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Abstract Suppose that A is a subgroup of a group G. A is called to be m-embedded
inG ifG has a subnormal subgroup T and a {1 ≤ G}-embedded subgroupC such that
G = AT and A∩T ≤ C ≤ A. In this paper, we shall investigate the structure of finite
groups by using m-embedded subgroups and obtain some new characterization about
p-supersolvability and generalized hypercentre of finite groups. Some results in Guo
and Shum (Arch Math 80:561–569, 2003) , Ramadan et al. (Arch Math 85:203–210,
2005), Tang andMiao (Turk JMath 39:501–506, 2015), and Xu and Zhang (CanMath
Bull 57(4):884–889, 2014) are generalized.
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1 Introduction

Every group considered in this paper is finite. Most of the notation is standard and can
be found in [3,10]. Let |G|denote the order of a groupG, |G|p denote the p-part of |G|
and π(G) denote the set of all prime divisors of |G|. Let A� B denote the semidirect
product of groups A and B, where B is an operator group of A. Let F be a class of
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groups and I/K be a chief factor of a group G. I/K is called Frattini provided that
I/K ≤ �(G/K ). Moreover, I/K is called F-central if I/K � (G/CG(I/K )) ∈ F .
Otherwise, I/K is called F-eccentric. The symbol ZF (G)(Z pF (G)) denotes the F-
hypercentre(pF-hypercentre) of a group G, which is the product of all such normal
subgroups H of G whose G-chief factors(whose G-chief factors of order divisible by
p)are F-central. In addition, U and pU denote the class of all supersolvable groups
and all p-supersolvable groups, respectively.

Suppose that A is a subgroup of G, K ≤ H ≤ G. (1) if AH = AK , then A covers
the pair (K , H); (2) if A ∩ H = A ∩ K , then A avoids (K , H). In 1939, Ore [11]
introduced the notion of quasinormal subgroups. Furthermore, if E is a quasinormal
subgroup of G, then for every maximal pair of G, that is, a pair (K , H), where K
is a maximal subgroup of H , E either covers or avoids (K , H). In 1992, Doerk and
Hawkes [3] gave the definition of CAP-subgroups, that is, a subgroup A of G is called
a CAP-subgroup if A either covers or avoids each pair (K , H), where H/K is a
chief factor of G. Based on the definitions and observations above, Guo and Skiba
introduced new concepts as follows:

Definition 1.1 [6,Definition 1.1] Let� = {G0 ≤ G1 ≤ . . . ≤ Gn} be some subgroup
series of G and A be a subgroup of G. Then A is �-embedded in G if A either covers
or avoids every maximal pair (K , H) such that Gi−1 ≤ K < H ≤ Gi , for some i .

In [6], quasinormal subgroups, CAP-subgroups, and partial CAP-subgroups [1] (or
a semi cover-avoiding subgroups [8]) are �-embedded subgroups.

Definition 1.2 [6, Definition 2.7] Let A be a subgroup of G. Then A is m-embedded
in G if G has a subnormal subgroup T and a {1 ≤ G}-embedded subgroup C in G
such that G = AT and A ∩ T ≤ C ≤ A.

In [6, Example 2.8], every c-normal subgroup of G is also m-embedded in G.
On the other hand, In 2014, Xu and Zhang [14] investigated p-nilpotency of a group

by using m-embedded property of primary subgroups. In 2015, Tang and Miao [13]
obtained some results about p-supersolvability of finite groups by usingm-embedded
primary subgroups. They proved the following theorem:

Theorem 1.3 [13, Theorem 1.3] Let G be a p-solvable group and P be a Sylow p-
subgroup of G where p is an odd prime divisor of |G|. If every maximal subgroup of
P is m-embedded in G, then G is p-supersolvable.

It is clear that the p-solvability in [13, Theorem 1.3] is essential. Naturally, the
question is that

What is the structure of a group if the p-solvability is removed in [13, Theorem
1.3]?

Along the clue, we obtained the following result:

Theorem 1.4 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of |E |. If every maximal subgroup of P is m-embedded
in G, then every G-chief factor A/B below E satisfies one of the following conditions:

(1) A/B ≤ �(G/B); (2) A/B is a p′ − group; (3) |A/B|p = p.
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With the further consideration, wewill study the p-supersolvability and generalized
hypercentre of a finite group by using m-embedded subgroups, where p is a prime.
Some theorems in [9,12–14] are corollaries of our results.

2 Preliminaries

For the sake of convenience, we first list here some known results which will be useful
in the sequel.

Lemma 2.1 [6, Lemma 2.13] Let K and H be subgroups of G. Suppose that K is
m-embedded in G and H is normal in G. Then

(1) If H ≤ K , then K/H is m-embedded in G/H.
(2) If K ≤ E ≤ G, then K is m-embedded in E.
(3) If (|H |, |K |) = 1, then K H/H is m-embedded in G/H.

Lemma 2.2 [6, Lemma 2.14] Let P be a normal non-identity p-subgroup of G with
|P| = pn and P ∩ �(G) = 1. Suppose that there is an integer k such that 1 ≤ k < n
and the subgroups of P of order pk arem-embedded inG, then somemaximal subgroup
of P is normal in G.

Lemma 2.3 [6, Lemma 2.5] Every {1 ≤ G}-embedded subgroup of G is subnormal
in G.

Lemma 2.4 [5, Lemma 2.8] Let G be a p-supersolvable group. If Op′(G) = 1, then
G is supersolvable.

3 Main Results

Theorem 3.1 Let p be an odd prime divisor of |G| and P be a normal p-subgroup
of G. If every minimal subgroup of P is {1 ≤ G}-embedded in G, then P ≤ ZU (G).

Proof Assume that the assertion is false and choose (G, P) to be a counterexample
of minimal order.

(1) G has a unique normal subgroup N such that P/N is a chief factor of G, N ≤
ZU (G) and |P/N | > p.
Let P/N be a chief factor of G. Then, clearly, (G, N ) satisfies the hypothesis
of the theorem. The choice of (G, P) implies that N ≤ ZU (G). If |P/N | = p,
then P/N ≤ ZU (G/N ) and so P ≤ ZU (G), a contradiction. Hence |P/N | > p.
Assume that P/L is a chief factor of G with P/N �= P/L . With the same discus-
sion as above, we have that L ≤ ZU (G). Then P/N = NL/N ≤ N ZU (G)/N ≤
ZU (G/N ). It follows from N ≤ ZU (G) that P ≤ ZU (G), a contradiction.

(2) The exponent of P is p.
Let C be a Thompson critical subgroup of P . If �(C) < P , then �(C) ≤ N ≤
ZU (G) by (1), so P ≤ ZU (G) by [7, Lemma 4.4], which is impossible. Hence
P = C = �(C). Then by [7, Lemma 4.3], the exponent of P is p.
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(3) P is a minimal normal subgroup of G.
If not, then N �= 1. Let H/N be a minimal subgroup of P/N . Then there exists
an element x ∈ H\N , H = 〈x〉N and |〈x〉| = p by (2). By hypothesis and [6,
Lemma 2.3], H/N is {1 ≤ G/N }-embedded in G/N . Then P/N ≤ ZU (G/N )

by the choice of (G, P). Hence |P/N | = p, a contradiction. Hence N = 1 and
(3) holds.

(4) P ≤ �(G).
If not, then P � �(G). By (1), we may choose a minimal subgroup H of P such
that G = HM = PM and P ∩ M = 1. Since |P : P ∩ M | = p, |P| = p and
P ≤ ZU (G), a contradiction.

(5) The final contradiction.
By [6, Lemma 2.3], every minimal subgroup of P is {1 ≤ M}-embedded in M .
Then P ≤ ZU (M) by the choice of (G, P), for every maximal subgroup M of G.
We assert that CG(P) ≤ �(G). If not, then CG(P) � �(G) and G = CG(P)M1
for somemaximal subgroupM1 ofG.Next,we choose aminimal normal subgroup
N of M1 contained in P . Then |N | = p. Further, NG = NCG (P)M1 = NM1 = N
and N �G. Then |N | = |P| = p, a contradiction. Set Z = ∩(CM (X/Y )), where
X/Y is an M-chief factor below P for every maximal subgroup M of G. Then
M/Z is an abelian group of exponent dividing p − 1 and Op(Z) ≤ CG(P) ≤
�(G). HenceM/�(G) is a strictly p-closed group andM/�(G) is supersolvable
by [15, Theorem 1.9]. Then G/�(G) is minimal non-supersolvable and G is
solvable by [15, Theorem 2.3]. Further, we have F(G) ≤ CG(P) ≤ �(G) <

F(G), a contradiction.

The final contradiction completes our proof. 	


Theorem 3.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of
G. If every minimal subgroup of P is m-embedded in G, then G is p-supersolvable.

Proof Assume that the assertion is false and choose G to be a counterexample of
minimal order. Furthermore, we have that

(1) Op′(G) = 1.
Assume that T = Op′(G) �= 1. By Lemma 2.1(3), G/T satisfies the conditions
of the theorem, and theminimal choice ofG implies thatG/T is p-supersolvable.
Hence G is p-supersolvable, a contradiction.

(2) P ∩ E � E , where E is a proper normal subgroup of G.
Assume that E is a proper normal subgroup of G. By (1), P ∩ E �= 1. By
Lemma 2.1 and the choice of G, E is p-supersolvable. Hence E is supersolvable
by (1) and Lemma 2.4. Then P ∩ E � E .

(3) There exists a minimal subgroup H of P such that H has a normal complement
in G.
Otherwise, all minimal subgroups of P are {1 ≤ G}-embedded in G. Then
all minimal subgroups of P are contained in Op(G) by Lemma 2.3. Further,
Op(G) ≤ ZU (G). Hence G is p-supersolvable by [2, Theorem 6], a contradic-
tion.
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(4) The final contradiction.
By (3) and hypothesis, G = HM , M � G, H ∩ M = 1. Then P ∩ M � M
by (2). If every minimal subgroup of P ∩ M is {1 ≤ G}-embedded in G, then
P ∩ M ≤ ZU (G) by Theorem 3.1 and 1 � P ∩ M � M � G a normal subgroup
series of G such that every G-chief factor either cyclic of order p or p′-group.
Hence G is p-supersolvable, a contradiction.

Now we assume that there exists a minimal subgroup H1 of P ∩ M such that H1 has
a normal complement in G. Further, G = H1M1, M1 � G, H1 ∩ M1 = 1. Similar to
the previous discussion, we consider P ∩ M ∩ M1. Now, we set G0 = G, G1 = M ,
G2 = M ∩M1. Repeat above discussion, we have 1 = Gs+1 �Gs � · · ·�G3 �G2 �
G1 � G0 = G a normal subgroup series of G such that every G-chief factor either
cyclic of order p or p′-group. Then G is p-supersolvable, a contradiction.

The final contradiction completes our proof. 	

Theorem 3.3 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of |E |. If every minimal subgroup of P is m-embedded
in G, then E ≤ Z pU (G).

Proof Assume that the assertion is false and choose (G, E) to be a counterexample
of minimal order. Furthermore, we have that

(1) Op′(E) = 1.
If K = Op′(E) �= 1, then we consider G/K . (G/K , E/K ) satisfies the hypoth-
esis of the theorem by Lemma 2.1(3). The minimal choice of (G, E) implies that
E/K ≤ Z pU (G/K ), and so E ≤ Z pU (G), a contradiction.

(2) P � G.
ByTheorem3.2, E is p-supersolvable. By (1) andLemma2.4, E is supersolvable.
Then P � G.

(3) There exists a minimal subgroup H of P such that H has a normal complement
in G.
Otherwise, all minimal subgroups of P are {1 ≤ G}-embedded in G. By Theo-
rem 3.1, P ≤ ZU (G). Hence E ≤ Z pU (G), a contradiction.

(4) The final contradiction.
By (3) and hypothesis, G = HM , M � �G, H ∩ M = 1. Then M � G,
|P : P ∩ M | = p and P ∩ M � G. By the choose of (G, E), we have that
P ∩ M ≤ Z pU (G). Hence P ≤ Z pU (G) and E ≤ Z pU (G), a contradiction.

The final contradiction completes our proof. 	

Corollary 3.4 Let E be a normal subgroup of G such that G/E is p-supersolvable
and P be a Sylow p-subgroup of E where p is an odd prime divisor of |E |. If every
minimal subgroup of P is m-embedded in G, then G is p-supersolvable.

By Theorem 3.3, it is easy to prove the following corollaries:

Corollary 3.5 [9, Theorem 3.8] Let p be an odd prime number dividing the order of a
group G and F a saturated formation containing the class pU of all p-supersolvable
groups. Also let N be a normal subgroup of G such that G/N ∈ F . If P is a Sylow
p-subgroup of N and every minimal subgroup of P is c-normal in G, then G ∈ F .
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Theorem 3.6 Let G be a group and P be a Sylow p-subgroup of G where p is an
odd prime divisor of |G|. If every maximal subgroup of P is m-embedded in G, then
every chief factor A/B of G satisfies one of the following conditions:

(1) A/B ≤ �(G/B); (2) A/B is a p′-group; (3) |A/B|p = p.

Proof Assume that the theorem is false and let G be a counterexample of minimal
order.

(1) Op′(G) = 1.
Assume that Op′(G) �= 1. The hypothesis also holds for G/Op′(G) by
Lemma 2.1, and for G, a contradiction.

(2) If Op(G) �= 1, then Op(G) ∩ �(G) = 1.
Assume that Op(G) ∩ �(G) �= 1. We may choose a minimal normal subgroup
L of G such that L ≤ Op(G) ∩ �(G). By induction, G/L holds and so G holds,
a contradiction.

(3) Op(G) = 1.

Assume that Op(G) �= 1. By (2) and [4, Theorem 1.8.17], Op(G) = L1 × L2 ×
· · · × Lt where Li are the minimal normal subgroups of G, i = 1, 2, . . . , t . For every
L ∈ {Li } and we consider G/L . Clearly, G/L holds by the choice of G. Further, we
assert that Op(G) is a minimal normal subgroup of G. Otherwise, there exists two
different minimal normal subgroups L1 and L2 such thatG/L j satisfies the hypothesis
of theorem and so every G/L j -chief factor holds by the choice of G where j = 1, 2.
If L1L2/L2 ≤ �(G/L2), then L1L2 ≤ �(G)L2 by [3, A. Lemma 9.11]. Since
L1L2 ≤ Op(G), L1L2 ≤ Op(G) ∩ �(G)L2 = (Op(G) ∩ �(G))L2 = L2 by (2),
a contradiction. Hence L1 ∼= L1L2/L2 satisfies the condition (2) or (3), then every
G-chief factor holds, a contradiction.

Hence Op(G) is a minimal normal subgroup ofG and�(G) = 1. Then there exists
a maximal subgroup M of G such that G = Op(G)M . We assert that Op(G) < P . If
not, by Lemma 2.2, | P| = p and so G holds, a contradiction. Hence we may choose a
maximal subgroup P1 of P such that Mp ≤ P1 and Op(G) � P1. By hypothesis, P1 is
m-embedded inG, there exists a subnormal subgroup T inG and a {1 ≤ G}-embedded
subgroup C in G such that G = P1T and P1 ∩ T ≤ C ≤ P1. We assert that C = 1.
Otherwise, C �= 1. If C < Op(G) by Lemma 2.3, then we obtain C neither covers
nor avoids maximal pair (M,G) since Op(G) ∩ M = 1, a contradiction. Hence we
may assume that C = Op(G) by Lemma 2.3, that is, Op(G) ≤ P1, a contradiction.
Then we have | Tp| = p.

If Op(G)∩T �= 1, then Op(G)∩T = Tp�T and so T is p-solvable. Furthermore,
Tp′ is a Hall p′-subgroup of G. By [4, Theorem 1.8.19] and (1), CT (Tp) = Tp.
Hence NT (Tp)/CT (Tp) = T/CT (Tp) ↪→ Cp−1. By Schur–Zassenhaus Theorem,
Tp′ is cyclic and T is supersolvable. We assert that p is the largest prime divisor of
|G|. Otherwise, if q �= p is the largest prime divisor of |G|, then Q � G, which
contradicts (1). Then we assume that p1 < p2 < · · · < pn = p, where π(G) =
{p1, p2, . . . , pn = p}. Since Tp′ is cyclic, Gp′ is cyclic and Gp1 is cyclic whereGp1 a
Sylow p1-subgroup ofG. ByBurnsideTheorem,G is p1-nilpotent andGp1 ′ �G. Next,
we consider Gp1 ′ . Similar to the previous discussion, G{p1,p2}′ � Gp1 ′ . Repeat above
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discussion, we get a normal subgroup series of G: 1� P� . . .�G{p1,p2}′ �Gp1 ′ �G.
Hence G has supersolvable type Sylow tower and P � G, a contradiction.

If Op(G) ∩ T = 1, then Op(G) ≤ NG(T ) by [3, Lemma A.14.3] and Op(G)T =
Op(G) × T . Since Op(G) ∩ Z(P) �= 1, we may pick a minimal subgroup H of
Op(G) ∩ Z(P) and H �G. Clearly, G/H satisfies the hypothesis of Theorem and so
G/H holds by the choice of G. Then every chief factor of G satisfies one of the three
conditions in the conclusion of Theorem, a contradiction.

(4) The final contradiction.

Let P2 be amaximal subgroup of P . By hypothesis and (3), P2 ism-embedded inG,
we may choose a subnormal subgroup K2 ofG such thatG = P2K2 and P2∩K2 = 1.
Hence there exists a maximal normal subgroup K such that |G : K | = p. Clearly,
Kp is m-embedded in G, where Kp is a Sylow p-subgroup of K , we may choose a
subnormal subgroup K3 of G such that G = KpK3 = KK3 and Kp ∩ K3 = 1. Since
| KpK3| = | KK3|, we have | K ∩ K3| = | K |

| Kp | . If K ∩ K3 �= 1, then K ∩ K3 is a

p′-group, which contradicts (1). Hence K ∩ K3 = 1 and K is a normal p-subgroup,
which contradicts (3).

The final contradiction completes our proof. 	

From Theorem 3.6, it is easy to prove the following corollaries:

Corollary 3.7 [14, Theorem 3.1] Let G be a group and P be a Sylow p-subgroup
of G where p is an odd prime divisor of |G|. If every maximal subgroup P1 of P is
m-embedded in G and NG(P1) is p-nilpotent, then G is p-nilpotent.

Proof Clearly, G is not a non-abelian simple group and Op′(G) = 1. Then we may
pick aminimal normal subgroup L ofG. Further, L satisfies one of the three conditions
in Theorem 3.6. We only need to consider the condition that |L|p = p. Then we
consider the group NG(L p) where L p is a Sylow p-subgroup of L . Next, we prove
that |L| = p. If NG(L p) < G, then NG(L p) is p-nilpotent since P ≤ NG(L p).
Further, NL(L p) = CL(L p) and so L is p-nilpotent by Burnside Theorem. Then
|L| = p. If NG(L p) = G, then |L| = p.

Since G/L is p-nilpotent, G is p-supersolvable and so G is supersolvable by
Lemma 2.4. Hence P � G, p is the largest prime divisor of |G|. Since G = L � M ,
P ∩ M is a maximal subgroup of P and P ∩ M � G. Then G = NG(P ∩ M) is
p-nilpotent. 	

Corollary 3.8 [13, Theorem 1.2] Let G be a group and P be a Sylow p-subgroup of G
where p is an odd prime divisor of |G|. If every maximal subgroup of P is m-embedded
in G and NG(P) is p-nilpotent, then G is p-nilpotent.

Proof See the proof of Corollary 3.7. 	

Corollary 3.9 [9, Theorem 3.1] Let p be an odd prime dividing the order of a group G
and P a Sylow p-subgroup of G. If NG(P) is p-nilpotent and every maximal subgroup
of P is c-normal in G, then G is p-nilpotent.
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Corollary 3.10 [13, Theorem 1.3] Let G be a p-solvable group and P be a Sylow
p-subgroup of G where p is an odd prime divisor of |G|. If every maximal subgroup
of P is m-embedded in G, then G is p-supersolvable.

Proof Clearly, G is not a non-abelian simple group. Then we may pick a minimal
normal subgroup L of G. Further, L satisfies one of the three conditions in Theo-
rem 3.6. Since G/L satisfies the hypothesis of Theorem 3.6, G/L is p-supersolvable
by induction. Then G is p-supersolvable. 	

Theorem 3.11 Let E be a normal subgroup of G and P be a Sylow p-subgroup of E
where p is an odd prime divisor of |E |. If every maximal subgroup of P is m-embedded
in G, then every G-chief factor A/B below E satisfies one of the following conditions:

(1) A/B ≤ �(G/B); (2) A/B is a p′- group; (3) |A/B|p = p.

Proof Assume that the theorem is false and let (G, E) be a counterexample with
|G||E | minimal.

(1) Op′(E) = 1.
Assume that Op′(E) �= 1. The hypothesis also holds for (G/Op′(E), E/Op′(E))

by Lemma 2.1, and for (G, E). Then every G-chief factor below E holds, a
contradiction.

(2) If Op(E) �= 1, then Op(E) ∩ �(G) = 1.
Assume that Op(E) ∩ �(G) �= 1. We may choose a minimal normal subgroup
L of G such that L ≤ Op(E) ∩ �(G). By induction, (G/L , E/L) satisfies the
hypothesis of theorem and so every G/L-chief factor below E/L holds. Then
every G-chief factor below E holds, a contradiction.

(3) Op(E) = 1.

Assume that Op(E) �= 1. By (2) and [4, Theorem 1.8.17], Op(E) = L1 × L2 ×
· · · × Lt where Li are the minimal normal subgroups of G, i = 1, 2, . . . , t . We assert
that Op(E) is a minimal normal subgroup of G. Otherwise, there exists two minimal
normal subgroups L1 and L2, then we consider (G/L1, E/L1) and (G/L2, E/L2).
Clearly, (G/L j , E/L j ) satisfies the hypothesis of theorem and so every G/L j -chief
factor below E/L j holds by the choice of (G, E) where j = 1, 2. If L1L2/L2 ≤
�(G/L2), then L1L2 ≤ �(G)L2 by [3, A. Lemma 9.11]. Since L1L2 ≤ Op(E),
L1L2 ≤ Op(E) ∩ �(G)L2 = (Op(E) ∩ �(G))L2 = L2 by (2), a contradiction.
Hence L1 ∼= L1L2/L2 satisfies the condition (2) or (3), then every G-chief factor
holds, a contradiction. Clearly, Op(E) � �(G) = 1. Then there exists a maximal
subgroup M of G such that G = Op(E)M . Then P = Op(E)(P∩M). We assert that
Op(E) < P . If not, by Lemma 2.2, | P| = p and so (G, E) holds, a contradiction.
Hence we may choose a maximal subgroup P1 of P such that P ∩ M ≤ P1 and
Op(E) � P1. By hypothesis, P1 is m-embedded in G, there exists a subnormal
subgroup T in G and a {1 ≤ G}-embedded subgroup C in G such that G = P1T
and P1 ∩ T ≤ C ≤ P1. We assert that C = 1. Otherwise, C �= 1. If C < Op(E)

by Lemma 2.3, then we obtain C neither covers nor avoids maximal pair (M,G)

since Op(E) ∩ M = 1, a contradiction. Hence we may assume that C = Op(E) by
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Lemma 2.3, i.e., Op(E) ≤ P1 and so P ≤ Op(E)(P∩M) ≤ P1 < P , a contradiction.
Then we have | Tp| = p.

If Op(E)∩T �= 1, then Op(E)∩T = Tp�T and so T is p-solvable. Furthermore,
Tp′ is a Hall p′-subgroup of G. By [4, Theorem 1.8.19] and (1), CT (Tp) = Tp. Hence
NT (Tp)/CT (Tp) = T/CT (Tp) ↪→ Cp−1. By Schur–Zassenhaus Theorem, Tp′ is
cyclic and T is supersolvable. Then E ∩ T is supersolvable. We assert that p is the
largest prime divisor of |E |. Otherwise, if q �= p is the largest prime divisor of |E |, then
Q ≤ Oq(E) = 1where Q is a Sylowq-subgroup of E∩T , which contradicts (1). Then
we assume that p1 < p2 < · · · < pn = p, where π(E) = {p1, p2, . . . , pn = p}.
Since Tp′ is cyclic, Ep′ = E ∩ Tp′ is cyclic and Ep1 is cyclic where Ep1 a Sylow
p1-subgroup of E . By Burnside Theorem, E is p1-nilpotent and Ep1 ′ � E . Next,
we consider Ep1 ′ . Similar to the previous discussion, E{p1,p2}′ � Ep1 ′ . Repeat above
discussion, we get a normal subgroup series of E : 1� P � · · ·� E{p1,p2}′ � Ep1 ′ � E .
Hence E has supersolvable type Sylow tower and P � E , a contradiction.

If Op(E) ∩ T = 1, then Op(E) ≤ NG(T ) by [3, Lemma A.14.3] and Op(E)T =
Op(E) × T . Since Op(E) ∩ Z(Gp) �= 1 where Gp is a Sylow p-subgroup of G, we
may pick aminimal subgroup H of Op(E)∩Z(Gp) and H�G. Clearly, (G/H, E/H)

satisfies the hypothesis of Theoremand so (G/H, E/H) holds by the choice of (G, E).
Then every G-chief factor below E holds, a contradiction.

(4) The final contradiction.

Let P2 be amaximal subgroup of P . By hypothesis and (3), P2 ism-embedded in E ,
we may choose a subnormal subgroup K2 of E such that E = P2K2 and P2∩K2 = 1.
Hence there exists a maximal normal subgroup K such that |E : K | = p. Clearly,
Kp is m-embedded in E , where Kp is a Sylow p-subgroup of K , we may choose a
subnormal subgroup K3 of E such that E = KpK3 = KK3 and Kp ∩ K3 = 1. Since
| KpK3| = | KK3|, we have | K ∩ K3| = | K |

| Kp | . If K ∩ K3 �= 1, then K ∩ K3 is a

p′-group, which contradicts (1). Hence K ∩ K3 = 1 and K is a normal p-subgroup,
which contradicts (3).

The final contradiction completes our proof. 	

Corollary 3.12 Let E be a normal subgroup of G and P be a Sylow p-subgroup of
E where p is an odd prime divisor of |E |. Suppose that G/E = G and every chief
factor A/B of G satisfies one of the following conditions:

(1) A/B ≤ �(G/B); (2) A/B is ap′- group; (3) |A/B|p = p.

If every maximal subgroup of P is m-embedded in G, then every chief factor A/B of
G satisfies one of the following conditions:

(1) A/B ≤ �(G/B); (2) A/B is ap′- group; (3) |A/B|p = p.

Corollary 3.13 [12, Theorem 3.1] Let p be a prime, G be a p-solvable group and
let H be a normal subgroup of G such that G/H ∈ pU , pU is the class of all p-
supersolvable groups. If the maximal subgroups of the Sylow p-subgroups of H are
c-normal in G, then G ∈ pU .
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