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Abstract Sometimes, people with interest in measuring quality of education take into
account level in academicperformance andvarious associated factors.Usually, an aver-
age academic performance is an accustomed way of assessment; however, this study
examines on individual basis different factors that might have an impact on the acad-
emic performance of undergraduate students. Data on the semester weighted average
of class of 2012 mathematics students were acquired from the Quality Assurance and
Planning Unit and the Examination Office of the Department of Mathematics, Kwame
Nkrumah University of Science and Technology. The main factors considered for this
research were entry age, gender, entry aggregate, Ghana education service graded
level of senior high school attended and geographical location. The statistical method
considered was random effect. Since the interaction or variation around the slope was
highly insignificant, the random intercept model was the better alternative ahead of
the random intercept and slope model. Statistically, not all the parameter estimates
are significant at α = 0.05 level of significance. It was observed that the difference
in geographical location was not significant in the main effect model. Hence where a
student comes from has no influence on their academic performance. However, entry
aggregate, entry age and gender were all significant. Nevertheless, the geographical

B Ekow Ewusi Amissah
ekowgh@gmail.com

Nana Kena Frempong
nkf.cos@gmail.com

Emmanuel DeGraft Johnson Owusu-Ansah
degraftt@gmail.com

1 Institute of Statistical Social and Economic Research (ISSER), University of Ghana,
Legon, Ghana

2 Department of Mathematics, Kwame Nkrumah University of Science and Technology (KNUST),
Kumasi, Ghana

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40304-016-0089-y&domain=pdf


342 E. E. Amissah et al.

location with regard to the Northern Belt was significant in the linear trend with a
standard deviation of approximately 0.712.

Keywords Random effect · Random intercept model · Random intercept and slope
model · Standard deviation · SWA · Estimate

Mathematics Subject Classification 47N30 · 62-07 · 62H86 · 97K80 · 97M10

1 Introduction

Studies of academic performance may be able to explain to some extent what factors
increase the likelihood of high academic performance and to possibly make recom-
mendations to facilitate the removal of social, psychological and economic barriers to
full participation in the educational system by all and sundry who have the ability and
appetite to do so.

Some of the impetus for this study came from initiative to help the Department of
Mathematics and its administration to monitor and evaluate the gradual progress of
students from 1 to 4years.

Most of the experts argue that the low socio-economic status has negative effect on
the academic performance of students because the basic needs of students remain
unfulfilled, making them unable to perform better academically [1]. Low socio-
economic status causes environmental deficiencies which results in low self esteem
of students [10].

Academic achievement is defined as level of expertise attained in the academic
work in the school [6].

The root of national wealth is based on excellent technological knowledge and
education. There is a strong correlation between a country’s development and the
quality of education provided within that country [3].

To achieve quality education, frequency and proper measure of academic perfor-
mance should be put in place. The basic purpose of any measurement system is to
provide feedback relative to the goal that increases the chances of achieving the goals
efficiently and effectively. If the performance measurement is right, the corresponding
data generated will direct where one is and what lies ahead.

A study conducted by [5] concluded that overcrowdings abolish the quantity and
quality of teaching and learning with serious implication for attainment of educational
goals. If teachers and students interact properly, they have positive and good relation-
ship which between students must be reflective, maximum productive, and it must
reflect certain attitudes. If teacher and students does not build positive relationship,
they cannot move together on the same way.

Sirohi [9] concluded in his study that 98.7% of the students have poor study habits.
Ansari [2] in his research on study habits and attitude of students observed that (a)
study habits are positively correlated with the quality of classroom teaching; and (b)
the study habits centered around shortcut methods like test and guess papers cannot
ensure the desired level of success in an examination.
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Kwame Nkrumah University of Science and Technology admission is based on
results obtained in Senior High School (SHS). The results are therefore a pre-tool
used in the admission process. Candidates who have the potential to excel in their
field of interest in the University are the preferred targets of the admission committee
officials.

In thiswork piece, semesterweighted average (SWA) as ameasurement of academic
performance would be used as dependent variables. The SWA is basically a single
score that represents a students performance in all the course taken in a semester
and is calculated to represent a students quality of performance numerically. It is
calculated by multiplying the marks obtained for each course by the credits of the
particular course adding up the products and dividing by the total number of unit of
credit for the course. To be able to critically access the up to date academic information
of a student, cumulative weighted average (CWA) is calculated, which is used for the
award of degree. The CWA therefore depends on SWA.

There is also a focus on the influence of identified factors such as students age,
category of SHS attended, entry aggregate and geographical location.

The study is therefore longitudinal and the observations within one subject over
time are correlated. The observations over time are nested within the subject where
regression coefficients are allowed to differ between subjects. The development of
certain variables over time are allowed to vary among subjects or, in other words, the
slopewith time is considered to be randomwhich enable the analyst to not only describe
the trendover timewhile taking into account the correlation that exists betweenmassive
measurements, but also to describe the variation in the baseline measurement and in
the rate of change over time.

The study compares and chooses best model fit between the random effect model
and the random intercept and slope model.

2 Methodology

2.1 Random Effect Analysis

Random effect analysis is also known as multilevel analysis or random coefficient
analysis [4,7,8]. Multilevel analysis was initially developed in the social sciences,
more specifically for educational research. This type of study design is characterized
by a hierarchical structure. Students are nested within classes, and classes are nested
within schools. Various levels can be distinguished. As this technique is suitable for
correlated observations, it is obvious that it is also suitable for use in longitudinal
studies. In longitudinal studies, the observations within one subject over time are cor-
related. The observations over time are nestedwithin the subject. The basic idea behind
the use of multilevel techniques in longitudinal studies is that the regression coeffi-
cients are allowed to differ between subjects. Therefore, the term random coefficient
analysis is preferred to the term multilevel analysis.
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2.2 Random Effect Analysis in Longitudinal Studies

The simplest formof randomeffect analysis is an analysiswith only a random intercept.
The corresponding statistical model with which to analyse a longitudinal relationship
between an outcome variable Y and time is given in Eq. (2.1).

Yit = β0i + β1t + εi t (2.1)

where Yit are observations for subject i at time t , β0i is the random intercept, t is
time, β1 is the regression coefficient for time, and εi t is the error for subject i at time
t . What is new about this model (compared to Eq. 2.2) is the random intercept β0i ,
i.e., the intercept can vary between subjects. It is also possible that the intercept is not
random, but that the development of a certain variable over time is allowed to vary
among subjects or, in other words, the slope with time is considered to be random.

Yit = β0 + β1i t + εi t (2.2)

where Yit are observations for subject i at time t , β0 is the intercept, t is time, β1i is the
random regression coefficient for time, and εi t is the error for subject i at time t . The
most interesting possibility is the combination of a random intercept and a random
slope with time, which is in Equation (below).

Yit = β0i + β1i t + εi t (2.3)

where Yit are observations for subject i at time t , β0i is the random intercept, t is time,
β1i is the random regression coefficient for time, and εi t is the error for subject i at
time t .

The assumption of random coefficient analysis is that the variation in intercept
and variation in slopes are normally distributed with an average of zero and a certain
variance. This variance is estimated by the statistical software package. The general
idea of randomcoefficient analysis is that the unexplained variance in outcomevariable
Y is divided into different components. One of the components is related to the random
intercept, and another component is related to random slopes.

For longitudinal studies, random effect models enable the analyst to not only
describe the trend over time while taking into account the correlation that exists
between massive measurements, but also to describe the variation in the baseline
measurement and in the rate of change over time.

2.3 Nature of Data Collection

– Subjects are not assumed to be measured on the same number of time points, and
the time points do not need to be necessarily equally spaced.

– Analyses can be conducted for subjects who may miss one or more of the mea-
surement occasions, or who may be lost to follow-up at some point during study.
In our example, a student may fall sick during the entire duration of a semester
examination.
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Random effect models, however, allow for the inclusion of time-varying and time-
invariant covariates. Time-varying covariates are independent variables that co-vary
with the dependent variable over time. For example, a researcher studying trends in
students Yi performance over time might also want to capture data on the highest and
lowestmarks of the group or degree of performance of co-student at eachmeasurement
occasion. The background of the student is likely to be an important predictor for
performance assessment which may also vary over time. Covariates such as gender
and geographical location status either do not change over time or are less likely to
change over time.

Random effects allow the research analyst to model the correlation structure of the
data. Thus, the analyst does not need to assume that measurements taken at successive
times in time are equally correlated, which is the correlation structure that underlies
the ANOVA model. The analyst also does not need to assume measurements taken
at successive points in time have an unstructured pattern of correlations, which is the
structure that underlies themultivariate analysis of variancemodel. The former pattern
is generally too restrictive, while the latter is too generic. With random effects model,
analyst can fit a specific correlation structure to the data, such as an autoregressive
structure, which assumes a decreasing correlation between successive measurements
over time.

2.4 Random Intercept Model (REM)

The simplest regression model for longitudinal data is one in which measurements are
obtained for a single dependent variable at successive time points. Let Yi j represent
the measurement for the i th individual at the j th point in time,

Yi j = β0 + β1ti j + εi j (2.4)

β0 is the intercept, β1 is the slope, that is the change in the outcome variable for every
one-unit increase in time(semester) and εi j is the error component. In this simple
regression, the εi j ’s are assumed to be correlated and to follow a normal distribution
(ie. εi j ∼ N (0, σ 2)). β0 represents the average value of the dependent variable when
time = 0 and β1 represents the average change of the dependent variable for each
one-unit increase in time(semester). There is a possibility that a student may start with
a low SWA and then increase over semesters as shown in Fig. 1a or no change in
SWA over semesters as shown in Fig. 1b or start with a high SWA and decrease over
semester as in Fig. 1c.

The implication was that on average students who perform well are depicted
by Fig. 1a, whereas Fig. 1c depicts that on average students are performing
poorly.

The simple random effect is the one which the intercept is allowed to vary across
individuals (students):

Yi j = β0 + β1ti j + υ0i + εi j , (2.5)
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Fig. 1 Possible average change in SWAs over semesters. a Slope 1. b Slope 2. c Slope 3

where υ0i represent the influence on individual i on his/her repeated observations.
Note that the individuals have no influence on their repeated outcome(SWA) and then
all the υ0i will be equal to zero (υ0i = 0), but that may not be true. Therefore, υ0i
may have negative or positive impact on their SWAs; therefore, υ0i may deviate from
zero. For better reflection of this model on the characteristic individual, the model is
partition into within subjects and between subjects.

Within subjects

Yi j = boi + b1ti j + εi j . (2.6)

Between subjects

boi = β0 + υ0i , (2.7)

b1i = β1. (2.8)

Equation (second above) indicates that the intercept for the i th individual is a
function of a population intercept plus unique contribution for individual. We assume
υ0i ∼ N (0, σ 2). This model also indicates that each individual’s slope is equal to the
population slope, β1, equation(last one above).

When both the slope and the intercept are allowed to vary across individual, the
model is:

Yi = β0 + β1ti j + υ0i + υ1i ti j + εi . (2.9)
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The within-subject model is the same as

Yi = boi + b1i ti j + εi . (2.10)

The between-subject models is:

boi = β0 + υ0i , (2.11)

b1i = β1 + υ1i . (2.12)

The within-subject model indicates that the individual i th SWA at time j is influ-
enced by their initial level b0i and the time trend or the slope b1i . The between-subject
indicates that the individual’s i’s initial level is determined by the population initial
level β0 plus the unique contribution of υ0i . Thus each individual has their own dis-
tinct initial level. Intercept for the i th individual is a function of a population intercept
plus unique contribution for that individual. As well, the slope for the i th individual
is a function of the population slope plus some unique contribution for that subject.
We assume the variance–covariance matrix of the random effects. Correlation exists
between the random slope and the random intercept, so that individuals have higher
values for the intercept (i.e., higher or lower values for the slope). The resulting linear
model can now be written as:

Yi = Xiβ + Zibi + ε1i

bi ∼ N (0, D)

ε1i ∼ N
(
0, σ 2 Ini

)
. (2.13)

Assumptions:

– b1, . . . , bN , ε1, . . . , εN b’s are independent
– ε1 ∼ N (0, σ 2 Ini ) is the measurement error

The variance of the measurement is given below

V (yi ) = Zi

∑
υ

Z ′
i + σ 2 Ini . (2.14)

This model implies that conditional on the random effects, the errors are uncorre-
lated, as is displayed. This is seen in the above equation (Equation above) since the
error variance is multiplied by the identity matrix (i.e., all correlations of the error
equal to zero).

2.5 Restricted Maximum Likelihood Estimation

Here we consider the case where the variance of a normal distribution N (μ, σ 2)i is
to be estimated based on a sample Y1, . . . ,YN of N observations. Where the mean μ

is known, the maximum likelihood estimation (MLE) for σ 2 equals σ̂ 2 = ∑
i

(Yi−μ)2

N
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which is unbiased for σ 2. When μ is not unknown, we get the same expression for the
MLE but with μ replaced by the sample mean Y = ∑

i
Yi
N ,

E
(
σ̂ 2

)
= N − 1

N
σ 2. (2.15)

The equation (as in above) indicate that the MLE is now biased downward due to
the estimation of μ and the unbiased estimation of (as in above) yield the classical
sample variance.

S2 =
∑
i

(
Yi − Y

)2
N − 1

. (2.16)

To obtain an unbiased estimate for σ 2 directly, we should use the following: let
Y = (Y1, . . . ,YN denote the vector for all measurement and IN be N -dimensional
vector containing only ones and zeros. The distribution of Y is then N (μIN , σ 2 IN )

where IN equals the identity matrix, if A is N × (N − 1) any matrix with N − 1
linear independent columns orthogonal to the vector IN , vector U of N − 1 which is
the error contrast is defined by U = ATA. Maximizing the corresponding likelihood

with respect to the only remaining parameter σ 2 yields σ̂ 2 = YTA(ATA)−1ATY
N−1 which

is equal to classical sample variance S2. The resulting estimator is the RMLE since it
restricts (N − 1) error contrasts.

2.6 The Random Intercepts Model

The random effect covariance matrix D is now scalar, and it will be denoted by σ 2
b

and the matrix Zi are of the form Ini , a ni -dimensional vector of ones. We will assume
that all residual covariance matrices are of the form

∑
i = σ 2 Ini , i.e., we assume

conditional independent. The random intercept of subject i is given by

b̂i = σ 2
b I

′
ni

(
σ 2
b Ini I

′
ni

)−1
(yi − Xiβ)

= σ 2
b I

′
ni

(
σ 2
b

σ 2 − σ 2
b

σ 2 + niσ 2
b

Ini I
′
ni

)
(yi − Xiβ)

= niσ 2
b

σ 2 + niσ 2
b

1

ni

ni∑
j=1

(
yi − x ′

i jβ
)

, (2.17)

where the vector xi j consists of the j th row in the design matrix Xi and 1
ni

∑ni
j=1(yi −

x ′
i jβ) is equal to the average residual. If ni is large for subject i a weight is put on
the average residual yielding less shrinkage, the within-subject variability is large in
comparison with the between-subject variability if more shrinkage is obtained.

123



Accessing Individual Students Academic Performance Using... 349

3 Data Collection

The consecutive students’ semesterweighted average (SWA) academic results of Class
of 2012 Mathematics students at KNUST (i.e., eight semesters) were obtained. The
obtained SWA(s) and their socio-demographic factor response variables were tallied
and also coded in the Window Microsoft Excel (2010), R and the SAS version 9.1
for the analyses. The geographical locations of students were categorized into three
zonal belts specifying their respective regions of origin. These include the Northern
Belt (includes Northern, Upper East, Upper West) coded as N , Middle Belt (Ashanti,
Brong Ahafo Regions, Eastern, Volta) was coded M , and Southern Belt (includes
Greater Accra, Central andWestern regions) was also coded as S. Similarly, the graded
schools were categorized into A, B, C, D and P from Ghana Education Service (GES)
specification. Grade A schools were coded as A, grade B schools were coded as B,
grade C schools were coded as C , grade D schools were coded as D, and grade
P schools were coded as P . There were ninety (90) students in the class of 2012
Mathematics students records sampled. Details of the analyses are discussed below.

3.1 Exploratory Data Analysis

Out of a total of 90 students, 15 students coded F were females representing 16.85%
and 74 students coded M were males representing 83.15%. The gender of a student
was not mentioned in the data and therefore was treated as missing.

The profile of the male students in maths four as in Fig. 2 is denser than that of
the females indicating a greater number of males than females. Majority of the males
SWAs lies approximately between 52 and 66, whereas that of the females lies between
55 and 65. Statistically, the males recorded a maximum and a minimum SWA of 84.2
and 36.8, whereas the females recorded a maximum and a minimum SWA of 86.9 and
51.8 over the 8 semesters.

The geographical location of maths four students was grouped into three zonal belts
specifying their respective regions of origin. These include the Northern Belt (includes
Northern, Upper East, Upper West) coded as N , Middle Belt (Ashanti, Brong Ahafo
Regions, Eastern, Volta) coded as M and Southern/Coastal Belt (includes Greater
Accra, Central and Western regions) also coded as S. In general, majority of the
students from maths four as in Fig. 3 reside in the Middle Belt of Ghana, whereas
those from the Northern Belt contributed the least. The minimum SWA score was
recorded by a student from the Southern Belt, whereas the maximum SWA score was
recorded by a student from the Middle Belt. The distribution of the SWAs of students
from the Middle Belt and Southern was very dense approximately between the 51–68
and 51–65%, respectively.However, the distribution of students due to their population
was scattered over the 8 semesters around the 50–72 mark. The geographical Location
of four (4) students was not captured in the data and therefore was treated as missing.

It could be observed that out of the total of 90 students, 47 students (representing
55.29%) attended a Grade A schools, 25 students (representing 29.41%) attended
Grade B school, 9 students (representing 10.59%) attended a Grade C school.
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Fig. 2 Gender profile for maths four students

All in all most of the students in maths four were from a Type A school with a Type
C school having the least number of students as shown in Fig. 4. A student in Type B
school recorded the highest SWA score of 86.9% in semester 8. However, a student
from a Type A school recorded the least SWA score over the 8 semesters.

In general most students started with a low SWA but managed to complete with a
higher SWA as in Fig. 5. Students SWAs over the semesters lie between the 50 and
the 70 mark, with semesters 8 and 5 approximately recording the highest and the least
SWA of 86.9 and 30.8%, respectively.

3.2 Random Intercept Model

The model below is exactly what we would use in deciding as to whether or not to
select a random effect model for the data. The model contains only one parameter
which is the random intercept effect. This partition the total variation in the data into
two: within-individual and between-individual components

SWAi j = υoi + εi j , (3.1)

where

υ0i ∼ N
(
0, σ 2

r0

)
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Fig. 3 Geographical location for maths four students
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Table 1 Covariance parameter
estimates

Cov Parm Subject Estimate

UN(1,1) Student’s identity 39.876

Residual 19.939

and

εi j ∼ N
(
0, σ 2

)
.

Auseful tool used in decidingwhether a random effect model would be an appropri-
ate choice for the data is the intraclass correlation coefficient (ICC), and it is represented
mathematically as follows:

ICC = σ̂ 2
υo

σ̂ 2
υo + σ̂ 2

, (3.2)

where σ̂ 2 is the residual variance.
From Table 1, σ̂ 2

υo = 39.876 and σ̂ 2 = 19.939.
Therefore, it implies that our ICC = 39.876

39.876+19.939 = 0.666, indicating that approx-
imately 67% of the variation in the data is explained by allowing the intercept to vary
across the individual students. The statistical significant value for thewithin-individual
variation suggests the data structure is best captured by using random effect model.
With a covariance value of 39.876 and a residual of 19.939, it is clear that there is a
lot of variations in the academic performance of students at semester one (1).

With regard to Table 2, the random interceptmodel is considered. It is a linearmixed
model where only subject specific effect is the intercept. Statistically, not all the para-
meter estimates are significant at α = 0.05 level of significance. It was observed that
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Table 2 Random effect or mixed model random intercept

Effect Gender Region Ges. Cat. Estimate Stand. err DF t value PR ≥ |t |
Solution for fixed effects

Intercept 85.894 9.894 65 8.68 ≥0.0001

Age −0.566 0.283 509 −2.00 0.046

Gender F 86.500 9.887 509 8.75 ≥0.0001

Gender M 0 – – – –

Region M 1.917 1.529 509 1.25 0.210

Region N 3.628 2.958 509 1.23 0.221

Region S 0 – – – –

Entry agg. −1.310 0.477 509 −2.74 0.006

Ges. Cat A −2.067 1.563 509 −1.32 0.187

Ges. Cat B 1.186 1.882 509 0.63 0.529

Ges. Cat C −1.849 2.555 509 −0.72 0.470

Ges. Cat P 0 – – – –

Time* region *M 1.099 0.661 509 1.66 0.097

Time* region *N 1.798 0.712 509 2.53 0.012

Time* region *S 0.832 0.591 509 1.41 0.160

Time*Ges. Cat *A 0.147 0.659 509 0.22 0.824

Time*Ges. Cat *B −0.194 0.661 509 −0.29 0.769

Time*Ges. Cat *C 0.541 0.667 509 0.81 0.417

Time*Ges. Cat *P 0.000 – – – –

geographical location was not significant. However, entry aggregate, entry age and
gender were all significant. On the average, there is no significance difference in the
SWA between the GES type of schools over a linear trend as well as the middle and
southern belts with regard to the linear trends in the geographical location. Neverthe-
less, the geographical location with regard to the Northern Belt was significant in the
linear trend with a standard deviation of approximately 0.712.

In the Type (III) tests, entry age, entry aggregate and linear trend in the geographical
location of the students are significant.

3.3 Random Intercept and Slope Model

Again, consider the model below:

SWAi j = υoi + υ1i ti j + εi j , (3.3)

where

υ0i ∼ N
(
0, σ 2

r0

)
,

υ1i ∼ N
(
0, σ 2

r1

)
,
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Table 3 Covariance parameter
estimates

Cov Parm Subject Estimate

UN(1,1) Student’s identity 29.594

UN(2,1) Student’s identity −0.450

UN(2,2) Student’s identity 0.778

Residual 15.613

and

εi j ∼ N
(
0, σ 2

)
.

The ICC is computed using variance estimates for the random intercept and slope
model as in the equation above as well as their covariances.

With regard to Table 3, ICC = 29.594−0.450+0.778
29.594−0.450+0.778+15.613 = 0.657, indicating that

approximately 65.7% of the variation in the data is accounted for by allowing the
intercept and slope to vary across individual students in maths four. The random inter-
cept has a relatively large estimate with respect to the other variance components. This
supports the fact that there is high difference between student’s variability based on
SWAs at semester 1. The negative estimate of the covariance implies that students
who start with a high SWA at semester 1 have a more tendency to exhibit reduc-
tion of SWA over the semesters. Variation within the slope and the semester was,
however, not significant. Therefore, variations in students academic performance as
the semester progresses are very minimal. Hence, they can be ignored in the final
model.

In Table 4 in the Appendix, the random intercept and slope model together with
some regressors and individual slopes are considered. It is a linear mixed model where
only subject specific effect is the intercept. Again, not all the parameter estimates are
significant atα = 0.05 level of significance. It was observed that geographical location
in the main model as well as the linear trend in the GES categorization type of SHS
school was not significant. However, the parameters intercept, entry age, gender and
entry aggregate were all significant. On the average, there is no significance difference
in the SWA between the geographical location(M,S) over a linear trend. Nevertheless,
the geographical location with regard to the Northern Belt was significant in the linear
trend with a standard deviation of approximately 0.749. Again, in the Type (III) tests,
entry age, entry aggregate and linear trend in the geographical location of the students
are significant.

4 Results and Discussion

The study attempts to find the factor(s) that can have impact or affect academic perfor-
mance. A measure of academic performance used was SWA scores obtained over the
eight. The main factors considered are entry age, gender, entry aggregate, GES graded
level of SHS attended and geographical location. Whether these socio-demographic
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factors affect students academic performance is the researcher’s priority. The statistical
model used here was the random effect model.

As part of the exploratory data analysis, it was observed that out of a total of
90 students, 15 students were females representing 16.85% and 74 students were
males representing 83.15%. The geographical location of maths four students was
grouped into three zonal belts specifying their respective regions of origin. These
include the Northern Belt (includes Northern, Upper East, Upper West), Middle Belt
(Ashanti, Brong Ahafo Regions, Eastern, Volta) and Southern/Coastal Belt (includes
GreaterAccra,Central andWestern regions). Fifty of the students representing 58.14%
represented the Middle Belt. Also, ten (10) of the students representing 11.63% rep-
resented the Northern Belt. Similarly, twenty-six of the students representing 30.23%
represented the Southern Belt. The geographical location of four students was not
captured in the data and therefore was treated as missing. Again, the students were
grouped according to the GES special SHS categorization with respect to the type of
SHS attended and whether Grade A, B, C, D or P schools were specified. It could
be observed that out of the total of 90 students, 47 students (representing 55.29%)
attended a Grade A schools, 25 students (representing 29.41%) attended Grade B
school, 9 students (representing 10.59%) attended a Grade C school, 2 students (rep-
resenting 2.35%) attended both a Grade D school and a Grade P school respectively,
while five students information failed to be captured and therefore was recorded as
missing.

In longitudinal studies, the observations within one subject over time are correlated.
The observations over time are nested within the subject. The basic idea behind the use
of multilevel techniques in longitudinal studies is that the regression coefficients are
allowed to differ between subjects. Therefore, the term random coefficient analysis is
preferred to the term multilevel analysis. The simplest form of random effect analysis
is an analysis with only a random intercept. It is also possible that the intercept is not
random, but that the development of certain variable over time are allowed to vary
among subjects or, in other words, the slope with time is considered to be random.
For longitudinal studies, random effect models enable the analyst to not only describe
the trend over time while taking into account of the correlation that exists between
massive measurements, but also to describe the variation in the baseline measurement
and in the rate of change over time.

Since the interaction or variation around the slope was highly insignificant, the ran-
dom intercept model was the better alternative ahead of the random intercept and slope
model. The random intercept model is a linear mixed model where only subject spe-
cific effect is the intercept. Statistically, not all the parameter estimates are significant
at α = 0.05 level of significance. It was observed that the difference in geographical
location was not significant in the main effect model. However, entry aggregate, entry
age and gender were all significant. On the average, there is no significant difference
in the SWA between the GES SHS categories type of schools over a linear trend as
well as the middle and southern belts with regard to the linear trends in the geograph-
ical location. Nevertheless, the geographical location with regard to the Northern
Belt was significant in the linear trend with a standard deviation of approximately
0.712.
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5 Conclusion

Random Intercept andSlopeModel has an ICC = 0.657, indicating that approximately
65.7% of the variation in the data is accounted for by allowing the intercept and
slope to vary across individual students in maths four. The negative estimate of the
covariance implies that students who start with a high SWA at semester 1 have a more
tendency to exhibit reduction of SWA over the semesters. Variation within the slope
and the semester was, however, not significant. Again, variations in students academic
performance as the semester progresses are very minimal.

Random effect model produced an intraclass correlation coefficient (ICC) of 0.666,
indicating that approximately 67% of the variation in the data is explained by allowing
the intercept to vary across the individual students. The statistically significant value for
the within-individual variation suggests the data structure is best captured. Therefore,
the random intercept model was the better alternative ahead of the random intercept
and slope model.

It was observed that the difference in geographical location was not significant
in the main effect model. However, entry aggregate, entry age and gender were all
significant. Therefore, students with a very good entry aggregates tend to perform
better than those with a fairly good ones. In terms of age, younger students tends to
perform better than elderly students in the same class.

To crown it all, the geographical location with regard to the Northern Belt was
significant in the linear trend with a standard deviation of approximately 0.712.
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Appendix

See Table 4.

Table 4 Random effect or mixed model random intercept and slope

Effect Gender Region Ges. Cat. Estimate Stand. err DF t value PR ≥ |t |
Solution for fixed effects

Intercept 90.745 8.561 65 10.60 ≥0.0001

Age −0.670 0.313 441 −2.14 0.033

Gender F 1.271 1.864 441 0.68 0.496

Gender M 0 – – – –

Region M 2.215 1.526 441 1.45 0.148
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Table 4 continued

Effect Gender Region Ges. Cat. Estimate Stand. err DF t value PR ≥ |t |
Region N 3.940 2.977 441 1.32 0.186

Region S 0 – – – –

Entry agg. −1.498 0.366 441 −4.09 ≤0.0001

Ges. Cat A −1.730 1.496 441 −1.16 0.248

Ges. Cat B 1.346 1.805 441 0.75 0.456

Ges. Cat C −1.734 2.545 441 −0.68 0.496

Ges. Cat P 0 – – – –

Time* region *M 1.119 0.660 441 1.70 0.091

Time* region *N 1.820 0.711 441 2.56 0.011

Time* region *S 0.832 0.591 441 1.41 0.160

Time*Ges. Cat *A 0.123 0.657 441 0.19 0.852

Time*Ges. Cat *B −0.209 0.660 441 −0.32 0.752

Time*Ges. Cat *C 0.524 0.666 441 0.79 0.432

Time*Ges. Cat *P 0 – – – –

References

1. Adams, A.: Even basic needs of young are not met. Falk School Library (1996). http://tc.education.
pitt.edu/library/SelfEsteem

2. Ansari, Z.: Study habits and attitude of students, p. 40. National Institute of Psychology, Islamabad
(1983)

3. Borahan, N., Ziarati, R.: Developing quality criteria for application in the higher education sector in
turkey. Total Qual. Manag. 13(7), 913–26 (2002)

4. Goldstein, H.: Multilevel Statistical Models. Edward Arnold, London (1991)
5. Ijaiya, Y.: Effects of overcrowded classrooms on teacher student relationship. University of Ilorin

(2010)
6. Kohli, T.K.: Characteristic behavioral and environmental correlates of academic achievement of over

and under achievers at different levels of intelligence. Ph.D. Thesis, Punjab University (1975)
7. Laird, N., Ware, J.: Random effects models for longitudinal data. Biometrics 38, 963–974 (1986)
8. Longford, N.T.: Random Coefficient Models. Oxford University Press, Oxford (1993)
9. Sirohi, V.: Study of under achievement in relation to study habits and attitudes. J. Indian Educ. 19(2),

14–19 (2004)
10. Spelling, M. (ed.): Confidence: Helping Your Child Through Early Adolescence. ED Pubs (2005).

http://www.ed.gov/parents/academic/help/adolescence/part8.html

123

http://tc.education.pitt.edu/library/SelfEsteem
http://tc.education.pitt.edu/library/SelfEsteem
http://www.ed.gov/parents/academic/help/adolescence/part8.html

	Accessing Individual Students Academic Performance Using Random Effect Analysis (Multilevel Analysis)
	Abstract
	1 Introduction
	2 Methodology
	2.1 Random Effect Analysis
	2.2 Random Effect Analysis in Longitudinal Studies
	2.3 Nature of Data Collection
	2.4 Random Intercept Model (REM)
	2.5 Restricted Maximum Likelihood Estimation
	2.6 The Random Intercepts Model

	3 Data Collection
	3.1 Exploratory Data Analysis
	3.2 Random Intercept Model
	3.3 Random Intercept and Slope Model

	4 Results and Discussion
	5 Conclusion
	Acknowledgments
	Appendix
	References




