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Abstract One type of covariance structure is known as blocked compound symmetry.
Recently, Roy et al. (J Multivar Anal 144:81–90, 2016) showed that, assuming this
covariance structure, unbiased estimators are optimal under normality and described
hypothesis testing for independence as an open problem. In this paper, we derive the
distributions of unbiased estimators and consider hypothesis testing for independence.
Representative test statistics such as the likelihood ratio criterion,Wald statistic, Rao’s
score statistic, and gradient statistic are derived, and we evaluate the accuracy of the
test using these statistics through numerical simulations. The power of the Wald test
is the largest when the dimension is high, and the power of the likelihood ratio test is
the largest when the dimension is low.

Keywords Hypothesis testing · Asymptotic distribution · Independence · Blocked
compound symmetric covariance structure

Mathematics Subject Classification 62H15 · 62E15 · 62E20

1 Introduction

In multivariate statistical analysis, the covariance matrix can have various specific
structures. One of these is the blocked compound symmetric (BCS) covariance
structure. The BCS covariance structure for doubly multivariate observations is a
multivariate generalization of the compound symmetric covariance structure for mul-
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164 S. Tsukada

tivariate observations. The BCS covariance structure is defined as:

Σ = Iu ⊗ (Σ0 − Σ1) + Ju ⊗ Σ1 =

⎛
⎜⎜⎜⎝

Σ0 Σ1 · · · Σ1
Σ1 Σ0 · · · Σ1
...

...
...

Σ1 Σ1 · · · Σ0

⎞
⎟⎟⎟⎠ ,

where Iu is the u × u identity matrix, 1u is a u × 1 vector of ones, Ju = 1u1′
u , and

⊗ denotes the Kronecker product. We assume that u ≥ 2, Σ0 is a positive-definite
symmetric p × p matrix, and Σ1 is a symmetric p × p matrix. We also assume that
Σ0 − Σ1 and Σ0 + (u − 1)Σ1 are positive-definite matrices so that Σ is a positive-
definite matrix. Arnold [2] studied this covariance structure in the general linear model
when the error vectors are assumed to be exchangeable and normally distributed.
Szatrowski [13] discussed theBCS covariance structure and used amodel to analyze an
educational testing problem. Leiva [8] derivedmaximum likelihood estimates (MLEs)
of the BCS covariance structure, developed classification rules for doubly multivariate
observations and generalized Fisher’s linear discrimination method under the BCS
covariance structure.

Recently, the BCS covariance structure has been actively researched. For three-
level multivariate data, Roy and Leiva [10] and Coelho and Roy [3] have developed
hypothesis testing frameworks for a covariance structure. Roy et al. [11] and Zezula et
al. [15] studied hypothesis testing for the equality of mean vectors in two populations
under the BCS covariance structure. Roy et al. [12] proved that the unbiased estimators
of the BCS covariance structure are optimal under normality.

We consider hypothesis testing for independence under the BCS covariance struc-
ture, i.e.,

H0 : Σ1 = O versus H1 : Σ1 �= O,

where O is a p× p zero matrix. This problem is the extension of an independence test
for a covariance matrix to an independence test for a blocked covariance matrix. We
investigate the properties of the unbiased estimator of the covariance matrix and use
them to derive the Wald statistic. We also derive the likelihood ratio criterion (LRC),
the modified LRC using the Bartlett correction, Rao’s score statistic, and Terrel’s [14]
gradient statistic. The asymptotic behavior of these test statistics is similar, but the
accuracy of their convergence to the significance level and the powers of test using
these statistics are investigated for finite samples through numerical simulations. From
the simulation results, we find that the accuracy of convergence to the significance level
differs depending on the statistic. Therefore, we also simulate the bootstrap test using
these test statistics. Simulation results show that the tests using these statistics converge
to the significance level for large samples, the power of the test using theWald statistic
is the largest when the dimension is high, and the power of the likelihood ratio test is
the largest when the dimension is low.

The remainder of this article is organized as follows. The properties of the unbiased
estimator are obtained in Sect. 2. In Sect. 3, the LRC, modified LRC, Wald statistic,
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Rao’s score statistic and gradient criterion are derived, and the process of the bootstrap
test using the relevant statistics is described. Numerical simulations and an application
to real data are reported in Sect. 4. Finally, Sect. 5 contains our conclusions.

2 Estimators

We assume that xr,s is a p-variate vector of measurements on the r -th individual at
the s-th site (r = 1, . . . , n, s = 1, . . . , u). The n individuals are all independent. Let
xr = (x′

r,1, . . . , x
′
r,u)

′ be the up-variate vector of all measurements corresponding to
the r -th individual. Finally, we assume that x1, x2, . . . , xn be a random sample of size
n drawn from the population Nup(μ,Σ), where μ = (μ′

1, . . . ,μ
′
u)

′ is a up×1 vector
and Σ is a up× up positive-definite matrix that has the BCS covariance structure (cf.
Leiva [8]).

In this section, we discuss estimators under the BCS covariance structure. Roy et
al. [12] derive unbiased estimators as follows:

Theorem 2.1 (Roy et al. [12]) Assume that x1, x2, . . . , xn is a random sample of size
n drawn from the population Nup(μ,Σ). Let x̄ = (x̄′

1, x̄
′
2, . . . , x̄

′
u)

′,

C0 =
u∑

s=1

n∑
r=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′
,

C1 =
u∑

s=1

u∑
s∗=1

s �=s∗

n∑
r=1

(
xr,s − x̄s

) (
xr,s∗ − x̄s∗

)′
,

where x̄s = ∑n
r=1 xr,s/n (s = 1, . . . , u). Then, x̄ is distributed as Nup(μ,Σ/n) and

is the unbiased estimator for the mean vector μ. The estimators

Σ̃0 = 1

u(n − 1)
C0 and Σ̃1 = 1

u(u − 1)(n − 1)
C1

are unbiased estimators for Σ0 and Σ1, respectively.

Therefore, the unbiased estimator for Σ is

Σ̃ = Iu ⊗ (Σ̃0 − Σ̃1) + Ju ⊗ Σ̃1.

For further inference, we derive the distribution for these estimators under some
assumptions. The distribution of an unbiased estimator for μ is Nup(μ,Σ/n), but the
estimators Σ̃0 and Σ̃1 do not follow a Wishart distribution, even when the population
distribution is normal. We obtain the exact distribution of Σ̃0 and Σ̃1. Roy et al. [11]
indicated that

W1 ≡ (n − 1)(u − 1)
(
Σ̃0 − Σ̃1

)
∼ Wp((n − 1)(u − 1),Σ0 − Σ1), (2.1)
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W2 ≡ (n − 1)
{
Σ̃0 + (u − 1)Σ̃1

}
∼ Wp(n − 1,Σ0 + (u − 1)Σ1), (2.2)

and these estimators are independent of each other. The estimator W1 is positive-
definite when (n − 1)(u − 1) ≥ p and the estimator W2 is positive-definite when
n − 1 ≥ p. When n > p, these inequalities are true for u ≥ 2. Since

(n − 1)uΣ̃0 = W1 + W2,

(n − 1)u(u − 1)Σ̃1 = (u − 1)W2 − W1,

the exact distributions of Σ̃0 and Σ̃1 are obtained as the sum and the difference of
Wishart matrices.

Lemma 2.2 LetΔ1 = Σ0−Σ1, andΔ2 = Σ0+(u−1)Σ1. When u ≥ 2 and n > p,
the exact distribution of Σ̃0 is as follows:

K0 etr

[
− (n − 1)u

2
Δ−1

1 Σ̃0

] ∣∣∣Σ̃0

∣∣∣u(n−1)/2−p−1

× 1F1

[
1

2
(n − 1); 1

2
(n − 1)u; (n − 1)u

2

(
Δ−1

1 − Δ−1
2

)
Σ̃0

]
,

where etr(H) = exp [tr(H)],

K0 =
[{

2

(n − 1)u

}u(n−1)p/2

Γp

[
1

2
u(n − 1)

]
|Δ1|(n−1)(u−1)/2 |Δ2|(n−1)/2

]−1

,

and 1F1 [a; b; H] is the hypergeometric function of a matrix argument defined by
(5.1).

Proof The details of the proof are described in “Appendix A”. 	

Lemma 2.3 When u ≥ 2 and n > p, the exact distribution of Σ̃1 is as follows:

K1etr

[
− (n − 1)u

2
Δ−1

2 Σ̃1

] ∣∣∣Σ̃1

∣∣∣u(n−1)/2−p−1

× �

[
1

2
(n−1)(u−1),

1

2
(n−1)u; 1

2

{
(n−1)uΔ−1

2 +(n−1)u(u−1)Δ−1
1

}
Σ̃1

]
,

where �[a, c; R] is the confluent hypergeometric function defined by (5.2), and

K1 =
[{

2

(n − 1)u

}u(n−1)p/2

Γp

[
1

2
(n − 1)

](
1

u − 1

)(n−1)(u−1)p/2

× |Δ1|(n−1)(u−1)/2 |Δ2|(n−1)/2
]−1

.

Proof The details of the proof are described in “Appendix A”. 	
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The exact distributions of Σ̃0 and Σ̃1 contain a hypergeometric function of the
matrix argument, which is generally difficult to calculate.Wemay need the asymptotic
distribution of the estimators.

Since the estimators vec
(
Σ̃0

)
and vec

(
Σ̃1

)
are represented as follows:

vec
(
Σ̃0

)
= vec (Σ0) + u − 1

u
vec

(
Δ̃1 − Δ1

)
+ 1

u
vec

(
Δ̃2 − Δ2

)
,

vec
(
Σ̃1

)
= vec (Σ1) − 1

u
vec

(
Δ̃1 − Δ1

)
+ 1

u
vec

(
Δ̃2 − Δ2

)
,

the following theorem can be obtained using the properties of Wishart matrices.

Theorem 2.4 Let

Φ0 = u − 1

u2
(
I p2 + K p,p

)
(Δ1 ⊗ Δ1) + 1

u2
(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) ,

Φ1 = 1

u2(u − 1)

(
I p2 + K p,p

)
(Δ1 ⊗ Δ1) + 1

u2
(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) ,

where K p,p is the commutation matrix.

The vectors (n − 1)1/2vec
(
Σ̃0 − Σ0

)
and (n − 1)1/2vec

(
Σ̃1 − Σ1

)
are asymp-

totically distributed as a p(p + 1)/2-variate normal distribution with mean vector 0
and covariance matrices Φ0 and Φ1, respectively.

Proof The details of the proof are described in “Appendix B”. 	


3 Test Statistics and Bootstrap Test

In general, no test in multivariate analysis is uniformly the most powerful. Thus, in
this section, we derive the fundamental test statistics, i.e., the LRC, Wald statistic,
Rao’s score statistic, and gradient statistic for testing the hypothesis

H0 : Σ1 = O versus H1 : Σ1 �= O.

Finally, we explain the process of the bootstrap test using these statistics.

3.1 Likelihood Ratio Criterion

Based on the work of Leiva [8], we derive the LRC and the moment of the LRC. Fur-
thermore, we obtain the modified LRC using the moment of the LRC. The likelihood
function is

L(μ,Σ) = (2π)−nup/2 |Σ |−n/2 exp

[
−1

2

n∑
r=1

(xr − μ)′ Σ−1 (xr − μ)

]
. (3.1)
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Since we have assumed that the covariance matrix Σ is BCS, the inverse matrix of the
covariance matrix Σ is

Σ−1 = Iu ⊗ A + Ju ⊗ B,

where

A = (Σ0 − Σ1)
−1 = Δ−1

1 ,

B = 1

u

[
{Σ0 + (u − 1)Σ1}−1 − (Σ0 − Σ1)

−1
]

= 1

u

(
Δ−1

2 − Δ−1
1

)
.

We denote Qn as the sum of the quadratic forms in (3.1), and can rearrange Qn as
follows:

Qn =
n∑

r=1

(xr − μ)′ Σ−1 (xr − μ)

=
n∑

r=1

u∑
s=1

(
xr,s − μs

)′
(A + B)

(
xr,s − μs

)

+
n∑

r=1

u∑
s=1

u∑
s∗=1

s �=s∗

(
xr,s − μs

)′ B (xr,s∗ − μs∗
)

= tr

[
(A + B)

n∑
r=1

u∑
s=1

(
xr,s − μs

) (
xr,s − μs

)′
]

+ tr

⎡
⎢⎢⎣B

n∑
r=1

u∑
s=1

u∑
s∗=1

s �=s∗

(
xr,s − μs

) (
xr,s∗ − μs∗

)′
⎤
⎥⎥⎦ .

Since x̄s = ∑n
r=1 xr,s/n, we have

∑n
r=1

(
xr,s − x̄s

) = 0. Since

n∑
r=1

u∑
s=1

(
xr,s − μs

) (
xr,s − μs

)′

=
n∑

r=1

u∑
s=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′ + n
u∑

s=1

(
x̄s − μs

) (
x̄s − μs

)′

≡ C0 + n
u∑

s=1

(
x̄s − μs

) (
x̄s − μs

)′
, (3.2)

n∑
r=1

u∑
s=1

u∑
s∗=1

s �=s∗

(
xr,s − μs

) (
xr,s∗ − μs∗

)′
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=
n∑

r=1

u∑
s=1

u∑
s∗=1

s �=s∗

(
xr,s − x̄s

) (
xr,s∗ − x̄s∗

)′ + n
u∑

s=1

u∑
s∗=1

s �=s∗

+ (x̄s − μs
) (

x̄s∗ − μs∗
)′

≡ C1 + n
u∑

s=1

u∑
s∗=1

s �=s∗

(
x̄s − μs

) (
x̄s∗ − μs∗

)′
, (3.3)

letting Σ∗ = In ⊗ Σ , we can rearrange Qn as follows:

Qn =
n∑

r=1

(xr − μ)′ Σ−1 (xr − μ)

= tr
(
Σ−1∗ C

)
+ (1n ⊗ (x̄ − μ))′ Σ−1∗ (1n ⊗ (x̄ − μ)) , (3.4)

where

C = Inu ⊗ 1

nu

(
C0 − 1

u − 1
C1

)
+ (In ⊗ Ju) ⊗ 1

nu(u − 1)
C1.

Therefore, Qn is minimizedwhen μ̂ = x̄, and then the log-likelihood function reduces
to

log L(x̄,Σ∗) = −nup

2
log(2π) − 1

2
log |Σ∗| − 1

2
tr
(
Σ−1∗ C

)
. (3.5)

From Lemma 3.2.2 of Anderson [1], the log-likelihood function is maximized when

Σ̂∗ = C.

Thus, the maximum of the likelihood function is

L(x̄, Σ̂∗) = e−nup/2

(2π)nup/2
∣∣∣Σ̂
∣∣∣n/2 . (3.6)

From (3.4), the maximum likelihood estimators of Σ0 and Σ1 are

Σ̂0 = 1

nu
C0 = 1

nu

n∑
r=1

u∑
s=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′
, (3.7)

Σ̂1 = 1

nu(u − 1)
C1 = 1

nu(u − 1)

n∑
r=1

u∑
s=1

u∑
s∗=1

s �=s∗

(
xr,s − x̄s

) (
xr,s∗ − x̄s∗

)′
. (3.8)
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Next, we consider themaximumof the likelihood function under the null hypothesis
H0 : Σ1 = O. Under H0, we have

Σ = Iu ⊗ Σ0, Σ−1 = Iu ⊗ Σ−1
0 , |Σ | = |Σ0|n .

Thus, the likelihood function is

L(μ,Σ0) = (2π)−nup/2 |Σ |−n/2 exp

[
−1

2

n∑
r=1

u∑
s=1

(
xr,s − μs

)′
Σ−1

0

(
xr,s − μs

)]
.

(3.9)

We denote the sum of the quadratic forms in (3.9) as Q, and arrange this as follows:

Q =
n∑

r=1

u∑
s=1

(
xr,s − μs

)′
Σ−1

0

(
xr,s − μs

)

= tr

[
Σ−1

0

n∑
r=1

u∑
s=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′ + nΣ−1
0

u∑
s=1

(
x̄s − μs

) (
x̄s − μs

)′
]

= tr

[
Σ−1

0

n∑
r=1

u∑
s=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′
]

+ n (x̄ − μ)′ Σ−1 (x̄ − μ) .

When μ̂ = x̄, Q is minimized. Then, the log-likelihood function reduces to

log L(x̄,Σ0) = −nup

2
log(2π) − nu

2
log |Σ0|

− 1

2
tr

[
Σ−1

0

n∑
r=1

u∑
s=1

(
xr,s − x̄s

) (
xr,s − x̄s

)′
]

.

From Lemma 3.2.2 of Anderson [1], the log-likelihood function is maximized when
Σ̂0 = C0/(nu), and the maximum of the likelihood function is

L(μ̂, Σ̂0) = e−nup/2

(2π)nup/2
∣∣∣Σ̂0

∣∣∣nu/2 . (3.10)

From the maximums (3.6) and (3.10), the LRC Λ is

Λ = maxH0 L(μ,Σ)

max L(μ,Σ)
=
∣∣∣Σ̂0 − Σ̂1

∣∣∣n(u−1)/2 ∣∣∣Σ̂0 + (u − 1)Σ̂1

∣∣∣n/2

∣∣∣Σ̂0

∣∣∣nu/2 . (3.11)
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Therefore, we have

−2 logΛ = nu log
∣∣∣Σ̂0

∣∣∣− n(u − 1) log
∣∣∣Σ̂0 − Σ̂1

∣∣∣− n log
∣∣∣Σ̂0 + (u − 1)Σ̂1

∣∣∣ .
(3.12)

Next, we obtain the h-th moment of Λ to derive the modified LRC. We express the
LRC using W1 and W2 as follows:

Λ = (nu)nup/2

{n(u − 1)}n(u−1)p/2 nnp/2
· |W1|n(u−1)/2 |W2|n/2

|W1 + W2|nu/2 . (3.13)

Letting

λ = |W1|n(u−1)/2 |W2|n/2

|W1 + W2|nu/2 ,

the h-th moment of λ is

E[λh] = Γp
[ 1
2 (n − 1)u

]

Γp
[ 1
2 (n − 1)u(1 + h)

] · Γp
[ 1
2 (n − 1)(u − 1)(1 + h)

]

Γp
[ 1
2 (n − 1)(u − 1)

]

·Γp
[ 1
2 (n − 1)(1 + h)

]

Γp
[ 1
2 (n − 1)

]

in the same way as in Section 10.4 of Anderson [1]. Since we can write the criterion
as

Λ =
{

nu

n(u − 1)

} 1
2 pn(u−1) (nu

n

) 1
2 pn

λ =
{(

1

k1

)k1 ( 1

k2

)k2
} 1

2 pn

λ,

where k1 = (u − 1)/u and k2 = 1/u, the h-th moment of Λ is as follows:

E[Λh] =
{(

1

k1

)k1 ( 1

k2

)k2
} 1

2 pnh

E[λh].

Using the general theory of asymptotic expansions from Section 8.5 of Anderson [1],
we have the modified LRC −2ρ logΛ, which converges quickly to the chi-squared
distribution compared to −2 logΛ, where

ρ = 1 − u2 − u + 1

(n − 1)u(u − 1)
· 2p

2 + 3p − 1

6(p + 1)
. (3.14)

The effect of this modification is confirmed in the simulation described in Sect. 4.
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3.2 Wald Statistic

FromTheorem 2.4, we can construct theWald statistic. Sincewe haveΔ1 = Δ2 = Σ0
under the null hypothesis H0, the asymptotic covariance matrix is

Φ1 = 1

u(u − 1)

(
I p2 + K p,p

)
(Σ0 ⊗ Σ0) .

Hence, we obtain the following theorem.

Theorem 3.1 When the null hypothesis H0 is true, the vector (n − 1)1/2vec
(
Σ̃1

)

is asymptotically distributed as a p(p + 1)/2-variate normal distribution with mean
vector 0 and covariance matrix

(
I p2 + K p,p

)
(Σ0 ⊗ Σ0) /{u(u − 1)}.

Noting that

(
I p2 + K p,p

)− = 1

4

(
I p2 + K p,p

)
,
(
I p2 + K p,p

)
vec

(
Σ̃1

)
= 2vec

(
Σ̃1

)
,

using Theorem 3.1, the Wald statistic

W = (n − 1)u(u − 1)

2
vec′ (Σ̃1

) (
Σ̃

−1
0 ⊗ Σ̃

−1
0

)
vec

(
Σ̃1

)
(3.15)

is asymptotically distributed as a chi-squared distribution with p(p+ 1)/2 degrees of
freedom, where A− denotes the Moore–Penrose inverse matrix of A.

3.3 Rao’s Score Statistic

Assuming the BCS covariance structure, the log-likelihood function (3.5) is repre-
sented as follows:

log L(x̄,Σ∗) = −nup

2
log(2π) − n

2
log |Σ |

− 1

2
tr [(In ⊗ Iu ⊗ A)C] − 1

2
tr {(In ⊗ Ju ⊗ B)C} . (3.16)

Details are given in “Appendix C”, but the derivative of the log-likelihood function
with respect to Σ1 is

U(Δ1,Δ2) = ∂

∂Σ1
log L(x̄,Σ∗)

= −n(u − 1)

2

{
Δ−1

1

(
Δ̂1 − Δ1

)
Δ−1

1

}

+ n(u − 1)

2

{
Δ−1

2

(
Δ̂2 − Δ2

)
Δ−1

2

}
. (3.17)
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From this result, the information matrix is as follows:

I (Δ1,Δ2) = E
[
vec (U(Δ1,Δ2)) vec

′ (U(Δ1,Δ2))
]

= (n − 1)(u − 1)

4

(
I p2 + K p,p

) (
Δ−1

1 ⊗ Δ−1
1

)

+ (n − 1)(u − 1)2

4

(
I p2 + K p,p

) (
Δ−1

2 ⊗ Δ−1
2

)
. (3.18)

Let Δ̌1 and Δ̌2 be MLEs of Δ1 and Δ2, respectively, under the null hypothesis H0.
When the null hypothesis H0 is true, we have

Δ̌1 = Δ̌2 = Σ̂0.

Since the score vec
(
U(Δ̌1, Δ̌2)

)
is

vec
(
U(Δ̌1, Δ̌2)

)
= nu(u − 1)

2

(
Σ̂

−1
0 ⊗ Σ̂

−1
0

)
vec

(
Σ̂1

)
, (3.19)

Rao’s score statistic is

S = nu(u − 1)

2
vec′ (Σ̂1

) (
Σ̂

−1
0 ⊗ Σ̂

−1
0

)
vec

(
Σ̂1

)
. (3.20)

Using the score (3.19) under the null hypothesis H0, we find that the gradient statistic
is the same as Rao’s score statistic.

3.4 Bootstrap Test

Following Efron and Tibshirani [4], we perform the bootstrap test using the criteria
−2 logΛ, −2ρ logΛ, W , and S as follows:

(i) Calculate the mean vector x̄, the unbiased covariance matrix Σ̃0, and the criteria
−2 logΛx , −2ρ logΛx , Wx , and Sx from the original sample x.

(ii) Form B bootstrap datasets y of size n from the normal population N (x̄, Iu⊗Σ̃0).
(iii) Evaluate the criteria −2 logΛy , −2ρ logΛy , Wy , and Sy from each dataset y.
(iv) Approximate an achieved significance level (ASL) as:

̂ASL1 = #
{−2 logΛy > −2 logΛx

}
B

,

̂ASL2 = #
{−2ρ logΛy > −2ρ logΛx

}
B

,

̂ASL3 = #
{
Wy > Wx

}
B

, ̂ASL4 = #
{
Sy > Sx

}
B

.

If the value of ̂ASL is less than the significance level α, we reject the null hypoth-
esis.
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We use the bootstrap test in our simulations because it can be allied to hypothesis
testing using these statistics, and the ASLs of the bootstrap test are guaranteed to be
accurate as the sample size becomes large.

4 Numerical Example

In this section, we investigate the accuracy of the test using the above criteria and
apply them to real data. The simulation uses 100,000 samples.

4.1 Numerical Simulation

First, we investigate the accuracy of the significance level for the test using the criteria
−2 logΛ, −2ρ logΛ, W , and S under the null hypothesis. Letting

Σ0 = σ 2

⎛
⎜⎜⎜⎝

1 � · · · �p−1

� 1 · · · �p−2

...
...

...

�p−1 �p−2 · · · 1

⎞
⎟⎟⎟⎠ , (4.1)

where σ = 2 and � = 0.5, we set the population distribution such that the mean vector
μ is the zero vector and the covariance matrix is

Σ = Iu ⊗ Σ0.

We change the dimension p and the number u of sites, and set the sample size n
for each case. Table 1 presents the ASLs using the 95th percentile of the chi-squared
distribution.

The results show that the ASLs of the likelihood ratio test and the modified like-
lihood ratio test are greater than 0.05, meaning that these tests fail to control the
significance level. In contrast, the ASL of the Wald test is less than 0.05 and the Rao’s
score test retains the significance level. We have found that the correction using ρ

improves the convergence to the significance level.
We consider the bootstrap test using these test statistics because their ASLs are

different.
Table 2 presents the ASL for the bootstrap test using these statistics for the signifi-

cance level α = 0.05. The number of bootstrap replications is 1000. The results show
that the ASLs of the bootstrap test using−2 logΛ,−2ρ logΛ, andW are greater than
0.05 and the ASL of the bootstrap test using S is less than 0.05. We have found that the
bootstrap test is dominant in terms of ensuring the stability of the significance level.
When the sample size is large, the bootstrap test using −2ρ logΛ or W retains the
significance level.

Next, we investigate the power of the test in two cases. We set the sample size n,
dimension p, and number u of sites as for the situation under the null hypothesis. Since
the convergence of each statistic to the significance level is different, we cannot make
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Table 1 Achieved significance
level of normal test for α = 0.05

Parameters Normal test
n p u ρ −2 logΛ −2ρ logΛ W S

20 3 2 .9145 .0900 .0630 .0259 .0356

40 3 2 .9583 .0676 .0560 .0372 .0430

60 3 2 .9725 .0606 .0536 .0413 .0452

40 5 3 .9468 .0844 .0603 .0437 .0521

80 5 3 .9737 .0643 .0541 .0459 .0504

120 5 3 .9826 .0607 .0542 .0485 .0514

160 5 3 .9870 .0559 .0511 .0465 .0486

100 9 3 .9631 .0804 .0546 .0444 .0496

200 9 3 .9816 .0634 .0522 .0472 .0500

300 9 3 .9878 .0582 .0510 .0475 .0492

400 9 3 .9908 .0558 .0506 .0485 .0498

Table 2 Achieved significance
level of bootstrap test for
α = 0.05

Parameters Bootstrap test
n p u ρ −2 logΛ −2ρ logΛ W S

20 3 2 .9145 .0505 .0505 .0506 .0381

40 3 2 .9583 .0507 .0507 .0511 .0446

60 3 2 .9725 .0507 .0507 .0508 .0465

40 5 3 .9468 .0521 .0521 .0527 .0441

80 5 3 .9737 .0502 .0502 .0512 .0467

120 5 3 .9826 .0521 .0521 .0521 .0493

160 5 3 .9870 .0495 .0495 .0494 .0475

100 9 3 .9631 .0498 .0498 .0501 .0450

200 9 3 .9816 .0499 .0499 .0504 .0478

300 9 3 .9878 .0498 .0498 .0504 .0487

400 9 3 .9908 .0504 .0504 .0505 .0493

a simple comparison of the powers of the test, but instead compare the powers of the
bootstrap test by taking the convergence to the significance level into consideration.
Let Σ0 be as in (4.1), and consider Case 1: Σ1 = τ1 I p and Case 2: Σ1 = τ21p1′

p.
We set τ1 and τ2 as shown in the following table.

p = 3 p = 5 p = 9

τ1 0.8 0.3 0.15
τ2 1.3 0.5 0.2
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Table 3 Power of bootstrap test
(Significance level: α = 0.05)

Parameters Case 1

n p u ρ −2 logΛ −2ρ logΛ W S

20 3 2 .9145 .3965 .3965 .3714 .3166

40 3 2 .9583 .8007 .8007 .7919 .7746

60 3 2 .9725 .9544 .9544 .9526 .9491

40 5 3 .9468 .3894 .3894 .5566 .5289

80 5 3 .9737 .7796 .7796 .8623 .8544

120 5 3 .9826 .9451 .9451 .9689 .9673

160 5 3 .9870 .9901 .9901 .9948 .9945

100 9 3 .9631 .3030 .3030 .4788 .4594

200 9 3 .9816 .6711 .6711 .7945 .7880

300 9 3 .9878 .8976 .8976 .9454 .9438

400 9 3 .9908 .9768 .9768 .9888 .9885

Parameters Case 2

n p u ρ −2 logΛ −2ρ logΛ W S

20 3 2 .9145 .3958 .3958 .3610 .3049

40 3 2 .9583 .7924 .7924 .7749 .7561

60 3 2 .9725 .9493 .9493 .9450 .9406

40 5 3 .9468 .3827 .3827 .4963 .4679

80 5 3 .9737 .7574 .7574 .8274 .8187

120 5 3 .9826 .9312 .9312 .9554 .9537

160 5 3 .9870 .9851 .9851 .9910 .9907

100 9 3 .9631 .2326 .2326 .3083 .2906

200 9 3 .9816 .5177 .5177 .6071 .5981

300 9 3 .9878 .7635 .7635 .8246 .8207

400 9 3 .9908 .9071 .9071 .9372 .9359

Since the alternative hypothesis, the population covariance matrix is

Σ = Iu ⊗ (Σ0 − Σ1) + Ju ⊗ Σ1.

The upper part of Table 3 presents the powers of the test in Case 1. Since the criteria
−2 logΛ and −2ρ logΛ are essentially the same, the powers of the bootstrap test
using these criteria are equal. When the dimension is high, the power of the bootstrap
test usingW is largest followed by the power of the bootstrap test using S. The powers
of the modified likelihood ratio test are the largest when the dimension is low.

The lower part of Table 3 presents the powers of the test in Case 2. The same
tendencies as in Case 1 can be observed. The power of the bootstrap test using W is
largest, followed by the power of the bootstrap test using S; the power of the bootstrap
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test using the modified LRC is the third largest when the dimension is high. The
powers of the modified likelihood ratio test are largest when the dimension is low, but
the powers of the bootstrap test using the modified LRC,W and S are almost the same
in the case of a low dimension and large sample.

4.2 Example Using Real Data

We apply hypothesis testing using real data taken from Johnson and Wichern [7].
To examine whether dietary supplements would slow bone loss in 25 older women,
the mineral content of bones (radius, humerus, and ulna) was measured by photon
absorptiometry. Measurements were recorded for three bones on the dominant and
non-dominant sides, i.e., p = 3 and u = 2. Roy and Leiva [10] demonstrated that
the data fail to reject the null hypothesis that the covariance structure is of BCS form
(p-value = 0.5786). The unbiased estimator for μ is

(0.8438, 1.7927, 0.7044, 0.8183, 1.7348, 0.6938)′,

and the unbiased estimators for Σ0 and Σ1 are

Σ̃0 =
⎛
⎝

0.0122 0.0217 0.0090
0.0217 0.0749 0.0168
0.0090 0.0168 0.0111

⎞
⎠ , Σ̃1 =

⎛
⎝

0.0104 0.0193 0.0082
0.0193 0.0668 0.0153
0.0082 0.0153 0.0081

⎞
⎠ .

The maximum likelihood estimators are

Σ̂0 =
⎛
⎝

0.0117 0.0209 0.0087
0.0209 0.0719 0.0161
0.0087 0.0161 0.0106

⎞
⎠ , Σ̂1 =

⎛
⎝

0.0100 0.0185 0.0079
0.0185 0.0641 0.0147
0.0079 0.0147 0.0077

⎞
⎠ .

Noting that ρ = 0.9323, the criteria are

− 2 logΛ = 71.7279, −2ρ logΛ = 66.8713,

W1 = 38.3102, W2 = 24.8056, S = 39.9065.

Since the upper 5% point of the chi-squared distribution with 6 degrees of freedom is
12.5916, we reject the null hypothesisΣ1 = O with a significance level 0.05. We also
applied the bootstrap test using the same criteria. The ASL values for each statistic
are approximately 0.0000, and the result is the same as for the previous test.

5 Conclusions

We have treated hypothesis testing for independence under the BCS covariance struc-
ture. The LRC, modified LRC, Wald statistic, and Rao’s score statistic have been
derived. We have shown that the test using these statistics is effective in specific situa-
tions. In particular, we found that the bootstrap test is superior in terms of convergence
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to the significance level, that the power of the bootstrap test using the Wald statistic
is largest when the dimension is high, that the power of the bootstrap test using the
modified LRC is largest when the dimension is low, and that the power of the bootstrap
test using the Wald statistic is the same as the power of the bootstrap test using the
modified LRCwhen the dimension is low and the sample size is large.We recommend
the bootstrap test using the Wald statistic.

Recently, high-dimensional multivariate analysis has been extensively studied (see
Fujikoshi and Ulyanov [5] and Pourahmadi [9]). It may also be possible to study
hypothesis testing for independence under the BCS covariance structure under high-
dimensional situations (up > n). However, we cannot employ statistics using the
determinant, such as the LRC, because the matrices W i are singular under high-
dimensional conditions. Thus, it is necessary to consider new test statistics using the
trace of W i for hypothesis testing, which is left as a future problem.

Acknowledgements The author thanks Stuart Jenkinson, Ph.D., from Edanz Group (www.edanz-editing.
com/ac) for editing a draft of this manuscript, and is grateful to three anonymous referees for comments to
revise the original manuscript.

Appendix

A Proof of Lemmas 2.2 and 2.3

First, we show three lemmas to derive the exact distribution of Σ̃0 and Σ̃1.

Lemma 5.1 (Theorem3.3.1 inGupta andNagar [6])When a > 0 and S ∼ Wp(n,Σ),
we have aS ∼ Wp(n, aΣ).

Lemma 5.2 (p. 127 in Gupta and Nagar [6])When S1 and S2 are independent of each
other, S1 ∼ Wp(n1,Σ1), and S2 ∼ Wp(n2,Σ2), the distribution of P = S1 + S2 is
as follows:

{
2(n1+n2)p/2Γp

[
1

2
(n1 + n2)

]
|Σ1|n1/2 |Σ2|n2/2

}−1

×etr

[
−1

2
Σ−1

1 P
]

|P |(n1+n2)/2−p−1
1F1

[
1

2
n2; 1

2
(n1 + n2); 1

2

(
Σ−1

1 − Σ−1
2

)
P
]

,

where

1F1 [a; b; H] = Γp(b)

Γp(a)Γp(b − a)

∫
O<Y<I p

etr(YH)|Y |a−(p+1)/2|I p − Y |b−a−(p+1)/2dY .(5.1)

Proof Letting P = S1 + S2 and Q = S2, we transform the simultaneous density
function of S1 and S2 into the simultaneous density function of P and Q. We obtain
the distribution of P by integrating the simultaneous density function of P and Q
with respect to Q. 	
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Lemma 5.3 When S1 and S2 are independent of each other, S1 ∼ Wp(n1,Σ1), and
S2 ∼ Wp(n2,Σ2), the distribution of M = S1 − S2 is as follows:

{
2(n1+n2)p/2Γp

[
1

2
n1

]
|Σ1| 12 n1 |Σ2| 12 n2

}−1

×etr

[
−1

2
Σ−1

1 M
]

|M|(n1+n2)/2−p−1 �

[
1

2
n2,

1

2
(n1 + n2); 1

2

(
Σ−1

1 + Σ−1
2

)
M
]

,

where

�[a, c; R] = 1

Γp [a]

∫
S>0

etr (−RS) |S|a−(p+1)/2
∣∣I p + S

∣∣c−a−(p+1)/2
dS.

(5.2)

Proof Letting M = S1 − S2 and Q = S2, we transform the simultaneous density
function of S1 and S2 into the simultaneous density function of M and Q. We obtain
the distribution of M by integrating the simultaneous density function of M and Q
with respect to Q. 	

We derive the distribution of Σ̃0. We have

Σ̃0 = 1

(n − 1)u
W1 + 1

(n − 1)u
W2,

and

1

(n − 1)u
W1 ∼ Wp

(
(n − 1)(u − 1),

1

(n − 1)u
Δ1

)
,

1

(n − 1)u
W2 ∼ Wp

(
n − 1,

1

(n − 1)u
Δ2

)
,

from Lemma 5.1. From Lemma 5.2, the distribution of Σ̃0 = (W1 + W2) /{(n−1)u}
is

{
2u(n−1)p/2Γp

[
1

2
u(n − 1)

] ∣∣∣∣
1

(n − 1)u
Δ1

∣∣∣∣
(n−1)(u−1)/2 ∣∣∣∣

1

(n − 1)u
Δ2

∣∣∣∣
(n−1)/2

}−1

× etr

[
− (n − 1)u

2
Δ−1

1 Σ̃0

] ∣∣∣Σ̃0

∣∣∣u(n−1)/2−p−1

× 1F1

[
1

2
(n − 1); 1

2
(n − 1)u; 1

2

{
(n − 1)uΔ−1

1 − (n − 1)uΔ−1
2

}
Σ̃0

]
.

Similarly, we have

Σ̃1 = 1

(n − 1)u
W2 − 1

(n − 1)u(u − 1)
W1,
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and

1

(n − 1)u
W2 ∼ Wp

(
n − 1,

1

(n − 1)u
Δ2

)
,

1

(n − 1)u(u − 1)
W1 ∼ Wp

(
(n − 1)(u − 1),

1

(n − 1)u(u − 1)
Δ1

)
,

from Lemma 5.1. From Lemma 5.3, the distribution of Σ̃1 = W2/{(n − 1)u} −
W1/{(n − 1)u(u − 1)} is
{
2u(n−1)p/2Γp

[
1

2
(n − 1)

] ∣∣∣∣
1

(n − 1)u
Δ2

∣∣∣∣
(n−1)/2 ∣∣∣∣

1

(n − 1)u(u − 1)
Δ1

∣∣∣∣
(n−1)(u−1)/2

}−1

× etr

[
− (n − 1)u

2
Δ−1

2 Σ̃1

] ∣∣∣Σ̃1

∣∣∣u(n−1)/2−p−1

× �

[
1

2
(n − 1)(u − 1); 1

2
(n − 1)u; 1

2

{
(n − 1)uΔ−1

2 + (n − 1)u(u − 1)Δ−1
1

}
Σ̃1

]
.

B Covariance Matrix of the Unbiased Estimator

From the result of Roy et al. [11], we have

Δ̃1 ∼ Wp

(
(n − 1)(u − 1),

1

(n − 1)(u − 1)
Δ1

)
,

Δ̃2 ∼ Wp

(
n − 1,

1

n − 1
Δ2

)
.

Consequently, we have

E
[
vec

(
Δ̃1 − Δ1

)
vec′ (Δ̃1 − Δ1

)]
= 1

(n − 1)(u − 1)

(
I p2 + K p,p

)
(Δ1 ⊗ Δ1) ,

E
[
vec

(
Δ̃2 − Δ2

)
vec′ (Δ̃2 − Δ2

)]
= 1

n − 1

(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) .

First, we calculate the covariance matrix of vec
(
Σ̃0 − Σ0

)
. Since

vec
(
Σ̃0 − Σ0

)
= u − 1

u
vec

(
Δ̃1 − Δ1

)
+ 1

u
vec

(
Δ̃2 − Δ2

)
,

the covariance matrix of vec
(
Σ̃0 − Σ0

)
is as follows:

E
[
vec

(
Σ̃0 − Σ0

)
vec′ (Σ̃0 − Σ0

)]
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= u − 1

(n − 1)u2
(
I p2 + K p,p

)
(Δ1 ⊗ Δ1) + 1

(n − 1)u2
(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) .

(5.3)

Similarly, since

vec
(
Σ̃1 − Σ1

)
= 1

u
vec

(
Δ̃2 − Δ2

)
− 1

u
vec

(
Δ̃1 − Δ1

)
,

the covariance matrix of vec
(
Σ̃1 − Σ1

)
is as follows:

E
[
vec

(
Σ̃1 − Σ1

)
vec′ (Σ̃1 − Σ1

)]

= 1

(n − 1)u2(u − 1)

(
I p2 + K p,p

)
(Δ1 ⊗ Δ1)

+ 1

(n − 1)u2
(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) . (5.4)

C The Score and the Information Matrix

Assuming the BCS covariance structure, the log-likelihood function (3.5) is repre-
sented as follows:

log L(x̄,Σ∗) = −nup

2
log(2π) − n

2
log |Σ |

− 1

2
tr [(In ⊗ Iu ⊗ A)C] − 1

2
tr {(In ⊗ Ju ⊗ B)C} , (5.5)

where

A = (Σ0 − Σ1)
−1 = Δ−1

1 ,

B = 1

u

[
{Σ0 + (u − 1)Σ1}−1 − (Σ0 − Σ1)

−1
]

= 1

u

(
Δ−1

2 − Δ−1
1

)
.

We show the following lemma used to derive the score function.

Lemma 5.4 Let X be a p × p matrix and H be a p × p constant matrix. Then, we
have

(1)
d

dX
log |X| = (X−1)′,

(2)
d

dX
tr(X−1H) = −(X−1HX−1)′.

Since the second term of the log-likelihood function (5.5) can be rewritten as:

−n

2
log |Σ | = −n

2
log |Δ1|u−1 |Δ2| = −n(u − 1)

2
log |Δ1| − n

2
log |Δ2| ,
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using Lemma 5.4 (1), we have

∂

∂Σ1

(
−n

2
log |Σ |

)
= n(u − 1)

2
Δ−1

1 − n(u − 1)

2
Δ−1

2 . (5.6)

We can rewrite the third term of the log-likelihood function (5.5) as follows:

−1

2
tr [(In ⊗ Iu ⊗ A)C] = −nu

2
tr
(
AΣ̂0

)
,

and so Lemma 5.4 (2) implies that

∂

∂Σ1

[
−1

2
tr [(In ⊗ Iu ⊗ A)C]

]
= ∂

∂Σ1

[
−nu

2
tr
(
Δ−1

1 Σ̂0

)]

= −nu

2

(
Δ−1

1 Σ̂0Δ
−1
1

)
. (5.7)

We can rewrite the fourth term of log-likelihood function (5.5) as follows:

tr {(In ⊗ Ju ⊗ B)C} = ntr
[
(Ju ⊗ B) Σ̂

]
= nutr

[
BΣ̂0 + (u − 1)BΣ̂1

]

= ntr
(
Δ−1

2 Σ̂0

)
− ntr

(
Δ−1

1 Σ̂0

)
+n(u − 1)tr

(
Δ−1

2 Σ̂1

)
−n(u − 1)tr

(
Δ−1

1 Σ̂1

)
.

Therefore, we have

∂

∂Σ1

[
−1

2
tr {(In ⊗ Ju ⊗ B)C}

]

= n(u − 1)

2
Δ−1

2 Σ̂0Δ
−1
2 + n

2
Δ−1

1 Σ̂0Δ
−1
1

+ n(u − 1)2

2
Δ−1

2 Σ̂1Δ
−1
2 + n(u − 1)

2
Δ−1

1 Σ̂1Δ
−1
1

= n(u − 1)

2
Δ−1

2

{
Σ̂0 + (u − 1)Σ̂1

}
Δ−1

2 + n

2
Δ−1

1

{
Σ̂0 + (u − 1)Σ̂1

}
Δ−1

1 .

(5.8)

From (5.6), (5.7), and (5.8), the derivative of the log-likelihood function is

U(Δ1,Δ2) = ∂

∂Σ1
log L(x̄,Σ∗)

= n(u − 1)

2
Δ−1

1 − n(u − 1)

2
Δ−1

2 − nu

2

(
Δ−1

1 Σ̂0Δ
−1
1

)

+ n(u − 1)

2
Δ−1

2

{
Σ̂0 + (u − 1)Σ̂1

}
Δ−1

2

+ n

2
Δ−1

1

{
Σ̂0 + (u − 1)Σ̂1

}
Δ−1

1 . (5.9)

123



Hypothesis Testing for Independence Under Blocked Compound… 183

Since

Σ̂0 = u − 1

u
Δ̂1 + 1

u
Δ̂2,

we have

vec (U(Δ1,Δ2)) = −n(u − 1)

2

(
Δ−1

1 ⊗ Δ−1
1

)
vec

(
Δ̂1 − Δ1

)

+n(u − 1)

2

(
Δ−1

2 ⊗ Δ−1
2

)
vec

(
Δ̂2 − Δ2

)
. (5.10)

Before we calculate the information matrix, we obtain the expectations and the
covariance matrices of Δ̂1 and Δ̂2. Since Δ̃i = nΔ̂i/(n − 1), we have

Δ̂1 ∼ Wp

(
(n − 1)(u − 1),

1

n(u − 1)
Δ1

)
,

Δ̂2 ∼ Wp

(
n − 1,

1

n
Δ2

)
.

The expectations of vec
(
Δ̂1

)
and vec

(
Δ̂2

)
are

E
[
vec

(
Δ̂1 − Δ1

)]
= n − 1

n
vec (Δ1) − vec (Δ1) = −1

n
vec (Δ1) ,

E
[
vec

(
Δ̂2 − Δ2

)]
= n − 1

n
vec (Δ2) − vec (Δ2) = −1

n
vec (Δ2) ,

and the covariance matrices of vec
(
Δ̂1

)
and vec

(
Δ̂2

)
are

E
[
vec

(
Δ̂1 − Δ1

)
vec′ (Δ̂1 − Δ1

)]

= E

[{
vec

(
Δ̂1 − n − 1

n
Δ1

)
− 1

n
vec (Δ1)

}

{
vec

(
Δ̂1 − n − 1

n
Δ1

)
− 1

n
vec (Δ1)

}′]

= n − 1

n2(u − 1)

(
I p2 + K p,p

)
(Δ1 ⊗ Δ1) + 1

n2
vec (Δ1) vec

′ (Δ1) ,

E
[
vec

(
Δ̂2 − Δ2

)
vec′ (Δ̂2 − Δ2

)]

= E

[{
vec

(
Δ̂2 − n − 1

n
Δ2

)
− 1

n
vec (Δ2)

}

{
vec

(
Δ̂2 − n − 1

n
Δ2

)
− 1

n
vec (Δ2)

}′]

= n − 1

n2
(
I p2 + K p,p

)
(Δ2 ⊗ Δ2) + 1

n2
vec (Δ2) vec

′ (Δ2) .
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Therefore, the information matrix is

I (Δ1,Δ2) = E
[
vec (U(Δ1,Δ2)) vec

′ (U(Δ1, Δ2))
]

= n2(u − 1)2

4

(
Δ−1

1 ⊗ Δ−1
1

)
E
[
vec

(
Δ̂1 − Δ1

)
vec′ (Δ̂1 − Δ1

)] (
Δ−1

1 ⊗ Δ−1
1

)

− n2(u − 1)2

4

(
Δ−1

1 ⊗ Δ−1
1

)
E
[
vec

(
Δ̂1 − Δ1

)
vec′ (Δ̂2 − Δ2

)] (
Δ−1

2 ⊗ Δ−1
2

)

− n2(u − 1)2

4

(
Δ−1

2 ⊗ Δ−1
2

)
E
[
vec

(
Δ̂2 − Δ2

)
vec′ (Δ̂1 − Δ1

)] (
Δ−1

1 ⊗ Δ−1
1

)

+ n2(u − 1)2

4

(
Δ−1

2 ⊗ Δ−1
2

)
E
[
vec

(
Δ̂2 − Δ2

)
vec′ (Δ̂2 − Δ2

)] (
Δ−1

2 ⊗ Δ−1
2

)

= (n − 1)(u − 1)

4

(
I p2 + K p,p

) (
Δ−1

1 ⊗ Δ−1
1

)

+ (n − 1)(u − 1)2

4

(
I p2 + K p,p

) (
Δ−1

2 ⊗ Δ−1
2

)
. (5.11)
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