time discretization. The CFL number is
0.01, and time step is �t = 0.01 � x .

Example 4.1 Smooth solution

In this example, we test the smooth solution to calculate the order of the LDG scheme
for the 2D CH equation with right-hand source terms

∂

∂t
m + u · �m + �uT · m + m(divu) = f (4.1)

with the exact solutions:

u1 = sin(x + y + t), u2 = sin(x − y + t), (4.2)
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Fig. 6 Peakon solution u1 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.15), Dirichlet
boundary condition, uniform meshes with 80× 80, P4 elements over [− 10, 10] × [− 10, 10] for Example
4.6. a u1, t = 0, b u1, t = 1, c u1, t = 2, d u1, t = 4

initial conditions:
u1 = sin(x + y), u2 = sin(x − y), (4.3)

and periodic boundary condition over [0, 2π ] × [0, 2π ] . We can see that the method
with Pk elements gives a uniform (k + 1)-th order of accuracy for u1 and u2 in Table 1.

Example 4.2 Peakon solution for the simplest case

The peakon solutions of the 2D CH equation are well known and we first display the
simplest case that u1 doesn’t have y, and u2 doesn’t have x whose exact solutions read
as:

u1 = e−|t−x |, u2 = e−|t−y| (4.4)

with the initial conditions:

u1 = e−|x |, u2 = e−|y| (4.5)
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Fig. 7 Peakon solution u2 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.15), Dirichlet
boundary condition, uniform meshes with 80× 80, P4 elements over [− 10, 10] × [− 10, 10] for Example
4.6. a u2, t = 0, b u2, t = 1, c u2, t = 2, d u2, t = 4

and periodic boundary condition. Uniform meshes with 80 × 80, P4 elements over
[− 10, 10] × [− 10, 10]. We can see the solutions in Figs. 1 and 2. We can find that
the peakon is moving evenly over time.

Example 4.3 Peakon solution when the angle is 45◦

In this example, we test the peakon solution for the 2D CH equation (2.5)–(2.8) with
exact solutions read as:

u1 = u2 = e−|t−
√
2
2 x−

√
2
2 y| (4.6)

and the initial conditions

u1 = e−|
√
2
2 x+

√
2
2 y|, u2 = e−|

√
2
2 x+

√
2
2 y| (4.7)

with Dirichlet boundary condition. Uniform meshes with 80 × 80, P4 elements over
[− 10, 10]×[− 10, 10]. Since the solutions of u1 and u2 are the same, we only present
the solution for u1.We can see the solutions in Fig. 3. This kind of one peakon solution
will propagate with the velocity in the direction with an angle to the positive x-axis.
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Fig. 8 Peakon solution u1 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.17), Dirichlet
boundary condition, uniformmeshes with 160×160, P4 elements over [− 20, 20]×[− 20, 20] for Example
4.7. a u1, t = 0, b u1, t = 1, c u1, t = 2, d u1, t = 4

Example 4.4 Two-peakon interaction for simplest case

In this example, we consider the two-peakon interaction of the 2D CH equation with
the initial conditions:

u1 = φ1(x, y) + φ2(x, y), u2 = ϕ1(x, y) + ϕ2(x, y), (4.8)

where

φ1(x, y) = a1e|x+x1|, φ2(x, y) = a2e|x+x2|, (4.9)

ϕ1(x, y) = b1e|y+y1|, ϕ2(x, y) = b2e|y+y2|, (4.10)

where a1 = 2, x1 = 5, a2 = 1, x2 = 0, b1 = 2, y1 = 5, b2 = 1, y2 = 0. Periodic
boundary condition. Uniform meshes with 160× 160, P4 elements over [− 20, 20]×
[− 20, 20]. Since the solutions of u1 and u2 are the same, we only present the solution
for u1. The two-peakon interaction at t = 0, 1, 3, and 8 is shown in Fig. 4. We can see
clearly that the moving peakon interaction is resolved very well.
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Fig. 9 Peakon solution u2 for the 2D CH equation (2.5)–(2.8) with the initial conditions (4.17), Dirichlet
boundary condition, uniformmeshes with 160×160, P4 elements over [− 20, 20]×[− 20, 20] for Example
4.7. a u2, t = 0, b u2, t = 1, c u2, t = 2, d u2, t = 4

Example 4.5 Two-peakon interaction when the angle is 45◦

In this example, we also consider the two-peakon interaction of the 2D CH equation
with the initial conditions:

u1 = φ1(x, y) + φ2(x, y), u2 = ϕ1(x, y) + ϕ2(x, y), (4.11)

where

φ1(x, y) = a1e|
√
2
2 x+

√
2
2 y+c1|, φ2(x, y) = a2e|

√
2
2 x+

√
2
2 y+c2|, (4.12)

ϕ1(x, y) = b1e|
√
2
2 x+

√
2
2 y+d1|, ϕ2(x, y) = b2e|

√
2
2 x+

√
2
2 y+d2|, (4.13)

where a1 = 2, c1 = 3
√
2, a2 = 1, c2 = 0, b1 = 2, d1 = 3

√
2, b2 = 1, d2 = 0.

Periodic boundary condition. Uniform meshes with 160 × 160, P4 elements over
[− 20, 20]×[− 20, 20]. Since the solutions of u1 and u2 are the same, we only present
the solution for u1. The solutions are shown in Fig. 5 with the two-peakon interaction
at t = 0, 1, 3, and 8. We can see clearly that the moving peakon interaction is also
resolved very well.
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Example 4.6 Peakon solution when u1 �= u2

In this example, we display the peakon solutions when u1 �= u2 whose exact solutions
read as:

u1 = e−|t−
√
5
5 x− 2

√
5

5 y|, u2 = 2e−|t−
√
5
5 x− 2

√
5

5 y|, (4.14)

with the initial conditions:

u1 = e−|
√
5
5 x+ 2

√
5

5 y|, u2 = 2e−|
√
5
5 x+ 2

√
5

5 y| (4.15)

and Dirichlet boundary condition. Uniform meshes with 80 × 80, P4 elements over
[− 10, 10]× [−10, 10]. We can see the solutions in Figs. 6 and 7. We can find that the
peakon is moving evenly over time.

Example 4.7 Two-peakon interaction when u1 �= u2

In this example, we display two-peakon interaction when u1 �= u2 whose exact solu-
tions read as:

u1 = 2e−|2t−
√
5
5 (x+3)− 2

√
5

5 (y+3)| + e−|t−
√
5
5 x− 2

√
5

5 y|,

u2 = 4e−|2t−
√
5
5 (x+3)− 2

√
5

5 (y+3)| + 2e−|t−
√
5
5 x− 2

√
5

5 y|, (4.16)

with the initial conditions:

u1 = 2e−|
√
5
5 (x+3)+ 2

√
5

5 (y+3)| + e−|
√
5
5 x+ 2

√
5

5 y|,

u2 = 4e−|
√
5
5 (x+3)+ 2

√
5

5 (y+3)| + 2e−|
√
5
5 x+ 2

√
5

5 y| (4.17)

and Dirichlet boundary condition. Uniform meshes with 160×160, P4 elements over
[− 20, 20] × [− 20, 20]. We can see the solutions in Figs. 8 and 9. We can find that
the peakon is moving evenly over time.

5 Conclusion

In this paper, we have developed an LDG method for solving the 2D CH equation
and proved the energy stability for this method. The main difference of CH equation
between 1D and 2D is there have a lot of cross terms in the 2D CH equation, which
brings much trouble for the proof of the stability and numerical test. We have also
given several numerical simulation results to illustrate accuracy and capability of the
LDG method. In future, the conservative schemes in time and the theoretical analysis
for the LDG scheme, such as error estimates, will be our further research topics.
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