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Abstract Suppose that A is a subgroup of a group G. A is called to be m-embedded
in G if G has a subnormal subgroup 7" and a {1 < G}-embedded subgroup C such that
G = AT and ANT < C < A.In this paper, we shall investigate the structure of finite
groups by using m-embedded subgroups and obtain some new characterization about
p-supersolvability and generalized hypercentre of finite groups. Some results in Guo
and Shum (Arch Math 80:561-569, 2003) , Ramadan et al. (Arch Math 85:203-210,
2005), Tang and Miao (Turk J Math 39:501-506, 2015), and Xu and Zhang (Can Math
Bull 57(4):884-889, 2014) are generalized.
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1 Introduction

Every group considered in this paper is finite. Most of the notation is standard and can
be foundin [3,10]. Let | G| denote the order of a group G, | G|, denote the p-partof | G|
and 7 (G) denote the set of all prime divisors of | G|. Let A x B denote the semidirect
product of groups A and B, where B is an operator group of A. Let F be a class of
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groups and I /K be a chief factor of a group G. I /K is called Frattini provided that
I/K < ®(G/K). Moreover, I/K is called F-central if I /K x (G/Cg(I/K)) € F.
Otherwise, I/K is called F-eccentric. The symbol Z #(G)(Z,7(G)) denotes the F-
hypercentre( pF-hypercentre) of a group G, which is the product of all such normal
subgroups H of G whose G-chief factors(whose G-chief factors of order divisible by
p)are F-central. In addition, i/ and pU denote the class of all supersolvable groups
and all p-supersolvable groups, respectively.

Suppose that A is a subgroupof G, K < H < G. (1) if AH = AK, then A covers
the pair (K, H); (2)if AN H = AN K, then A avoids (K, H). In 1939, Ore [11]
introduced the notion of quasinormal subgroups. Furthermore, if E is a quasinormal
subgroup of G, then for every maximal pair of G, that is, a pair (K, H), where K
is a maximal subgroup of H, E either covers or avoids (K, H). In 1992, Doerk and
Hawkes [3] gave the definition of CAP-subgroups, that is, a subgroup A of G is called
a CAP-subgroup if A either covers or avoids each pair (K, H), where H/K is a
chief factor of G. Based on the definitions and observations above, Guo and Skiba
introduced new concepts as follows:

Definition 1.1 [6, Definition 1.1]Let X = {Go < G| < ... < G,} be some subgroup
series of G and A be a subgroup of G. Then A is X-embedded in G if A either covers
or avoids every maximal pair (K, H) such that G;_; < K < H < G;, for some i.

In [6], quasinormal subgroups, CAP-subgroups, and partial CAP-subgroups [1] (or
a semi cover-avoiding subgroups [8]) are X-embedded subgroups.

Definition 1.2 [6, Definition 2.7] Let A be a subgroup of G. Then A is m-embedded
in G if G has a subnormal subgroup 7 and a {1 < G}-embedded subgroup C in G
suchthat G = AT and ANT <C < A.

In [6, Example 2.8], every c-normal subgroup of G is also m-embedded in G.

On the other hand, In 2014, Xu and Zhang [14] investigated p-nilpotency of a group
by using m-embedded property of primary subgroups. In 2015, Tang and Miao [13]
obtained some results about p-supersolvability of finite groups by using m-embedded
primary subgroups. They proved the following theorem:

Theorem 1.3 [13, Theorem 1.3] Let G be a p-solvable group and P be a Sylow p-
subgroup of G where p is an odd prime divisor of |G|. If every maximal subgroup of
P is m-embedded in G, then G is p-supersolvable.

It is clear that the p-solvability in [13, Theorem 1.3] is essential. Naturally, the
question is that

What is the structure of a group if the p-solvability is removed in [13, Theorem
1.3]?

Along the clue, we obtained the following result:

Theorem 1.4 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of | E|. If every maximal subgroup of P is m-embedded
in G, then every G-chief factor A/ B below E satisfies one of the following conditions:

(1) A/B = ®(G/B); (2) A/Bisap’ — group; (3)|A/Blp = p.
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With the further consideration, we will study the p-supersolvability and generalized
hypercentre of a finite group by using m-embedded subgroups, where p is a prime.
Some theorems in [9,12—14] are corollaries of our results.

2 Preliminaries

For the sake of convenience, we first list here some known results which will be useful
in the sequel.

Lemma 2.1 [6, Lemma 2.13] Let K and H be subgroups of G. Suppose that K is
m-embedded in G and H is normal in G. Then

(1) If H < K, then K/H is m-embedded in G/H.
2) If K < E < G, then K is m-embedded in E.
3) If(|H|, |K]|) =1, then KH/H is m-embedded in G/H.

Lemma 2.2 [6, Lemma 2.14] Let P be a normal non-identity p-subgroup of G with
|P| = p" and P N\ ®(G) = 1. Suppose that there is an integer k such that 1 <k <n
and the subgroups of P of order p* are m-embedded in G, then some maximal subgroup
of P is normal in G.

Lemma 2.3 [6, Lemma 2.5] Every {1 < G}-embedded subgroup of G is subnormal
inG.

Lemma 2.4 [5, Lemma 2.8] Let G be a p-supersolvable group. If O,/ (G) = 1, then
G is supersolvable.

3 Main Results

Theorem 3.1 Let p be an odd prime divisor of |G| and P be a normal p-subgroup
of G. If every minimal subgroup of P is {1 < G}-embedded in G, then P < Z1;(G).

Proof Assume that the assertion is false and choose (G, P) to be a counterexample
of minimal order.

(1) G has a unique normal subgroup N such that P/N is a chief factor of G, N <
Zy(G)and |P/N| > p.
Let P/N be a chief factor of G. Then, clearly, (G, N) satisfies the hypothesis
of the theorem. The choice of (G, P) implies that N < Z;;(G).If |P/N| = p,
then P/N < Zy(G/N) and so P < Z;4(G), a contradiction. Hence |P/N| > p.
Assume that P/L is a chief factor of G with P/N # P /L. With the same discus-
sion as above, we have that L < Z;,(G). Then P/N = NL/N < NZy(G)/N <
Zy(G/N). It follows from N < Z;;(G) that P < Z;4(G), a contradiction.

(2) The exponent of P is p.
Let C be a Thompson critical subgroup of P. If Q(C) < P, then Q(C) < N <
Zy(G) by (1), s0 P < Zy/(G) by [7, Lemma 4.4], which is impossible. Hence
P = C = Q(C). Then by [7, Lemma 4.3], the exponent of P is p.
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(3) P is a minimal normal subgroup of G.
If not, then N # 1. Let H/N be a minimal subgroup of P/N. Then there exists
an element x € H\N, H = (x)N and |(x)| = p by (2). By hypothesis and [6,
Lemma 2.3], H/N is {1 < G/N}-embedded in G/N. Then P/N < Zy(G/N)
by the choice of (G, P). Hence |P/N| = p, a contradiction. Hence N = 1 and
(3) holds.

4) P < 9(G).
If not, then P £ ®(G). By (1), we may choose a minimal subgroup H of P such
that G = HM = PM and PN M = 1.Since |P : PN M| = p, |P| = p and
P < Z14(G), a contradiction.

(5) The final contradiction.
By [6, Lemma 2.3], every minimal subgroup of P is {1 < M}-embedded in M.
Then P < Z;;(M) by the choice of (G, P), for every maximal subgroup M of G.
We assert that C (P) < ®(G). If not, then Cg (P) ﬁ ®(G)and G = Cg(P)M;
for some maximal subgroup M of G. Next, we choose aminimal normal subgroup
N of M contained in P. Then |N| = p. Further, N¢ = NC¢(P)Mi — NMi — N
and N <G. Then |[N| = |P| = p, acontradiction. Set Z = N(Cy (X/Y)), where
X /Y is an M-chief factor below P for every maximal subgroup M of G. Then
M /Z is an abelian group of exponent dividing p — 1 and OP(Z) < Cg(P) <
@ (G).Hence M/ ®(G) is astrictly p-closed group and M/ ®(G) is supersolvable
by [15, Theorem 1.9]. Then G/®(G) is minimal non-supersolvable and G is
solvable by [15, Theorem 2.3]. Further, we have F(G) < Cg(P) < ®(G) <
F (G), a contradiction.

The final contradiction completes our proof. O

Theorem 3.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of
G. If every minimal subgroup of P is m-embedded in G, then G is p-supersolvable.

Proof Assume that the assertion is false and choose G to be a counterexample of
minimal order. Furthermore, we have that

(D) 0,(G) =1.
Assume that T = O,/(G) # 1. By Lemma 2.1(3), G/T satisfies the conditions
of the theorem, and the minimal choice of G implies that G/ T is p-supersolvable.
Hence G is p-supersolvable, a contradiction.

(2) PN E S E, where E is a proper normal subgroup of G.
Assume that E is a proper normal subgroup of G. By (1), P N E # 1. By
Lemma 2.1 and the choice of G, E is p-supersolvable. Hence E is supersolvable
by (1) and Lemma 2.4. Then PN E J E.

(3) There exists a minimal subgroup H of P such that H has a normal complement
in G.
Otherwise, all minimal subgroups of P are {1 < G}-embedded in G. Then
all minimal subgroups of P are contained in O,(G) by Lemma 2.3. Further,
0,(G) < Zy(G). Hence G is p-supersolvable by [2, Theorem 6], a contradic-
tion.
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(4) The final contradiction.
By (3) and hypothesis, G = HM, M <G, HNM = 1.Then PN M I M
by (2). If every minimal subgroup of P N M is {I < G}-embedded in G, then
PNM < Zy(G) by Theorem 3.1 and 1 I PN M < M < G anormal subgroup
series of G such that every G-chief factor either cyclic of order p or p’-group.
Hence G is p-supersolvable, a contradiction.

Now we assume that there exists a minimal subgroup H; of P N M such that H; has
a normal complement in G. Further, G = HiM1, M1 < G, Hy N M; = 1. Similar to
the previous discussion, we consider P N M N M. Now, we set Go = G, G1 = M,
G> = M N M. Repeat above discussion, we have | = G441 IG; J---IG39G2
G1 < Go = G anormal subgroup series of G such that every G-chief factor either
cyclic of order p or p’-group. Then G is p-supersolvable, a contradiction.

The final contradiction completes our proof. O

Theorem 3.3 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of | E|. If every minimal subgroup of P is m-embedded
inG, then E < Z ,4(G).

Proof Assume that the assertion is false and choose (G, E) to be a counterexample
of minimal order. Furthermore, we have that

(1) Op(E) =1
If K = O0,/(E) # 1, then we consider G/K. (G/K, E/K) satisfies the hypoth-
esis of the theorem by Lemma 2.1(3). The minimal choice of (G, E) implies that
E/K < Z,u(G/K), andso E < Zu(G),a contradiction.

2) PJLG.
By Theorem 3.2, E is p-supersolvable. By (1) and Lemma 2.4, E is supersolvable.
Then P < G.

(3) There exists a minimal subgroup H of P such that H has a normal complement
inG.
Otherwise, all minimal subgroups of P are {l < G}-embedded in G. By Theo-
rem 3.1, P < Zyy(G). Hence E < Z,4(G), a contradiction.

(4) The final contradiction.
By (3) and hypothesis, G = HM, M < G, H N M = 1. Then M < G,
[P : PNM| = pand PN M <G. By the choose of (G, E), we have that
PNM < Z,u(G).Hence P < Z,;4(G) and E < Z,4(G), a contradiction.

The final contradiction completes our proof. O
Corollary 3.4 Let E be a normal subgroup of G such that G/E is p-supersolvable

and P be a Sylow p-subgroup of E where p is an odd prime divisor of |E|. If every
minimal subgroup of P is m-embedded in G, then G is p-supersolvable.

By Theorem 3.3, it is easy to prove the following corollaries:

Corollary 3.5 [9, Theorem 3.8] Let p be an odd prime number dividing the order of a
group G and F a saturated formation containing the class pU of all p-supersolvable
groups. Also let N be a normal subgroup of G such that G/N € F. If P is a Sylow
p-subgroup of N and every minimal subgroup of P is c-normal in G, then G € F.
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Theorem 3.6 Let G be a group and P be a Sylow p-subgroup of G where p is an
odd prime divisor of |G|. If every maximal subgroup of P is m-embedded in G, then
every chief factor A/ B of G satisfies one of the following conditions:

(1) A/B = ®(G/B); (2) A/B isa p'-group; (3) |A/B|p = p.

Proof Assume that the theorem is false and let G be a counterexample of minimal
order.

(D) 0,(G) =1.
Assume that O, (G) # 1. The hypothesis also holds for G/0,(G) by
Lemma 2.1, and for G, a contradiction.

(2) If 0,(G) # 1, then 0,(G) N P(G) = 1.
Assume that O,(G) N ®(G) # 1. We may choose a minimal normal subgroup
L of G such that L < 0,(G) N ®(G). By induction, G/L holds and so G holds,
a contradiction.

(3) 0,(G) =1.
Assume that O,(G) # 1. By (2) and [4, Theorem 1.8.17], O,(G) = L1 X Ly x
-+« X L, where L; are the minimal normal subgroups of G,i =1, 2, ..., t. For every

L € {L;} and we consider G/L. Clearly, G/L holds by the choice of G. Further, we
assert that O,(G) is a minimal normal subgroup of G. Otherwise, there exists two
different minimal normal subgroups L and L such that G/ L ; satisfies the hypothesis
of theorem and so every G/L j-chief factor holds by the choice of G where j =1, 2.
If LiLy/L, < ®(G/Ly), then L1Ly, < ®(G)L, by [3, A. Lemma 9.11]. Since
LiLy = 0,(G), L1Ly < 0p(G) N P(G)Ly = (0p(G) N ®(G))L2 = Ly by (2),
a contradiction. Hence L1 = LL, /L, satisfies the condition (2) or (3), then every
G-chief factor holds, a contradiction.

Hence O, (G) is a minimal normal subgroup of G and ®(G) = 1. Then there exists
a maximal subgroup M of G such that G = O,(G)M. We assert that 0,(G) < P.If
not, by Lemma 2.2, | P| = p and so G holds, a contradiction. Hence we may choose a
maximal subgroup P; of P suchthat M,, < Py and O,(G) £ P;.By hypothesis, P is
m-embedded in G, there exists a subnormal subgroup 7' in G anda {1 < G}-embedded
subgroup C in G suchthat G = Pi{T and Py NT < C < P;. We assert that C = 1.
Otherwise, C # 1. If C < O,(G) by Lemma 2.3, then we obtain C neither covers
nor avoids maximal pair (M, G) since O,(G) N M = 1, a contradiction. Hence we
may assume that C = O0,(G) by Lemma 2.3, that is, O,(G) < Pj, a contradiction.
Then we have | T,| = p.

If 0,(G)NT # 1,then O,(G)NT =T, AT andso T is p-solvable. Furthermore,
T, is a Hall p’-subgroup of G. By [4, Theorem 1.8.19] and (1), Cr(Ty) = T,.
Hence N7 (Tp)/Cr(Tp) = T/Cr(Tp) <> Cp—1. By Schur—Zassenhaus Theorem,
T, is cyclic and T is supersolvable. We assert that p is the largest prime divisor of
|G|. Otherwise, if ¢ # p is the largest prime divisor of |G|, then Q < G, which
contradicts (1). Then we assume that p; < p» < --- < p, = p, where 7(G) =
{p1, P2, ..., pn = p}.Since T}y is cyclic, G, is cyclic and G, is cyclic where G, a
Sylow pi-subgroup of G. By Burnside Theorem, G is p;-nilpotentand G ,;» IG. Next,
we consider G /. Similar to the previous discussion, Gy, p,}y < G ,,’. Repeat above
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discussion, we get a normal subgroup series of G: 1 AP ... Gy, poy G, G,
Hence G has supersolvable type Sylow tower and P < G, a contradiction.

If 0,(G)NT =1, then 0O,(G) < Ng(T) by [3, Lemma A.14.3] and O,(G)T =
0,(G) x T. Since 0,(G) N Z(P) # 1, we may pick a minimal subgroup H of
0,(G)NZ(P) and H <1 G. Clearly, G/ H satisfies the hypothesis of Theorem and so
G/ H holds by the choice of G. Then every chief factor of G satisfies one of the three
conditions in the conclusion of Theorem, a contradiction.

(4) The final contradiction.

Let P, be amaximal subgroup of P. By hypothesis and (3), P, is m-embedded in G,
we may choose a subnormal subgroup K; of G suchthat G = P,K> and PN K = 1.
Hence there exists a maximal normal subgroup K such that |G : K| = p. Clearly,
K, is m-embedded in G, where K, is a Sylow p-subgroup of K, we may choose a
subnormal subgroup K3 of G such that G = K, K3 = KK3 and K, N K3 = 1. Since

| K, K3 = | KK3|, we have | K N K3| = l'TKp'l.Ime& # 1, then K N K3 is a
p’-group, which contradicts (1). Hence K N K3 = 1 and K is a normal p-subgroup,
which contradicts (3).

The final contradiction completes our proof. O
From Theorem 3.6, it is easy to prove the following corollaries:

Corollary 3.7 [14, Theorem 3.1] Let G be a group and P be a Sylow p-subgroup
of G where p is an odd prime divisor of |G|. If every maximal subgroup Py of P is
m-embedded in G and Ng(P1) is p-nilpotent, then G is p-nilpotent.

Proof Clearly, G is not a non-abelian simple group and O, (G) = 1. Then we may
pick a minimal normal subgroup L of G. Further, L satisfies one of the three conditions
in Theorem 3.6. We only need to consider the condition that |L|, = p. Then we
consider the group N (L) where L is a Sylow p-subgroup of L. Next, we prove
that [L| = p. If Ng(Lp) < G, then Ng(L) is p-nilpotent since P < Ng(L)).
Further, Ny (L,) = CL(L)) and so L is p-nilpotent by Burnside Theorem. Then
|L| = p. If N6(L,) = G, then |[L| = p.

Since G/L is p-nilpotent, G is p-supersolvable and so G is supersolvable by
Lemma 2.4. Hence P < G, p is the largest prime divisor of |G|. Since G = L x M,
P N M is a maximal subgroup of P and P " M < G. Then G = Ng(P N M) is
p-nilpotent. O

Corollary 3.8 [13, Theorem 1.2] Let G be a group and P be a Sylow p-subgroup of G
where p is an odd prime divisor of |G|. If every maximal subgroup of P is m-embedded
in G and Ng(P) is p-nilpotent, then G is p-nilpotent.

Proof See the proof of Corollary 3.7. O

Corollary 3.9 [9, Theorem 3.1] Let p be an odd prime dividing the order of a group G
and P a Sylow p-subgroup of G. If NG (P) is p-nilpotent and every maximal subgroup
of P is c-normal in G, then G is p-nilpotent.
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Corollary 3.10 [13, Theorem 1.3] Let G be a p-solvable group and P be a Sylow
p-subgroup of G where p is an odd prime divisor of |G|. If every maximal subgroup
of P is m-embedded in G, then G is p-supersolvable.

Proof Clearly, G is not a non-abelian simple group. Then we may pick a minimal
normal subgroup L of G. Further, L satisfies one of the three conditions in Theo-
rem 3.6. Since G /L satisfies the hypothesis of Theorem 3.6, G/L is p-supersolvable
by induction. Then G is p-supersolvable. O

Theorem 3.11 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of | E|. If every maximal subgroup of P is m-embedded
in G, then every G-chief factor A/ B below E satisfies one of the following conditions:

() A/B < ®(G/B);  (2) A/Bisap-group;  (3)|A/Bl, = p.

Proof Assume that the theorem is false and let (G, E) be a counterexample with
|G| E| minimal.

() Oy (E) =1
Assume that O,/ (E) # 1. The hypothesis also holds for (G/ O,/ (E), E/ O (E))
by Lemma 2.1, and for (G, E). Then every G-chief factor below E holds, a
contradiction.

(2) If 0,(E) # 1, then O,(E) N ®(G) = 1.
Assume that O, (E) N ®(G) # 1. We may choose a minimal normal subgroup
L of G such that L < Op,(E) N ®(G). By induction, (G/L, E/L) satisfies the
hypothesis of theorem and so every G/L-chief factor below E/L holds. Then
every G-chief factor below E holds, a contradiction.

(3) Op(E)=1.
Assume that O,(E) # 1. By (2) and [4, Theorem 1.8.17], Op(E) = L1 X Ly x
-+ X Ly where L; are the minimal normal subgroups of G,i = 1,2, ..., . We assert

that O, (E) is a minimal normal subgroup of G. Otherwise, there exists two minimal
normal subgroups L and L, then we consider (G/L1, E/L1) and (G/L2, E/L»).
Clearly, (G/L, E/L}) satisfies the hypothesis of theorem and so every G/L j-chief
factor below E/L; holds by the choice of (G, E) where j = 1,2. If L1Ly/Ly <
®(G/Ly), then L1L, < ®(G)L> by [3, A. Lemma 9.11]. Since L1Ly < Op(E),
LiLy < Op(E)N®(G)Ly = (Op(E) N ®(G))Ly = L3 by (2), a contradiction.
Hence L1 = LiL,/L; satisfies the condition (2) or (3), then every G-chief factor
holds, a contradiction. Clearly, O, (E) 7_( ®(G) = 1. Then there exists a maximal
subgroup M of G such that G = O,(E)M.Then P = O,(E)(P N M). We assert that
O,(E) < P.If not, by Lemma 2.2, | P| = p and so (G, E) holds, a contradiction.
Hence we may choose a maximal subgroup P; of P such that P " M < P; and
O,(E) £ Pi. By hypothesis, P is m-embedded in G, there exists a subnormal
subgroup T in G and a {1 < G}-embedded subgroup C in G such that G = P;T
and Py NT < C < P;. We assert that C = 1. Otherwise, C # 1. If C < O,(E)
by Lemma 2.3, then we obtain C neither covers nor avoids maximal pair (M, G)
since Op(E) N M = 1, a contradiction. Hence we may assume that C = O,(E) by
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Lemma?2.3,ie., Oy(E) < Prandso P < O,(E)(PNM) < P; < P,acontradiction.
Then we have | T),| = p.

IfO,(E)NT # 1,then Op(E)NT =T, <T andso T is p-solvable. Furthermore,
T, is a Hall p’-subgroup of G. By [4, Theorem 1.8.19] and (1), C7(T,) = T,. Hence
Nr(Ty)/Cr(Tp) = T/Cr(Tp) = Cp_1. By Schur—Zassenhaus Theorem, T}, is
cyclic and T is supersolvable. Then E N T is supersolvable. We assert that p is the
largest prime divisor of | E|. Otherwise, if g # p is the largest prime divisor of | E|, then
0 < O4(E) = 1 where QisaSylow g-subgroup of ENT', which contradicts (1). Then
we assume that p; < pp < --- < p, = p, where n(E) = {p1, p2,..., pn = P}.
Since T}y is cyclic, E,y = E N T, is cyclic and Ej, is cyclic where E), a Sylow
pi-subgroup of E. By Burnside Theorem, E is pi-nilpotent and E,; < E. Next,
we consider E /. Similar to the previous discussion, E{,, ) < E /. Repeat above
discussion, we get a normal subgroup series of E: 1P - Ey, ,,y JE, JE.
Hence E has supersolvable type Sylow tower and P < E, a contradiction.

If O,(E)NT =1, then O,(E) < Ng(T) by [3, Lemma A.14.3] and O,(E)T =
O,(E) x T. Since O,(E) N Z(Gp) # 1 where G, is a Sylow p-subgroup of G, we
may pick aminimal subgroup H of O,(E)NZ(Gp) and H JG.Clearly, (G/H, E/H)
satisfies the hypothesis of Theorem and so (G/H, E / H) holds by the choice of (G, E).
Then every G-chief factor below E holds, a contradiction.

(4) The final contradiction.

Let P, be a maximal subgroup of P. By hypothesis and (3), P, is m-embedded in E,
we may choose a subnormal subgroup K> of E suchthat E = P,K; and PN K, = 1.
Hence there exists a maximal normal subgroup K such that |E : K| = p. Clearly,
K, is m-embedded in E, where K, is a Sylow p-subgroup of K, we may choose a
subnormal subgroup K3 of E such that £ = K, K3 = KK3 and K, N K3 = 1. Since

| K,K3| = | KK3|, we have | K N K3| = l'TKp'l.Imem # 1, then K N K3 is a
p’-group, which contradicts (1). Hence K N K3 = 1 and K is a normal p-subgroup,
which contradicts (3).

The final contradiction completes our proof. O

Corollary 3.12 Let E be a normal subgroup of G and P be a Sylow p-subgroup of
E where p is an odd prime divisor of |E|. Suppose that G/E = G and every chief
Jactor A/B of G satisfies one of the following conditions:

(DA/B <®(G/B); () A/Bisap'-group;  (3)|A/Blp = p.

If every maximal subgroup of P is m-embedded in G, then every chief factor A/ B of
G satisfies one of the following conditions:

(1)A/B = ®(G/B); (2) A/B is ap'- group; 3)1A/B|p = p.

Corollary 3.13 [12, Theorem 3.1] Let p be a prime, G be a p-solvable group and
let H be a normal subgroup of G such that G/H € pU, pU is the class of all p-
supersolvable groups. If the maximal subgroups of the Sylow p-subgroups of H are
c-normal in G, then G € pU.
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