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Abstract In this paper, we analyze the asymptotic behavior of solution sequences of
the Liouville-type equation with Neumann boundary condition. In particular, we will
obtain a sharp mass quantization result for the solution sequences at a blow-up point.
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1 Introduction

Let � be a bounded domain in R2. The so-called Liouville equation is

− �u = V (x)e2u in �, (1.1)

which was first studied by Liouville in 1853 in [14]. In 1991, Brezis and Merle [1]
initiated the study of the blow-up analysis for the Liouville equation. Under the finite
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energy condition, they first showed that any solution belongs to L∞, and further, they
analyzed the convergence of a sequence of solutions and obtained a concentration–
compactness type result. Their results initiate many works on the asymptotic behavior
of blow-up solutions, for there are many applications in geometric and physical prob-
lems, for example, in the problem of prescribing Gaussian curvature [3,4,7], in the
theory of themean field equation [5,8,9], and in the Chern–Simons theory [10,17–20].
See also the reference therein.

In particular, in the celebrated paper by Li and Shafrir [15], they initiated to evaluate
the blow-up value at the blow-up point. They showed at the each blow-up point the
blow-up value is quantized, i.e., there is no contribution of mass outside them disjoint
balls (whose radii is going to zero) which contain a contribution of 4πm mass for some
positive integerm. Concerning the mean field equation, this kind of mass quantization
leads to the crucial compactness property of solutions. Then, the existence issues can
be attacked by variational methods; see [8,9].

The aim of the present paper is to generalize the blow-up analysis for (1.1) to
a Liouville-type equation with Neumann boundary condition. In other words, we
consider the following Neumann boundary problem:

{−�u = V (x)e2u in �,
∂u

∂n
= h(x)eu on L .

(1.2)

Here L is a proper subset of ∂�, and V (x) and h(x) are nonnegative functions. This
problem plays a very important role in the study of the construction of prescribed
Gaussian curvature surfaces with prescribed geodesic curvature on their boundary.

Guo and Liu [11] have analyzed the asymptotic behavior of solutions in the case
V (x) ≡ 0. Their problem is

{−�u = 0 in �,
∂u

∂n
+ β = h(x)eu on ∂�.

They obtained a Brezis–Merle type concentration–compactness phenomena and a Li-
Shafrir type energy quantization result.

In this paper, we pursue this line of investigation on more general class of system
(1.2). Now we introduce some notions firstly. Define

B+
R (x0) =

{
x ∈ R

2|x − x0 = (s, t), s2 + t2 < R2, t > 0
}

,

LR(x0) =
{
x ∈ R

2|x − x0 = (s, 0), |s| < R
}

= ∂B+
R (x0) ∩ ∂R2+,

S+
R (x0) =

{
x ∈ R

2|x − x0 = (s, t), s2 + t2 = R2, t > 0
}

= ∂B+
R (x0) ∩ R

2+.

In addition, we use the notions B+
R , LR and S+

R for B+
R (0), LR(0) and S+

R (0), respec-
tively. For simplicity, we consider the following Neumann boundary value problem
of Liouville equation in B+

R :
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{−�u = V (x)e2u in B+
R ,

∂u

∂n
= h(x)eu on LR .

(1.3)

From [2], we have the following Brezis–Merle type concentration–compactness
theorem.

Theorem 1.1 Assume that {un} is a sequence of solution for the following problem

{−�un = Vn(x)e2un in B+
R ,

∂un
∂n

= hn(x)e
un on LR,

(1.4)

with the energy conditions

∫
B+
R

e2undx ≤ C;
∫
LR

eunds ≤ C. (1.5)

Here Vn(x) and hn(x) satisfy

0 < a < Vn(x) < C,∀x ∈ B+
R ; 0 < b < hn(x) < C,∀x ∈ LR, (1.6)

for positive numbers a, b and C.
Define the blow-up set as

S = {
x ∈ B+

R ∪ LR, there is a sequence yn → x, such that un(yn) → +∞}
.

Then, there exists a subsequence, denoted still by {un}, satisfying one of the following
alternatives:

(i) {un} is bounded in L∞
loc(B

+
R ∪ LR),

(ii) {un} → −∞ uniformly on compacts of B+
R ∪ LR ,

(iii) there exists a finite blow-up set S = {p1, p2, . . . , pm} ⊂ B+
R ∪ LR. Moreover,

un(x) → −∞ uniformly on compact subsets of (B+
R ∪ LR)\S, and

∫
B+
R

Vne
2unφdx +

∫
LR

hne
unφds →

m∑
i=1

αiφ(pi ),

for every φ ∈ C∞
o (B+

R ∪ LR) with αi ≥ π .

From Theorem 1.1, the blow-up set S is nonempty if un is blow-up. We can define
the blow-up value at each blow-up point. For p ∈ S ∩ B+

R , we define the blow-up
value at point p as:

m(p) = lim
r→0

lim
n→∞

∫
Br (p)∩B+

R

Vne
2undx;
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For p ∈ S ∩ LR , we define the blow-up value at point p as:

m(p) = lim
r→0

lim
n→∞

(∫
Br (p)∩B+

R

Vne
2undx +

∫
Br (p)∩LR

hne
unds

)
.

Li and Shafrir [15] have shown that m(p) = 4mπ for any p ∈ S ∩ B+
R . In this paper,

we want further to show that m(p) = 2mπ for any p ∈ S ∩ LR . Our main theorem is
the following Li-Shafrir type energy quantization theorem.

Theorem 1.2 For R > 0, let {Vn} and {hn} be two sequences of functions satisfying

0 < a ≤ Vn → V ∈ C0(B
+
R ), 0 < b ≤ hn → h ∈ C0(LR). (1.7)

Let {un} be a sequence of solutions of (1.4), (1.5) with the following properties:

un(xn) = max
B̄+
R

un → +∞, (1.8)

max
B̄+
R \B+

r (0)
un → −∞, for 0 < r < R. (1.9)

Then,

α := lim
n→∞

(∫
B+
R

Vne
2un +

∫
LR

hne
un

)
= 2πm (1.10)

for some positive integer m.

The proof of Theorem 1.2 follows closely the idea of Li and Shafrir in [15] where
they proved the quantization of the blow-up value for the Liouville equation. The
approach in [15] is based on a classification result of bubbling equation −�u = e2u

inR2 with
∫
R2 e2u < ∞ and a “sup+ inf” type inequality u(0)+C1 infB1 u ≤ C2 for

equation −�u = Ve2u in B1. For our problem, we need the corresponding results.
On the one hand, besides of the above bubbling equation, there exists the other kind
of bubbling equation, i.e.,

{−�u = V (0)e2u in R2 ∩ {t > −	},
∂u

∂n
= h(0)eu on R2 ∩ {t = −	},

with the energy conditions

∫
R2∩{t>−	}

V (0)e2u ≤ C,

∫
R2∩{t=−	}

h(0)eu ≤ C.
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We will use the classification result proved in [16] to handle our problem. On the other
hand, we need to prove a “sup+ inf” type inequality under Neumann boundary value
condition.

The paper is organized as follows. In Introduction, we state the problem and the
main theorems. In Sect. 2, we prove a “sup+ inf” type inequality and other auxiliary
results. In Sect. 3, we complete the proof of Theorem 1.2.

2 A sup+ inf Inequality Under Neumann Boundary Value Condition

In this section, we establish a “sup+ inf” inequality under Neumann boundary value
condition. We start to show some auxiliary lemmas.

Lemma 2.1 Under the hypotheses of Theorem 1.2, we have α ≥ 2π .

Proof Let xn = (sn, tn), δn = e−un(xn), then δn → 0 and xn → 0. By letting
ũn(x) = un(δnx + xn) + log δn , we see that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�ũn = Vn(δnx + xn)e2ũn in B R
2δn

∩ {t > − tn
δn

},
∂ ũn
∂n

= hn(δnx + xn)e
ũn on B R

2δn
∩ {t = − tn

δn
},

ũn(x) ≤ ũn(0) = 0 in B R
2δn

∩ {t ≥ − tn
δn

},

with the energy conditions

∫
B R
2δn

∩{t>− tn
δn

}
Vn(δnx + xn)e

2ũn ≤ C,

∫
B R
2δn

∩{t=− tn
δn

}
hn(δnx + xn)e

ũn ≤ C.

Now we distinguish two cases.
Case (1) tn

δn
→ 	 < +∞.

In this case, by Theorem 1.1, {ũn} admits a subsequence converging to ũ in
C1,α
loc (R2 ∩ {t ≥ −	}), which satisfies

⎧⎪⎪⎨
⎪⎪⎩

−�ũ = V (0)e2ũ in R2 ∩ {t > −	},
∂ ũ

∂n
= h(0)eũ on R

2 ∩ {t = −	},
ũ(x) ≤ ũ(0) = 0 in R2 ∩ {t ≥ −	},

with the energy conditions

∫
R2∩{t>−	}

V (0)e2ũ ≤ C,

∫
R2∩{t=−	}

h(0)eũ ≤ C.
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It follows from the classification results in [16] that

ũ(s, t) = log
2λ√

V (0)(λ2 + (s − s0)2 + (t + 	 + h(0)λ√
V (0)

)2)
, λ > 0, s0 ∈ R,

and ∫
R2∩{t>−	}

V (0)e2ũdx +
∫
R2∩{t=−	}

h(0)eũds = 2π.

Therefore,

α ≥ lim
n→∞

(∫
B+
Rδn

(xn)
Vne

2un +
∫
LRδn (xn)

hne
un

)

= lim
n→∞

(∫
BR∩{t>− tn

δn
}
Vn (δnx + xn) e

2ũn +
∫
BR∩{t=− tn

δn
}
hn (δnx + xn) e

ũn

)

=
∫
BR∩{t>−	}

V (0)e2ũ +
∫
BR∩{t=−	}

h(0)eũ = 2π + oR(1).

Let R → ∞, we get that α ≥ 2π .
Case (2) tn

δn
→ +∞.

In this case, also by Theorem 1.1, {ũn} admits a subsequence converging to ũ in
C1,α
loc (R2), which satisfies

{−�ũ = V (0)e2ũ in R2,

ũ(x) ≤ ũ(0) = 0 in R2,

with the energy condition ∫
R2

V (0)e2ũ ≤ C.

It follows from [6] that

ũ(s, t) = log
λ

1 + V (0)
4 λ2((s − s0)2 + (t − t0)2)

, λ > 0, s0, t0 ∈ R,

and ∫
R2

V (0)e2ũdx = 4π.

Therefore,

α ≥ lim
n→∞

(∫
B+
Rδn

(xn)
Vne

2un +
∫
LRδn (xn)

hne
un

)
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= lim
n→∞

(∫
BR∩{t>− tn

δn
}
Vn (δnx + xn) e

2ũn +
∫
BR∩{t=− tn

δn
}
hn (δnx + xn) e

ũn

)

=
∫
BR

V (0)e2ũ = 4π + oR(1).

Let R → ∞, we get that α ≥ 4π . ��
Corollary 2.2 Let un be a sequence of solutions of (1.4)with un(xn) = maxB̄+

R
un,∀n.

Assume limn→∞(
∫
B+
R
Vne2un + ∫

LR
hn(x)eun ) = α < 2π , then we have un(xn) ≤ C ,

where the constant C depends only on α and R.

The “sup+ inf” inequality and the Harnark inequality for

− �u = Veu (2.1)

are shown in [15], which is as following lemmas:

Lemma 2.3 [15] Let V ∈ L∞(BR) satisfy a ≤ V (x) ≤ b, ∀x ∈ BR , where a, b are
positive constants. Suppose that u is a solution to (2.1) in BR . Then

u(0) + C1 inf
B+
R

u + 2(C1 + 1) log R ≤ C2,

where C1 ≥ 1 and C2 are constants depending only on a and b.

Lemma 2.4 [15] For R > 0, 0 < R0 ≤ R/4, we set �̃ = {x ∈ R
2|R0 < |x | < R}.

Let u be a solution to (2.1) in �̃with ‖V ‖L∞(�̃) ≤ C1 and u(x)+log |x | ≤ C2,∀x ∈ �̃

for some positive constants C1 and C2. Then, there exists constant β ∈ (0, 1) and C3
depending only on C1 and C2 such that

sup
∂Br

u ≤ C3 + β inf
∂Br

u + 2(β − 1) log r, ∀2R0 ≤ r ≤ R/2.

Now we establish the “sup+ inf” inequality and the Harnark inequality for Neu-
mann boundary value problem.

Lemma 2.5 Let {Vn} and {hn} be two sequences of functions satisfying (1.7). Let {un}
be a sequence of solutions of (1.4), (1.5) satisfying (1.8)–(1.9). Then, for each C1 > 1,
there exists C2 such that

un(xn) + log r + C1

(
inf

B+
r (xn)

un + log r

)
≤ C2 (2.2)

for 0 < r ≤ R0 ≤ R and for sufficiently large n provided B+
R0

(xn) ⊂ B+
R .
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Proof Let xn = (sn, tn), then xn → 0. Clearly un satisfies

⎧⎨
⎩

−�un = Vne2un in B+
R0

(xn),
∂un
∂n

= hne
un on LR0(xn).

(2.3)

We first use a slightly modified version of the arguments provided in [15]. For
∀0 < r ≤ R0 and ∀n ∈ N , we define

ψ(r) = un(xn) + log r + C1

(
1

|S+
r (xn)|

∫
S+
r (xn)

un + log r

)
.

We have

ψ ′(r) = 1 + C1

r
+ C1

|S+
r (xn)|

∫
S+
r (xn)

∂un
∂n

= 1 + C1

r
− C1

|S+
r (xn)|

(∫
B+
r (xn)

Vne
2un +

∫
Lr (xn)

∂un
∂n

)

= 1 + C1

r
− C1

|S+
r (xn)|

(∫
B+
r (xn)

Vne
2un +

∫
Lr (xn)

hne
un

)
.

So that ψ ′(r) = 0 if
∫
B+
r (xn)

Vne2un + ∫
Lr (xn)

hneun = (1+C1)|S+
r (xn)|

rC1
. Note

that (1+C1)|S+
r (xn)|

rC1
is independent of r . At this point, either

∫
B+
R0

(xn)
Vne2un +∫

LR0 (xn)
hneun ≤ (1+C1)|S+

r (xn)|
rC1

, and then, we take rn = R0, or
∫
B+
R0

(xn)
Vne2un +∫

LR0 (xn)
hneun >

(1+C1)|S+
r (xn)|

rC1
and we may choose rn ∈ (0, R0), such that∫

B+
rn (xn)

Vne2un + ∫
Lrn (xn)

hneun = (1+C1)|S+
r (xn)|

rC1
. In any case, ∀n ∈ N , we have

ψ(r) ≤ ψ(rn), 0 < r ≤ R0.
For ∀x ∈ B1 ∩ {t ≥ − tn

rn
}, we define ωn(x) = un(xn + rnx) + log rn . We see that

ωn(x) satisfies

⎧⎨
⎩

−�ωn = Vn(rnx + xn)e2ωn in B1 ∩ {t > − tn
rn

},
∂ωn

∂n
= hn(rnx + xn)e

ωn on B1 ∩ {t = − tn
rn

}.

Nowwe argue by contradiction and assume thatωn(0) = un(xn)+ log rn → +∞. Set
ρn = e−ωn(0), then ρn → 0. Consider the sequence of functions ω̃n(x) = ωn(ρnx) +
log ρn . Then ω̃n satisfies
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⎧⎪⎪⎨
⎪⎪⎩

−�ω̃n = Vn (rnρnx + xn) e2ω̃n in B 1
ρn

∩ {t > − tn
rnρn

},
∂ω̃n

∂n
= hn (rnρnx + xn) e

ω̃n on B 1
ρn

∩ {t = − tn
rnρn

},
ω̃n(x) ≤ ω̃n(0) = 0

with the energy conditions

∫
B 1

ρn
∩{t>− tn

rnρn
}
Vn (rnρnx + xn) e

2ω̃n ≤C,

∫
B 1

ρn
∩{t=− tn

rnρn
}
hn(rnρnx + xn)e

ω̃n ≤C.

Then, as in Lemma 2.1, we have to analyze the following two situations:

Case (1) : tn
rnρn

→ 	 < +∞.

Case (2) : tn
rnρn

→ +∞.

Arguing as in Lemma 2.1, we can drive either

lim
n→∞

⎛
⎝∫

B 1
ρn

∩{t>− tn
rnρn

}
Vn(rnρnx + xn)e

2ω̃n +
∫
B 1

ρn
∩{t=− tn

rnρn
}
Vn(rnρnx + xn)e

ω̃n

⎞
⎠ = 2π,

or

lim
n→∞

⎛
⎝∫

B 1
ρn

∩{t>− tn
rnρn

}
Vn(rnρnx + xn

⎞
⎠ e2ω̃n = 4π.

But ∫
B 1

ρn
∩{t>− tn

rnρn
}
Vn(rnρnx + xn)e

2ω̃n +
∫
B 1

ρn
∩{t=− tn

rnρn
}
Vn(rnρnx + xn)e

ω̃n

=
∫
B1∩{t>− tn

rn
}
Vn(rnx + xn)e

2ωn +
∫
B1∩{t=− tn

rn
}
hn(rnx + xn)e

ωn

=
∫
B+
rn (xn)

Vne
2un +

∫
Lrn (xn)

hne
un

= (1 + C1)|S+
r (xn)|

rC1
< 2π,

for n sufficiently large, which is the desired contradiction. So there is a constant C
such that ωn(0) = un(xn) + log rn ≤ C . Consequently, we have

ψ(r) = un(xn) + log r + C1

(
1

|S+
r (xn)|

∫
S+
r (xn)

un + log r

)
≤ C(1 + C1) = C2.
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Notice that un is superharmonic and ∂un
∂n ≥ 0 from (2.3), we have inf

B+
r (xn)

un =
inf

S+
r (xn)

un ≤ 1
|S+

r (xn)|
∫
S+
r (xn)

un . Then, we derive the desired inequality. ��

Lemma 2.6 For R > 0, 0 < R0 ≤ R/4, we define T = {x ∈ R
2+|R0 < |x − x0| <

R}. Assume that ||V ||L∞(T ) ≤ C1 and ||h||L∞(∂T∩∂R2+) ≤ C1. Let u be a solution of

{−�u = Ve2u in T,
∂u

∂n
= heu on ∂T ∩ ∂R2+,

with u(x) + log |x − x0| ≤ C2,∀x ∈ T . Then, there exists constant β ∈ (0, 1) and C3
such that

sup
S+
r (x0)

u ≤ C3 + β inf
S+
r (x0)

u + (β − 1) log r, ∀2R0 ≤ r ≤ R/2.

Here β and C3 are dependent only on C1 and C2.

Proof Without loss of generality, we assume that x0 = 0. For 2R0 ≤ r ≤ R/2, by
letting ũ(x) = u(r x) + log r , then ũ(x) satisfies

⎧⎨
⎩

−�ũ = V (r x)e2ũ in B+
2 \B+

1
2
,

∂ ũ

∂n
= h(r x)eũ on L2\L 1

2
.

For 1
2 ≤ |x | ≤ 2, by the given assumptions we have ũ(x) = u(r x) +

log(r |x |) − log |x | ≤ C2 + log 2. It follows that |V (r x)|e2ũ(x) ≤ C on B+
2 \B+

1
2

and |h(r x)|eũ(x) ≤ C on L2\L 1
2
. Define ω(x) = 1

π

∫
B+
2 \B+

1
2

log 4
|x−y|V (r y)e2ũ(y) +

1
π

∫
L2\L 1

2

log 4
|x−y|h(r y)eũ(y). Then, ω(x) is bounded in B+

2 \B+
1
2
and satisfies

⎧⎨
⎩

−�ω = V (r x)e2ũ in B+
2 \B+

1
2
,

∂ω

∂n
= h(r x)eũ on L2\L 1

2
.

Let g = ω − ũ. Then, we have

⎧⎨
⎩

−�g = 0 in B+
2 \B+

1
2
,

∂g

∂n
= 0 on L2\L 1

2
.

We conclude that g is bounded below. Then, by the Harnack inequality we get

sup
S+
1

(g + C) ≤ β−1 inf
S+
1

(g + C),
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for some constants C and β ∈ (0, 1). Then, returning to the original u we obtain the
desired estimates. ��

3 Proof of Theorem 1.2

In this section, we prove the main theorem.

Proof of Theorem 1.2 We divide the proof into two steps.

Step 1. In this step, we want to show: After passing to a subsequence, there exist
m sequences of points {x ( j)

n = (s( j)
n , t ( j)n )}m−1

j=0 in B̄+
R and m sequences of positive

numbers {k( j)
n }m−1

j=0 with limn→∞ x ( j)
n = 0 and limn→∞ k( j)

n = ∞(0 ≤ j ≤ m − 1)
such that

(a) For any 0 ≤ j ≤ m − 1, un(x
( j)
n ) = max

x∈B̄+
k
( j)
n δ

( j)
n

(x ( j)
n )

un(x) → ∞;

(b) For any 0 ≤ j ≤ m − 1, |x (i)
n −x ( j)

n |
k( j)
n δ

( j)
n

→ ∞,∀i �= j , where δ
( j)
n = e−un(x

( j)
n );

(c) For any 0 ≤ j ≤ m − 1,

β j := lim
n→∞

⎛
⎝∫

B+
k
( j)
n δ

( j)
n

(x ( j)
n )

Vne
2un +

∫
L
k
( j)
n δ

( j)
n

(x ( j)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B+
2k

( j)
n δ

( j)
n

(x ( j)
n )

Vne
2un +

∫
L
2k

( j)
n δ

( j)
n

(x ( j)
n )

hne
un

⎞
⎠ .

Further, when t ( j)n

δ
( j)
n

→ 	 < ∞, β j = 2π ; And when t ( j)n

δ
( j)
n

→ ∞, β j = 4π .

(d) max
x∈B̄+

R

{un(x) + log min
0≤ j≤m−1

|x − x ( j)
n |} ≤ C,∀n.

Proof Let x (0)
n = xn = (s(0)

n , t (0)n ), δ(0)
n = e−un(x

(0)
n ). By letting ũ(0)

n (x) = un(δ
(0)
n x +

x (0)
n ) + log δ

(0)
n , we see that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−�ũ(0)
n = Vn(δ

(0)
n x + x (0)

n )e2ũ
(0)
n in B R

δn
2

∩
{
t > − t (0)n

δ
(0)
n

}
,

∂ ũ(0)
n

∂n
= hn(δ

(0)
n x + x (0)

n )eũ
(0)
n on B R

δn
2

∩
{
t = − t (0)n

δ
(0)
n

}
,

ũ(0)
n (x) ≤ ũ(0)

n (0) = 0 in B R
δn
2

∩
{
t ≥ − t (0)n

δ
(0)
n

}
,

with the energy conditions∫
B R

δn
2

∩
{
t>− t(0)n

δ
(0)
n

} Vn
(
δ(0)
n x + x (0)

n

)
e2ũ

(0)
n ≤ C,

∫
B R

δn
2

∩
{
t=− t(0)n

δ
(0)
n

} hn (δnx + xn) e
ũ(0)
n ≤ C.
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As in Lemma 2.1, we distinguish two cases.

Case (i) t (0)n

δ
(0)
n

→ 	 < ∞. In this case, {ũ(0)
n } admits a subsequence converging to ũ(0)

in C1,α
loc (R2 ∩ {t ≥ −	}). Then, we may select k(0)

n → ∞, such that

lim
n→∞

⎛
⎝∫

B+
k(0)n δ

(0)
n

(x (0)
n )

Vne
2un +

∫
L
k(0)n δ

(0)
n

(x (0)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B
k(0)n

∩{t>− t(0)n

δ
(0)
n

}
Vn

(
δ(0)
n x + x (0)

n

)
e2ũ

(0)
n +

∫
B
k(0)n

∩{t=− t(0)n

δ
(0)
n

}
hn

(
δ(0)
n x + x (0)

n

)
eũ

(0)
n

⎞
⎠

→ 2π.

and

lim
n→∞

⎛
⎝∫

B+
2k(0)n δ

(0)
n

(x (0)
n )

Vne
2un +

∫
L
2k(0)n δ

(0)
n

(x (0)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B
2k(0)n

∩{t>− t(0)n

δ
(0)
n

}
Vn

(
δ(0)
n x + x (0)

n

)
e2ũ

(0)
n +

∫
B
2k(0)n

∩{t=− t(0)n

δ
(0)
n

}
hn

(
δ(0)
n x + x (0)

n

)
eũ

(0)
n

⎞
⎠

→ 2π.

Case (ii) t (0)n

δ
(0)
n

→ ∞. Similarly, {ũ(0)
n } admits a subsequence converging to ũ(0) in

C1,α
loc (R2). And also we may select k(0)

n → ∞, such that

lim
n→∞

⎛
⎝∫

B+
k(0)n δ

(0)
n

(x (0)
n )

Vne
2un +

∫
L
k(0)n δ

(0)
n

(x (0)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B
k(0)n

∩{t>− t(0)n

δ
(0)
n

}
Vn

(
δ(0)
n x + x (0)

n

)
e2ũ

(0)
n +

∫
B
k(0)n

∩{t=− t(0)n

δ
(0)
n

}
hn

(
δ(0)
n x + x (0)

n

)
eũ

(0)
n

⎞
⎠

→ 4π

and

lim
n→∞

⎛
⎝∫

B+
2k(0)n δ

(0)
n

(x (0)
n )

Vne
2un +

∫
L
2k(0)n δ

(0)
n

(x (0)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B
2k(0)n

∩{t>− t(0)n

δ
(0)
n

}
Vn

(
δ(0)
n x + x (0)

n

)
e2ũ

(0)
n +

∫
B
2k(0)n

∩{t=− t(0)n

δ
(0)
n

}
hn

(
δ(0)
n x + x (0)

n

)
eũ

(0)
n

⎞
⎠

→ 4π.

Next we suppose that we have selected l sequences {x ( j)
n }l−1

j=0, {k( j)
n }l−1

j=0(l ≥ 1)
satisfying a), b) and c) for m = l. At this point, either Mn = maxx∈B̄+

R
{un(x) +
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logmin0≤ j≤l−1 |x − x ( j)
n |} ≤ C,∀n ∈ N , and then, we stop and define m = l, or

Mn → ∞. We define x̄ (l)
n as a point where Mn is attained. So we have un(x̄

(l)
n ) → ∞.

Letting δ̄
(l)
n = e−un(x̄

(l)
n ), Mn → ∞ reads as min0≤ j≤l−1 |x̄ (l)

n − x ( j)
n |/δ̄(l)

n → ∞. First

we see that for all |x | ≤ 1
2 min
0≤ j≤l−1

|x̄ (l)
n − x ( j)

n |/δ̄(l)
n , we have

min
0≤ j≤l−1

|x̄ (l)
n + δ̄(l)

n x − x ( j)
n | ≥ min

0≤ j≤l−1
|x̄ (l)

n − x ( j)
n | − δ̄(l)

n |x |

≥ 1

2
min

0≤ j≤l−1
|x̄ (l)

n − x ( j)
n |.

Define ũn(x) = un(δ̄
(l)
n x + x̄ (l)

n ) + log δ̄
(l)
n . Then, ũn satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−�ũn = Vn(δ̄nx + x̄ (l)
n )e2ũn , |x | ≤ 1

2 min
0≤ j≤l−1

|x̄ (l)
n − x ( j)

n |/δ̄(l)
n , δ̄nx + x̄ (l)

n ∈ B+
R ,

∂ ũn
∂n = hn(δ̄nx + x̄ (l)

n )eũn , |x | ≤ 1
2 min
0≤ j≤l−1

|x̄ (l)
n − x ( j)

n |/δ̄(l)
n , δ̄nx + x̄ (l)

n ∈ LR,

ũn(0) = 0,

ũn(x) ≤ 2 log 2, |x | ≤ 1
2 min
0≤ j≤l−1

|x̄ (l)
n − x ( j)

n |/δ̄(l)
n , δ̄nx + x̄ (l)

n ∈ B̄+
R .

Let x̄ (l)
n = (s(l)

n , t (l)n ), we distinguish two cases.

Case (1) t (l)n

δ̄
(l)
n

→ t0 < +∞.As before,we conclude that ũn converges inC
1,α
loc (R2∩{t ≥

−t0}) to a function ũ satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�ũ = V (0)e2ũ, in R2 ∩ {t > −t0},
∂ ũ
∂n = h(0)eũ, on R2 ∩ {t = −t0},
ũ(x) ≤ 2 log 2, on R2 ∩ {t ≥ −t0},
ũ(0) = 0,

with the energy conditions

∫
R2∩{t>−t0}

V (0)e2ũ ≤ C,

∫
R2∩{t=−t0}

h(0)eũ ≤ C.

It follows from the classification results in [16] that

ũ(s, t) = log
2λ√

V (0)(λ2 + (s − s0)2 + (t + t0 + h(0)λ√
V (0)

)2)
, t ≥ − t0.

Since ũ(0) = 0 and ũ(x) ≤ 2 log 2, we have

√
V (0)

2(V (0) + h2(0))
≤ λ ≤ 2√

V (0)
, 0 ≤ |s0|, t0 ≤ 2√

V (0)
.
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We see that ũ attains its maximum at x̄ = (s0,−t0). We choose γ satisfying
|x̄ | ≤ 1

2γ . Then for given k > 2
γ
and any 1

γ
≤ |x | ≤ k, we have ũ(x) < ũ(x̄).

This implies that, when n is sufficiently large, un(x̄
(l)
n + δ̄

(l)
n x) < un(x̄

(l)
n + δ̄

(l)
n x̄)

for any 1
γ

≤ |x | ≤ k. On the other hand, we may find y(l)
n such that y(l)

n ≤ 1
γ
and

un(x̄
(l)
n + δ̄

(l)
n x) ≤ un(x̄

(l)
n + δ̄

(l)
n y(l)

n ), |x | ≤ k. Set x (l)
n = x̄ (l)

n + δ̄
(l)
n y(l)

n . Thus, for all
|x − x (l)

n | ≤ 1
2kδ̄

(l)
n , it follows that

|x − x̄ (l)
n |/δ̄(l)

n ≤ |x − x (l)
n |/δ̄(l)

n + |x (l)
n − x̄ (l)

n |/δ̄(l)
n ≤ 1

2
k + 1

γ
≤ k,

where we have used k > 2
γ
. Hence, we have un(x) = un(x̄

(l)
n + δ̄

(l)
n

x−x̄ (l)
n

δ̄
(l)
n

) ≤ un(x̄
(l)
n +

δ̄
(l)
n y(l)

n ) = un(x
(l)
n ). Now we set δ(l)

n = e−un(x
(l)
n ), we can also obtain:

δ(l)
n ≤ δ̄(l)

n ≤ 2δ(l)
n . (3.1)

By (3.1) we can choose k(l)
n → +∞ such that

un(x
(l)
n ) = max

x∈B̄+
k(l)n δ

(l)
n

(x (l)
n )

un(x),

lim
n→∞

⎛
⎝∫

B+
k(l)n δ

(l)
n

(x (l)
n )

Vne
2un +

∫
L
k(l)n δ

(l)
n

(x (l)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B+
2k(l)n δ

(l)
n

(x (l)
n )

Vne
2un +

∫
L
2k(l)n δ

(l)
n

(x (l)
n )

hne
un

⎞
⎠ = 2π. (3.2)

In addition, since δ
(l)
n ≤ δ̄

(l)
n , we have

|x (l)
n − x (i)

n |
δ
(l)
n

≥ |x̄ (l)
n − x (i)

n |
δ̄
(l)
n

− |x (l)
n − x̄ (l)

n |
δ̄
(l)
n

→ +∞, 0 ≤ i ≤ l − 1. (3.3)

We are left to prove that

|x (l)
n − x (i)

n |
δ
(i)
n

→ ∞, 0 ≤ i ≤ l − 1.

We argue by contradiction and assume x (l)
n −x (i)

n

δ
(i)
n

→ x̃ . Then, we have

log δ(i)
n − log δ(l)

n = un(x
(l)
n ) + log δ(i)

n

= un(x
(i)
n + δ(i)

n
x (l)
n − x (i)

n

δ
(i)
n

) + log δ(i)
n

→ ũ(x̃),
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which clearly contradicts to (3.3). Thus, we have proved (b) form = l and |x (i)
n −x ( j)

n |
δ
(i)
n

→
∞,∀i �= j, 0 ≤ i, j ≤ l. It is clear that B+

k( j)
n δ

( j)
n

(x ( j)
n ), 0 ≤ j ≤ l do not intersect. By

further reducing {k( j)
n }, we can assume that c) holds.

Case (2) t (l)n

δ̄
(l)
n

→ +∞. As before ũn converges in C
1,α
loc (R2) to a function ũ satisfying

⎧⎨
⎩

−�ũ = V (0)e2ũ in R2,

ũ(x) ≤ 2 log 2 on R2,

ũ(0) = 0,

with the energy condition ∫
R2

V (0)e2ũ ≤ C.

The proof of Case (2) is similar to the Case 1. We note that the difference with case
(1) is the following

lim
n→∞

⎛
⎝∫

B+
k(l)n δ

(l)
n

(x (l)
n )

Vne
2un +

∫
L
k(l)n δ

(l)
n

(x (l)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B+
2k(l)n δ

(l)
n

(x (l)
n )

Vne
2un +

∫
L
2k(l)n δ

(l)
n

(x (l)
n )

hne
un

⎞
⎠ = 4π. (3.4)

We omit the proof. So under the two cases, we can obtain b) and c).
We continue in this manner until d) holds. We must stop after a finite step since

each time we find a mass of 2π or 4π near x ( j)
n . ��

Step 2 In this step, we show that the mass contribution outside the chosen neighbor-
hoods of the m centers x (0)

n , . . ., x (m−1)
n tends to zero. Namely,

lim
n→∞

⎛
⎝∫

B+
R \∪m−1

l=0 B+
k(l)n δ

(l)
n

(x (l)
n )

Vne
2un +

∫
LR\∪m−1

l=0 L
k(l)n δ

(l)
n

(x (l)
n )

Vne
2un hne

un

⎞
⎠ = 0.

To prove this result, we deal with a slightly more general situation that ours.

Lemma 3.1 For R > 0, Let {Vn} and {hn} be two sequences of functions satisfying
(1.7). Let {un} be a sequence of solutions of (1.4) and (1.5) satisfying (1.8)–(1.9).
Assume that {x ( j)

n }m−1
j=0 are m(m ≥ 1) sequences of points, {r ( j)

n }m−1
j=0 are m sequences

of positive numbers which satisfy

un(x
( j)
n ) = max

x∈B̄+
r
( j)
n

(x ( j)
n )

un(x) → ∞, x ( j)
n = (s( j)

n , t ( j)n ), ∀0 ≤ j ≤ m − 1, (3.5)
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lim
n→∞

r ( j)
n

δ
( j)
n

= ∞, ∀0 ≤ j ≤ m − 1, (3.6)

where δ
( j)
n = e−un(x

(i)
n ),

|x (i)
n − x ( j)

n |
r ( j)
n

→ ∞, ∀i �= j, 0 ≤ i, j ≤ m − 1, (3.7)

max
x∈B̄+

R \∪m−1
j=0 B+

r
( j)
n

(x ( j)
n )

{un(x) + log min
0≤ j≤m−1

|x − x ( j)
n |} ≤ C,∀n, (3.8)

and

lim
n→∞

⎛
⎝∫

B+
r
( j)
n

(x ( j)
n )

Vne
2un +

∫
L
r
( j)
n

(x ( j)
n )

hne
un

⎞
⎠

= lim
n→∞

⎛
⎝∫

B+
2r

( j)
n

(x ( j)
n )

Vne
2un +

∫
L
2r

( j)
n

(x ( j)
n )

hne
un

⎞
⎠ = β j , (3.9)

where β j = 2π when t ( j)n

δ
( j)
n

→ 	 < ∞, and β j = 4π when t ( j)n

δ
( j)
n

→ ∞ for all

0 ≤ j ≤ m − 1. Then,

lim
n→∞

(∫
B+
R

Vne
2un +

∫
LR

hne
un

)
=

m∑
j=1

β j .

Proof We will follow the approach of [15] to prove the lemma by induction on m.
First we prove the lemma for m = 1. We also distinguish two cases.
Case (1) tn

δ
(0)
n

→ 	 < ∞.

In this case, we can assume that lim
n→∞ r (0)

n = 0, since otherwise the lemmaobviously

holds due to (1.9). We also assume that B+
R
2
(xn) ⊂ B+

R .

By using Lemma 2.6, we obtain that

sup
S+
r (xn)

un ≤ C + β inf
S+
r (xn)

un + (β − 1) log r, ∀2r (0)
n ≤ r ≤ R

2
.

By using Lemma 2.5, we obtain that

inf
S+
r (xn)

un ≤ C − 1

C1
un(xn) − (1 + 1

C1
) log r, ∀0 < r < R.
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It follows that

sup
S+
r (xn)

un ≤ C − β

C1
un(xn) − (1 + β

C1
) log r, ∀2r (0)

n ≤ r ≤ R

2
,

namely

eun(x) ≤ C(δ(0)
n )β/C1 |x − xn|−(1+ β

C1
)
,∀x ∈ B+

R
2
(xn)\B+

2r (0)
n

(xn).

Therefore, we have

∫
B+
R/2(xn)\B+

2r(0)n
(xn)

Vne
2un +

∫
LR/2(xn)\L

2r(0)n
(xn)

hne
un

≤ C(δ(0)
n )2β/C1

∫ ∞

2r (0)
n

r
−2(1+ β

C1
)
rdr + C(δ(0)

n )β/C1

∫ ∞

2r (0)
n

s
−(1+ β

C1
)
ds

= C(
δ
(0)
n

2r (0)
n

)2β/C1 + C(
δ
(0)
n

2r (0)
n

)β/C1 → 0.

By (1.9), (3.9) and above formula, we obtain that lim
n→∞

(∫
B+
R
Vne2un +

∫
LR

hneun
)
=

β0 = 2π .
Case (2) tn

δ
(0)
n

→ +∞. Note that for n sufficiently large, B
+
r ( j)
n

(x ( j)
n ) is contained in the

interior of B+
R . The proof is very similar with case (1). We can use Lemmas 2.3, 2.4,

2.5 and 2.6 to obtain limn→∞
(∫

B+
R
Vne2un + ∫

LR
hneun

)
= β0 = 4π .

Nextweproceed the proof by induction. Suppose that lemmaholds for 1, 2, . . . ,m−
1(m ≥ 2), we prove that it holds for m. Without loss of generality, we assume that

dn = |x (0)
n − x (1)

n | = min{|x (i)
n − x ( j)

n |, i �= j, 0 ≤ i, j ≤ m − 1}

and x (0)
n = 0. There exist two cases.

Case 1 For some constant A, we have

|x (i)
n − x ( j)

n | ≤ Adn, 0 ≤ i, j ≤ m − 1.

In this case, we will establish

lim
n→∞

(∫
B+
4Adn

(x (0)
n )

Vne
2un +

∫
L4Adn (x (0)

n )

hne
un

)

= lim
n→∞

(∫
B+
2Adn

(x (0)
n )

Vne
2un +

∫
L2Adn (x (0)

n )

hne
un

)
=

m−1∑
j=0

β j . (3.10)
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Once (3.10) is established, we introduce x ′(0)
n = x (0)

n , r ′(0)
n = 2Adn and β ′

0 =∑m−1
j=0 β j . And then we can apply Lemma 3.1 for m = 1 to obtain

lim
n→∞

(∫
B+
R

Vne
2un +

∫
LR

hne
un

)
= β ′

0.

We adopt the method applied in [15]. For x ∈ B̄+
R/dn

, define ũn(x) = un(dnx) +
log dn . Denote

Ṽn(x) = Vn(dnx), x ∈ B̄+
R/dn

,

h̃n(x) = hn(dnx), x ∈ B̄+
R/dn

,

x̃ ( j)
n = x ( j)

n /dn , 0 ≤ j ≤ m − 1,

δ̃
( j)
n = e−ũn(x̃

( j)
n ) = δ

( j)
n /dn, 0 ≤ j ≤ m − 1,

r̃ ( j)
n = r ( j)

n /dn, 0 ≤ j ≤ m − 1.

It follows that

ũn(x̃
( j)
n ) = max

x∈B̄+
r̃
( j)
n

(x̃ ( j)
n )

ũn(x) → ∞, 0 ≤ j ≤ m − 1,

lim
n→∞

r̃ ( j)
n

δ̃
( j)
n

= ∞, 0 ≤ j ≤ m − 1,

r̃ ( j)
n → 0, 0 ≤ j ≤ m − 1,

max
x∈B̄+

R/dn
\∪m−1

j=0 B+
r̃
( j)
n

(x̃ ( j)
n )

{ũn(x) + log min
0≤ j≤m−1

|x − x̃ ( j)
n |} ≤ C,∀n,

lim
n→∞

⎛
⎝∫

B+
r̃
( j)
n

(x̃ ( j)
n )

Ṽne
2ũn +

∫
L
r̃
( j)
n

(x̃ ( j)
n )

h̃ne
ũn

⎞
⎠

= lim
n→∞

⎛
⎝∫

B+
2r̃

( j)
n

(x̃ ( j)
n )

Ṽne
2ũn +

∫
L
2r̃

( j)
n

(x̃ ( j)
n )

h̃ne
ũn

⎞
⎠ = β j , 0 ≤ j ≤ m − 1.

We assume that x̃ ( j)
n → x̃ ( j) for 0 ≤ j ≤ m − 1. Set S = {x̃ ( j), 0 ≤ j ≤ m − 1}.

Note that

1 ≤ |x̃ (i) − x̃ ( j)| ≤ A.

Hence we know that the set of blow-up points of ũn in B̄+
4A(x (0)

n ) is S. Then,
it follows from Theorem 1.1 that un → −∞ uniformly on any compact sets
of B̄+

4A(x (0)
n )\S. Now we apply the case m = 1 of Lemma 3.1 to conclude
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∫
B+
1
2
(x̃ ( j))

Ṽne2ũn + ∫
L 1

2
(x̃ ( j))

h̃neũn → β j . Consequently,

lim
n→∞

(∫
B+
4A(x (0)

n )

Ṽne
2ũn +

∫
L4A(x (0)

n )

h̃ne
ũn

)

= lim
n→∞

(∫
B+
2A(x (0)

n )

Ṽne
2ũn +

∫
L2A(x (0)

n )

h̃ne
ũn

)
=

m−1∑
j=0

β j .

A simple change of variables leads to (3.10). Then, we derive the desired conclusion.
Case 2 A proper subset J of {0, 1, 2, . . . ,m − 1} containing {0, 1} and a constant A
satisfy

|x ( j)
n − x (0)

n | ≤ Adn,∀ j ∈ J ; lim
n→∞ |x ( j)

n − x (0)
n |/dn = ∞, ∀ j /∈ J.

Without loss of generality, we assume that J = {0, 1, 2, ..., k − 1}. In this case, we
consider ũn(x) = un(dnx) + log dn in B̄+

4A. Arguing as in case 1, we obtain:

lim
n→∞

(∫
B+
4Adn

(x (0)
n )

Vne
2un +

∫
L4Adn (x (0)

n )

hne
un

)

= lim
n→∞

(∫
B+
2Adn

(x (0)
n )

Vne
2un +

∫
L2Adn (x (0)

n )

hne
un

)
=

k−1∑
j=0

β j := β ′
0.

We set r ′(0)
n = Adn and x ′(0)

n = x (0)
n . If the m − k + 1 sequences x ′(0)

n , {x ( j)
n }m−1

j=k with

the radius r ′(0)
n , {r ( j)

n }m−1
j=k and the mass β ′

0, {β j }m−1
j=k satisfy (3.5)–(3.9), we may apply

the case m − k + 1 of Lemma 3.1. Now we need to verify (3.5)–(3.9). We only need
to show (3.7) since others are obvious. Note that

|x ′(0)
n − x ( j)

n |
r ′(0)
n

= |x ( j)
n − x (0)

n )|
Adn

→ ∞, ∀ j /∈ J.

Therefore, we obtain:

∫
B+
R

Vne
2un +

∫
LR

hne
un → β ′

0 +
m−1∑
j=k

β j =
m−1∑
j=0

β j .

��
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