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Abstract Statistical and machine learning theory has developed several conditions
ensuring that popular estimators such as the Lasso or the Dantzig selector perform
well in high-dimensional sparse regression, including the restricted eigenvalue, com-
patibility, and �q sensitivity properties. However, some of the central aspects of these
conditions are not well understood. For instance, it is unknown if these conditions can
be checked efficiently on any given dataset. This is problematic, because they are at
the core of the theory of sparse regression. Here we provide a rigorous proof that these
conditions are NP-hard to check. This shows that the conditions are computation-
ally infeasible to verify, and raises some questions about their practical applications.
However, by taking an average-case perspective instead of the worst-case view of
NP-hardness, we show that a particular condition, �q sensitivity, has certain desirable
properties. This condition is weaker and more general than the others. We show that
it holds with high probability in models where the parent population is well behaved,
and that it is robust to certain data processing steps. These results are desirable, as they
provide guidance about when the condition, and more generally the theory of sparse
regression, may be relevant in the analysis of high-dimensional correlated observa-
tional data.

B Jianqing Fan
jqfan@princeton.edu

Edgar Dobriban
dobriban@stanford.edu

1 Department of Statistics, Stanford University, Stanford, USA

2 Department of Operations Research and Financial Engineering, Princeton University, Princeton,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40304-015-0078-6&domain=pdf


2 E. Dobriban, J. Fan

Keywords High-dimensional statistics · Sparse regression · Restricted eigenvalue ·
�q sensitivity · Computational complexity

Mathematics Subject Classification 62J05 · 68Q17 · 62H12

1 Introduction

1.1 Prologue

Open up any recent paper on sparse linear regression—the model Y = Xβ + ε, where
X is an n × p matrix of features, n � p, and most coordinates of β are zero—and
you are likely to find that the main result is of the form: “If the data matrix X has
the restricted eigenvalue/compatibility/�q sensitivity property, then our method will
successfully estimate the unknown sparse parameter β, if the sample size is at least
…”

In addition to the sparsity of the parameter, the key condition here is the regularity
of the matrix of features, such as restricted eigenvalue/ compatibility/ �q sensitivity. It
states that every suitable submatrix of the featurematrix X is “nearly orthogonal.” Such
a property is crucial for the success of popular estimators like the Lasso and Dantzig
selector. However, these conditions are somewhat poorly understood. For instance, as
the conditions are combinatorial, it is not known how to check them efficiently—in
polynomial time—on any given data matrix. Without this knowledge, it is difficult
to see whether or not the whole framework is relevant to any particular data analysis
setting.

In this paper we seek a better understanding of these problems. We first estab-
lish that the most popular conditions for sparse regression—restricted eigenvalue/
compatibility/�q sensitivity—are all NP-hard to check. This implies that there is likely
no efficient way to verify them for deterministic matrices, and raises some questions
about their practical applications. Next, we move away from the worst-case analysis
entailed by NP-hardness, and consider an average-case, non-adversarial analysis. We
show that theweakest of these conditions, �q sensitivity, has some desirable properties,
including that it holds with high probability in well-behaved random design models,
and that it is preserved under certain data processing operations.

1.2 Formal Introduction

We now turn to a more formal and thorough introduction. The context of this paper
is that high-dimensional data analysis is becoming commonplace in statistics and
machine learning. Recent research shows that estimation of high-dimensional para-
meters may be possible if they are suitably sparse. For instance, in linear regression
wheremost of the regression coefficients are zero, popular estimators such as the Lasso
[8,24], SCAD [14], and the Dantzig selector [6] can have small estimation error—as
long as the matrix of covariates is sufficiently “regular.”

There is a large number of suitable regularity conditions, starting with the incoher-
ence condition of Donoho and Huo [12], followed by more sophisticated properties
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Regularity Properties for Sparse Regression 3

such as Candes and Tao’s restricted isometry property (“RIP”) [7], Bickel, Ritov and
Tsybakov’s weaker and more general restricted eigenvalue (RE) condition [3], and
Gautier and Tsybakov’s even more general �q sensitivity properties [15], which also
apply to instrumental variables regression.

While it is known that these properties lead to desirable guarantees on the per-
formance of popular statistical methods, it is largely unknown whether they hold in
practice. Even more, it is not known how to efficiently check if they hold for any given
dataset. Due to their combinatorial nature, it is thought that they may be computation-
ally hard to verify [11,19,23]. The assumed difficulty of the computation hasmotivated
convex relaxations for approximating the restricted isometry constant [10,17] and �q
sensitivity [15].

However, a rigorous proof is missing. A proof would be desirable for several rea-
sons: (1) to show definitively that there is no computational “shortcut” to find their
values, (2) to increase our understanding of why these conditions are difficult to check,
and therefore (3) to guide the development of the future theory of sparse regression,
based instead on efficiently verifiable conditions.

In this paper we provide such a proof. We show that checking any of the RE, com-
patibility, and �q sensitivity properties for general data matrices is NP-hard (Theorem
3.1). This implies that there is no polynomial-time algorithm to verify them, under
the widely believed assumption that P �= NP. This raises some questions about the
relevance of these conditions to practical data analysis.

We do not attempt to give a definitive answer here, and instead provide some
positive results to enhance our understanding of these conditions. While the previous
NP-hardness analysis referred to a worst-case scenario, we next take an average-case,
non-adversarial perspective. Previous authors studied RIP, RE, and compatibility from
this perspective, as well as the relations between these conditions [27]. We study �q
sensitivity, for two reasons: First, it is more general than other regularity properties
in terms of the correlation structures it can capture, and thus potentially applicable to
more highly correlated data. Second, it applies not just to ordinary linear regression,
but also to instrumental variables regression, which is relevant in applications such as
economics.

Finding conditions under which �q sensitivity holds is valuable for several reasons:
(1) since it is hard to check the condition computationally on any given dataset, it
is desirable to have some other way to ascertain it, even if that method is somewhat
speculative, and (2) it helps us to compare the situations—and statistical models—
where this condition is most suitable to the cases where the other conditions are
applicable, and thus better understand its scope.

Hence, to increase our understanding of when �q sensitivity may be relevant, we
perform a probabilistic—or “average case”—analysis, and consider a model where
the data is randomly sampled from suitable distributions. In this case, we show that
there is a natural “population” condition which is sufficient to ensure that �q sensi-
tivity holds with high probability (Theorem 3.2). This complements the results for
RIP [e.g., [20,28]], and RE [19,22]. Further, we define an explicit k-comprehensive
property (Definition 3.3) which implies �1 sensitivity (Theorem 3.4). Such a condition
is of interest because there are very few explicit examples where one can ascertain
that �q sensitivity holds.
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4 E. Dobriban, J. Fan

Finally, we show that the �q sensitivity property is preserved under several data
processing steps that may be used in practice (Proposition 3.5). This shows that, while
it is initially hard to ascertain this property, it may be somewhat robust to downstream
data processing.

We introduce the problem in Sect. 2. Then, in Sect. 3 we present our results, with
a discussion in Sect. 4, and provide the proofs in Sect. 5.

2 Setup

We introduce the problems and properties studied, followed by some notions from
computational complexity.

2.1 Regression Problems and Estimators

Consider the linear model Y = Xβ + ε, where Y is an n × 1 response vector, X is an
n × p matrix of p covariates, β is a p × 1 vector of coefficients, and ε is an n × 1
noise vector of independent N (0, σ 2) entries. The observables are Y and X , where X
may be deterministic or random, and we want to estimate the fixed unknown β. Below
we will briefly present the modeling and the estimation procedures that are required,
while for the full details we refer to the original publications.

In the case when n < p, it is common to assume sparsity, viz., most of the coordi-
nates of β are zero. We do not know the locations of nonzero coordinates. A popular
estimator in this case is the Lasso [8,24], which for a given regularization parameter
λ solves the optimization problem:

β̂Lasso = argmin
β

1

2n
|Y − Xβ|22 + λ

p∑

i=1

|βi |.

The Dantzig selector is another estimator for this problem, which for a known noise
level σ , and with a tuning parameter A, takes the form [6]:

β̂Dantzig = argmin |β|1, subject to
∣∣∣∣
1

n
XT(Y − Xβ)

∣∣∣∣∞
≤ σ A

√
2 log(p)

n
.

See [13] for a view from the perspective of the sparsest solution in high-confidence
set, and its generalizations.

In instrumental variables regression we start with the same linear model y =∑p
i=1 xiβi + ε. Now some covariates xi may be correlated with the noise ε, in which

case they are called endogenous. Further,wehave additional variables zi , i = 1, . . . , L ,
called instruments, that are uncorrelated with the noise. In addition to X , we observe
n independent samples of zi , which are arranged in the n× L matrix Z . In this setting,
[15] propose the self-tuning instrumental variables (STIV) estimator, a generalization
of the Dantzig selector, which solves the optimization problem:
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min
(β,σ )∈I

(
|D−1

X β|1 + cσ
)

, (2.1)

with theminimum over the polytope I = {(β, σ ) ∈ R
p+1 : n−1|DZ ZT(Y−Xβ)|∞ ≤

σ A
√
2 log(L)/n, Q(β) ≤ σ 2}. Here DX and DZ are diagonal matrices with

(DX )−1
i i = maxk=1,...,n |xki |, (DZ )−1

i i = maxk=1,...,n |zki |, Q(β) = n−1|Y − Xβ|22,
and c is a constant whose choice is described in [15]. When X is exogenous, we can
take Z = X , which reduces to Dantzig type of selector.

2.2 Regularity Properties

The performance of the above estimators is characterized under certain “regularity
properties.” These depend on the union of cones C(s, α)—called “the cone” for
brevity—which is the set of vectors, such that the �1 norm is concentrated on some s
coordinates:

C(s, α) = {v ∈ R
p : ∃S ⊂ {1, . . . , p}, |S| = s, α|vS|1 ≥ |vSc |1},

where vA is the subvector of v with the entries from the subset A.
The properties discussed here depend on a triplet of parameters (s, α, γ ), where s

is the sparsity size of the problem, α is the cone opening parameter in C(s, α), and γ

is the lower bound. First, the restricted eigenvalue condition RE(s, α, γ ) from [3,16]
holds for a fixed matrix X if

|Xv|2
|vS|2 ≥ γ, for all v ∈ C(s, α), α|vS |1 ≥ |vSc |1.

We emphasize that this property, and the ones below, are defined for arbitrary
deterministicmatrices—but laterwewill consider them for randomly sampled data. [3]
shows that if the normalized data matrix n−1/2X obeys RE(s, α, γ ) and β is s-sparse,
then the estimation error is small in the sense that |β̂ − β|2 = OP

(
γ −2√s log p/n

)

and |β̂ − β|1 = OP
(
γ −2s

√
log p/n

)
, for both the Dantzig and Lasso selectors. See

[13] for more general results and simpler arguments. The “cone opening” α required
in the RE property equals 1 for the Dantzig selector, and 3 for the Lasso.

Next, the deterministic matrix X obeys the compatibility condition with positive
parameters (s, α, γ ) [26], if

√
s|Xv|2
|vS|1 ≥ γ, for all v ∈ C(s, α), α|vS |1 ≥ |vSc |1.

The two conditions are very similar. The only difference is the change from �2 to �1
norm in the denominator. The inequality |vS|1 ≤ √

s|vS|2 shows that the compatibility
conditions are—formally at least—weaker than the RE assumptions. van de Geer [26]
provides an �1 oracle inequality for the Lasso under the compatibility condition, see
also [4,27].
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6 E. Dobriban, J. Fan

Finally, for q ≥ 1, the deterministic matrices X of size n × p and Z of size n × L
satisfy the �q sensitivity property with parameters (s, α, γ ), if

s1/q |n−1ZTXv|∞
|v|q ≥ γ, for all v ∈ C(s, α).

If Z = X , the definition is similar to the cone invertibility factors [29]. Gautier
and Tsybakov [15] show that �q sensitivity is weaker than the RE and compatibility
conditions,meaning that in the special casewhen Z = X , theRE property of X implies
the �q sensitivity of X . We note that the definition in [15] differs in normalization,
but that is not essential. The details are that we have an additional s1/q factor (this is
to ensure direct comparability to the other conditions), and we do not normalize by
the diagonal matrices DX , DZ for simplicity (to avoid the dependencies introduced
by this process). One can easily show that the un-normalized �q condition is sufficient
for the good performance of an un-normalized version of the STIV estimator.

Finally, we introduce incoherence and the restricted isometry property, which are
not analyzed in this paper, but are instead used for illustration purposes. For a deter-
ministic n × p matrix X whose columns {X j }pj=1 are normalized to length

√
n, the

mutual incoherence condition holds if XT
i X j ≤ γ /s for some positive γ . Such a

notion was defined in [12], and later used by Bunea [5] to derive oracle inequalities
for the Lasso.

A deterministic matrix X obeys the restricted isometry property with parameters s
and δ if (1 − δ)|v|22 ≤ |Xv|22 ≤ (1 + δ)|v|22 for all s-sparse vectors v [7].

2.3 Notions from Computational Complexity

To state formally that the regularity conditions are hard to verify, we need some basic
notions from computational complexity theory. Here problems are classified accord-
ing to the computational resources—such as time and memory—needed to solve them
[1]. A well-known complexity class is P, consisting of the problems decidable in poly-
nomial time in the size of the input. For input encoded in n bits, a yes or no answer
must be found in time O(nk) for some fixed k. A larger class is NP, the decision prob-
lems for which already existing solutions can be verified in polynomial time. This is
usually much easier than solving the question itself in polynomial time. For instance,
the subset-sum problem: “Given an input set of integers, does there exist a subset with
zero sum?” is in NP, since one can easily check a candidate solution—a subset of the
given integers—to see if it indeed sums to zero. However, finding this subset seems
harder, as simply enumerating all subsets is not a polynomial-time algorithm.

Formally, the definition of NP requires that if the answer is yes, then there exists an
easily verifiable proof.WehaveP⊂NP, since a polynomial-time solution is a certificate
verifiable in polynomial time. However, it is a famous open problem to decide if P
equals NP [9]. It is widely believed in the complexity community that P �= NP.

To compare the computational hardness of various problems, one can reduce known
hard problems to the novel questions of interest, thereby demonstrating the difficulty
of the novel problems. Specifically, a problem A is polynomial-time reducible to a
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Regularity Properties for Sparse Regression 7

problem B, if an oracle solving B—an immediate solver for an instance of B—can be
queried once to give a polynomial-time algorithm to solve A. This is also known as a
polynomial-time many-one reduction, strong reduction, or Karp reduction. A problem
is NP-hard if every problem in NP reduces to it, namely it is at least as difficult as all
other problems in NP. If one reduces a known NP-hard problem to a new question,
this demonstrates the NP-hardness of the new problem.

If indeed P �= NP, then there are no polynomial-time algorithms for NP-hard prob-
lems, implying that these are indeed computationally difficult.

3 Results

3.1 Computational Complexity

We now show that the common conditions needed for successful sparse estimation are
unfortunately NP-hard to verify. These conditions appear prominently in the theory
of high-dimensional statistics, large-scale machine learning, and compressed sensing.
In compressed sensing, one can often choose, or “engineer,” the matrix of covariates
such that it is as regular as possible—choosing for instance a matrix with iid Gaussian
entries. It is well known that the restricted isometry property and its cousins will then
hold with high probability.

In contrast, in statistics and machine learning, the data matrix is often
observational—or “given to us”—in the application. In this case, it is not known a
priori whether the matrix is regular, and one may be tempted to try and verify it.
Unfortunately, our results show that this is hard. This distinction between compressed
sensing and statistical data analysis was the main motivation for us to write this paper,
after the computational difficulty of verifying the restricted isometry property has
been established in the information theory literature [2]. We think that researchers in
high-dimensional statistics will benefit from the broader view which shows that not
just RIP, but also RE, �q sensitivity, etc., are hard to check. Formally:

Theorem 3.1 Let X be an n× p matrix, Z an n× L matrix, 0 < s < n, and α, γ > 0.
It is NP-hard to decide any of the following problems:

1. Does X obey the RE condition with parameters (s, α, γ )?
2. Does X satisfy the compatibility conditions with parameters (s, α, γ )?
3. Does (X, Z) have the �q sensitivity property with parameters (s, α, γ )?

The proof of Theorem 3.1 is relegated to Sect. 5.1, and builds on the recent results
that computing the spark and checking restricted isometry are NP-hard [2,25].

3.2 �q Sensitivity for Correlated Designs

Since it is hard to check the properties in the worst case on a generic data matrix,
it may be interesting to know that they hold at least under certain conditions. To
understand when this may occur, we consider probabilistic models for the data, which
amounts to an average-case analysis. This type of analysis is common in statistics.
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8 E. Dobriban, J. Fan

To this end, we first need to define a “population” version of �q sensitivity that refers
to the parent population from which the data is sampled. Let X and Z be p- and
L-dimensional zero-mean random vectors and denote by Ψ = E Z XT the L × p
matrix of covariances with Ψi j = E(Zi X j ). We say that Ψ satisfies the �q sensitivity
property with parameters (s, α, γ ) if minv∈C(s,α) s1/q |Ψ v|∞ /|v|q ≥ γ . One sees that
we simply replaced n−1Z XT from the original definition with its expectation, Ψ .

It is then expected that for sufficiently large samples, random matrices with rows
sampled independently from a population with the �q sensitivity property will inherit
this condition. However, it is non-trivial to understand the required sample size, and its
dependence on the moments of the random quantities. To state precisely the required
probabilistic assumptions, we recall that the sub-gaussian norm of a random variable
is defined as ‖X‖ψ2 = supp≥1 p

−1/2(E|X |p)1/p (see e.g., [28]). The sub-gaussian
norm (or sub-gaussian constant) of a p-dimensional random vector X is then defined
as ‖X‖ψ2 = supx :‖x‖2=1 ‖〈X , x〉‖ψ2 .

Our result establishes sufficient conditions for �q sensitivity to hold for random
matrices, under three broad conditions including sub-gaussianity:

Theorem 3.2 Let X and Z be zero-mean random vectors, such that the matrix of pop-
ulation covariances Ψ satisfies the �q sensitivity property with parameters (s, α, γ ).
Given n iid samples and any a, δ > 0, the matrix Ψ̂ = n−1ZTX has the �q sensitivity
property with parameters (s, α, γ − δ), with high probability, in each of the following
settings:

1. If X and Z are sub-gaussian with fixed constants, then sample �q sensitivity holds
with probability at least 1 − (2pL)−a , provided that the sample size is at least
n ≥ cs2 log(2pL).

2. If the entries of the vectors are bounded by fixed constants, the same statement
holds.

3. If the entries have bounded moments: E|Xi |4r < Cx < ∞, E|Z j |4r < Cz < ∞
for some positive integer r and all i , j , then the �q sensitivity property holds
with probability at least 1 − 1/na , assuming the sample size is at least n1−a/r ≥
cs2(pL)1/r .

The constant c does not depend on n, L , p and s, and it is given in the proofs in
Sect. 5.2.

The general statement of the theorem is applicable to the specific casewhere Z = X .
Related results have been obtained for the RIP [20,22] and RE conditions [19,22].
Our results complement theirs for a weaker notion of �q sensitivity property.

Next, we aim to achieve a better understanding of the population �q sensitivity prop-
erty by giving some explicit sufficient conditions where it holds. Modeling covariance
matrices in high dimensions are challenging, as there are few known explicit models.
For instance, the examples given in [19] to illustrate RE are quite limited, and include
only diagonal, diagonal plus rank one, and ARMA covariance matrices. Therefore
we think that the explicit conditions below are of interest, even if they are somewhat
abstract.

We start from the case when Z = X , in which case Ψ is the covariance matrix of
X . In particular, if Ψ equals the identity matrix Ip or nearly the identity, then Ψ is
�q -sensitive. Inspired by this diagonal case, we introduce a more general condition.
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Regularity Properties for Sparse Regression 9

Definition 3.3 The L × p matrix Ψ is called s-comprehensive if for any subset S ⊂
{1, . . . , p} of size s, and for each pattern of signs ε ∈ {−1, 1}S , there exists either a
row w of Ψ such that sgn(wi ) = εi for i ∈ S, and wi = 0 otherwise, or a row with
sgn(wi ) = −εi for i ∈ S, and wi = 0 otherwise.

In particular, when L = p, diagonal matrices with nonzero diagonal entries are
1-comprehensive. More generally, when L �= p, we have by simple counting the
inequality L ≥ 2s−1

(p
s

)
, which shows that the number of instruments L must be large

for the s-comprehensive property to be applicable. In problems where there are many
potential instruments, this may be reasonable. To go back to our main point, we show
that an s-comprehensive covariance matrix is �1-sensitive.

Theorem 3.4 Suppose the L × p matrix of covariances Ψ is s-comprehensive, and
that all nonzero entries in Ψ have absolute value at least c > 0. Then Ψ obeys the �1
sensitivity property with parameters s, α, and γ = sc/(1 + α).

The proof of Theorem 3.4 is found in Sect. 5.3. The theorem presents a trade-off
between the number of instruments L and their strength, by showing that with a large
subset size s—and thus L—a smaller minimum strength c is required to achieve the
same �1 sensitivity lower bound γ .

Finally, to improve our understanding of the relationship between the various con-
ditions, we now give several examples. They show that �q sensitivity is more general
than the rest. The proofs of the following claims can be found in Sect. 5.4.

Example 1 If Σ is a diagonal matrix with entries d1, d2, . . . , dp, then the restricted
isometry property holds if 1 + δ ≥ di ≥ 1 − δ for all i . RE only requires di ≥ γ ;
the same is required for compatibility. This example shows why restricted isometry
is the most stringent requirement. Further, �1 sensitivity holds even if a finite number
of di go to zero at rate 1/s. In this case, all other regularity conditions fail. This is an
example where lq regularity holds under broader conditions than the others.

The next examples further delineate between the various properties.

Example 2 For the equal correlations model Σ = (1 − ρ)Ip + ρeeT, with e =
(1, . . . , 1)T, restricted isometry requires ρ < 1/(s−1). In contrast, RE, compatibility,
and �q sensitivity hold for any ρ, and the resulting lower bound γ is 1−ρ (see [19,27]).

Example 3 If Σ has diagonal entries equal to 1, σ12 = σ21 = ρ, and all other entries
are equal to zero, then compatibility and �1 sensitivity hold as long as 1 − ρ � 1/s
(Sect. 5.4). In such a case, however, the REs are of order 1/s. This is an example where
compatibility and �1 sensitivity hold but the RE condition fails.

3.3 Operations Preserving Regularity

In data analysis, one often processes data by normalization or feature merging. Nor-
malization is performed to bring variables to the same scale. Features are merged via
sparse linear combinations to reduce dimension and avoid multicollinearity. Our final
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10 E. Dobriban, J. Fan

result shows that �q sensitivity is preserved under the above operations, and even more
general ones. This may be of interest in cases where downstream data processing is
performed after an initial step where the regularity conditions are ascertained.

Let X and Z be as above. First, note that the �q sensitivity only depends on the inner
products Z XT, therefore it is preserved under simultaneous orthogonal transforma-
tions on each covariate X ′ = MX , Z ′ = MZ for any orthogonal matrix M . The next
result defines broader classes of transformations that preserve �q sensitivity. Admit-
tedly the transformations we consider are abstract, but they include some concrete
examples, and represent a simple first step to understanding what kind of data process-
ing steps are “admissible” and do not destroy regularity. Furthermore, the result is very
elementary, but the goal here is not technical sophistication, but rather increasing our
understanding of the behavior of an important property. The precise statement is:

Proposition 3.5 1. Let M be a cone-preserving linear transformation R
p → R

q ,
such that for all v ∈ C(s, α) we have Mv ∈ C(s′, α′) and let X ′ = XM. Suppose
further that |Mv|q ≥ c|v|q for all v inC(s, α). If (X, Z) has the �q sensitivity prop-
erty with parameters (s′, α′, γ ), then (X ′, Z) has �q sensitivity with parameters
(s, α, cγ ).

2. Let M be a linear transformation RL → R
T such that for all v, |Mv|∞ ≥ c|v|∞.

If we transform Z ′ = ZM , and (X, Z) has the �q sensitivity property with lower
bound γ , then (X, Z ′) has the same property with lower bound cγ .

One can check that normalization and feature merging on the X matrix are special
cases of the first class of “cone-preserving” transformations. For normalization, M
is the p × p diagonal matrix of inverses of the lengths of X ’s columns. Similarly,
normalization on the Z matrix is a special case of the second class of transformations.
This shows that our definitions include some concrete commonly performed data
processing steps.

4 Discussion

Our work raises further questions about the theoretical foundations of sparse linear
models. What is a good condition to have at the core of the theory? The regularity
properties discussed in this paper yield statistical performance guarantees for popular
methods such as the Lasso and the Dantzig selector. However, they are not efficiently
verifiable. In contrast, incoherence can be checked efficiently, but does not guarantee
performance up to the optimal rate [4]. It may be of interest to investigate if there are
intermediate conditions that achieve favorable trade-offs.

5 Proofs

5.1 Proof of Theorem 3.1

The spark of a matrix X , denoted spark(X), is the smallest number of linearly depen-
dent columns. Our proof is a polynomial-time reduction from the NP-hard problem
of computing the spark of a matrix (see [2,25] and references therein).
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Regularity Properties for Sparse Regression 11

Lemma 5.1 Given an n × p matrix with integer entries X , and a sparsity size 0 <

s < p, it is NP-hard to decide if the spark of X is at most s.

Wealso need the following technical lemma, which provides bounds on the singular
values of matrices with bounded integer entries. For a matrix X , we denote by ‖X‖2
or ‖X‖ its operator norm, and by XS the submatrix of X formed by the columns with
indices in S.

Lemma 5.2 Let X be an n × p matrix with integer entries, and denote M =
maxi, j |Xi j |. Then, we have ‖X‖2 ≤ 2�log2(√npM)�. Further, if spark(X) > s for
some 0 < s < n, then for subset S ⊂ {1, . . . , p} with |S| = s, we have

λmin(X
T
S XS) ≥ 2−2n�log2(nM)�.

Proof The first claim follows from: ‖X‖2 ≤ √
np‖X‖max ≤ 2�log2(√npM)�.

For the second claim, let XS denote a submatrix of X with an arbitrary index set S of
size s. Then spark(X) > s implies that XS is non-singular. Since the absolute values of
the entries of X lie in {0, . . . , M}, the entries of XT

S XS are integerswith absolute values
between 0 and nM2, namely ‖XT

S XS‖max ≤ nM2. Moreover, since the non-negative
and nonzero determinant of XT

S XS is integer, it must be at least 1. Hence,

1 ≤
s∏

i=1

λi (X
T
S XS) ≤ λmin(X

T
S XS)λmax(X

T
S XS)

s−1

≤ λmin(X
T
S XS)(s‖XT

S XS‖max)
s−1.

Rearranging, we get

λmin(X
T
S XS) ≥ (snM2)−s+1 ≥ (nM)−2n ≥ 2−2n�log2(nM)�.

In the middle inequality we have used s ≤ n. This is the desired bound. ��
For the proof we need the notion of encoding length, which is the size in bits of

an object. Thus, an integer M has size �log2(M)� bits. Hence the size of the matrix
X is at least np + �log2(M)�: at least one bit for each entry, and �log2(M)� bits to
represent the largest entry. To ensure that the reduction is polynomial-time, we need
that the size in bits of the objects involved is polynomial in the size of the input X . As
usual in computational complexity, the numbers here are rational [1].

Proof of Theorem 3.1 It is enough to prove the result for the special case of X with
integer entries, since this statement is in fact stronger than the general case, which also
includes rational entries. For each property and given sparsity size s, we will exhibit
parameters (α, γ ) of polynomial size in bits, such that:

1. spark(X) ≤ s �⇒ X does not obey the regularity property with parameters
(α, γ ),

2. spark(X) > s �⇒ X obeys the regularity property with parameters (α, γ ).
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12 E. Dobriban, J. Fan

Hence, any polynomial-time algorithm for deciding if the regularity property holds
for (X, s, α, γ ), can decide if spark(X) ≤ s with one call. Here it is crucial that
(α, γ ) are polynomial in the size of X , so that the whole reduction is polynomial in X .
Since deciding spark(X) ≤ s is NP-hard by Theorem 3.1, this shows the desired NP-
hardness of checking the conditions. Now we provide the required parameters (α, γ )

for each regularity condition. Similar ideas are used when comparing the conditions.
For the restricted eigenvalue condition, the first claim follows any γ > 0, and any

α > 0. To see this, if the spark of X at most s, there is a nonzero s-sparse vector v in
the kernel of X , and |Xv|2 = 0 < γ |vS|2, where S is any set containing the nonzero
coordinates. This v is clearly also in the cone C(s, α), and so X does not obey RE
with parameters (s, α, γ ).

For the second claim, note that if spark(X) > s, then for each index set S of size
s, the submatrix XS is non-singular. This implies a nonzero lower bound on the RE
constant of X . Indeed, consider a vector v in the coneC(s, α), and assume specifically
that α|vS|1 ≥ |vSc |1. Using the identity Xv = XSvS + XScvSc , we have

|Xv|2 = |XSvS + XScvSc |2 ≥ |XSvS|2 − |XScvSc |2
≥

√
λmin(XT

S XS)|vS|2 − ‖XSc‖2|vSc |2.

Further, since v is in the cone, we have

|vSc |2 ≤ |vSc |1 ≤ α|vS|1 ≤ α
√
s|vS|2. (5.1)

Since XS is non-degenerate and integer-valued, we can use the bounds fromLemma
5.2. Consequently, with M = ‖X‖max, we obtain

|Xv|2 ≥ |vS|2
(√

λmin(XT
S XS) − ‖XSc‖α√

s

)

≥ |vS|2
(
2−n�log2(nM)� − 2�log2(√npM)�α

√
s
)

.

By choosing, say, α = 2−2n�log2(npM)�, γ = 2−2n�log2(npM)�, we easily conclude
after some computations that |Xv|2 ≥ γ |vS|2. Moreover, the size in bits of the para-
meters is polynomially related to that of X . Indeed, the size in bits of both parameters
is 2n�log2(npM)�, and the size of X is at least np + �log2(M)�, as discussed before
the proof. Note that 2n�log2(npM)� ≤ (np + �log2(M)�)2. This proves the claim.

The argument for the compatibility conditions is identical, and therefore omitted.
Finally, for the �q sensitivity property, we in fact show that the subproblem where

Z = X is NP-hard, thus the full problem is also clearly NP-hard. The first condition
is again satisfied for all α > 0 and γ > 0. Indeed, if the spark of X is at most s, there
is a nonzero s-sparse vector v in its kernel, and thus |XTXv|∞ = 0.

For the second condition, we note that |Xv|22 = vTXTXv ≤ |v|1|XTXv|∞. For v

in the cone, α|vS|1 ≥ |vSc |1 and hence

|v|2 ≥ |vS|2 ≥ 1√
s
|vS|1 ≥ 1√

s(1 + α)
|v|1.
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Regularity Properties for Sparse Regression 13

Combination of the last two results gives

s|XTXv|∞
n|v|1 ≥ s|Xv|22

n|v|21
≥ 1

n(1 + α)2

|Xv|22
|v|22

.

Finally, sinceq ≥ 1,wehave |v|1 ≥ |v|q , and asv is in the cone, |v|22 = |vS|22+|vSc |22 ≤
(1 + α2s)|vS|22, by inequality (5.1). Therefore,

s1/q |XTXv|∞
n|v|q ≥ s1/q−1

n(1 + α)2(1 + α2s)

|Xv|22
|vS|22

.

Hence we essentially reduced to REs. From the proof of that case, the choice
α = 2−2n�log2(npM)� gives |Xv|2/|vS|2 ≥ 2−2n�log2(npM)�. Hence for this α we also
have s1/q |XTXv|∞/(n|v|2) ≥ 2−5(n+1)�log2(npM)�, where we have applied a number
of coarse bounds. Thus X obeys the �q sensitivity property with the parameters α =
2−2n�log2(npM)� and γ = 2−5n�log2(npM)�. As in the previous case, the size in bits of
these parameters is polynomial in the size in bits of X . This proves the correctness of
the reduction for, and completes the proof. ��

5.2 Proof of Theorem 3.2

We first establish some large deviation inequalities for random inner products, then
finish the proofs directly by a union bound. We discuss the three probabilistic settings
one by one.

5.2.1 Sub-Gaussian Variables

Lemma 5.3 (deviation of inner products for sub-Gaussians) Let X and Z be zero-
mean sub-gaussian random variables, with sub-gaussian norms ‖X‖ψ2 , ‖Z‖ψ2 ,
respectively. Then, given n iid samples of X and Z , the sample covariance satisfies
the tail bound:

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi Zi − E(X Z)

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−cnmin(t/K , t2/K 2)).

where K := 4‖X‖ψ2‖Z‖ψ2 .

Proof We use the Bernstein-type inequality in Corollary 5.17 from [28]. Recalling
that the sub-exponential norm of a random vector X is ‖X‖ψ1 = supp≥1 p

−1‖X‖p,
we need to bound the sub-exponential norms ofUi = Xi Zi −E(Xi Zi ). We show that
if X, Z are sub-Gaussian, then X Z has sub-exponential norm bounded by

‖X Z‖ψ1 ≤ 2‖X‖ψ2‖Z‖ψ2 . (5.2)
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14 E. Dobriban, J. Fan

Indeed by the Cauchy–Schwartz inequality (E|X Z |p)2 ≤ E|X |2pE|Z |2p, hence
p−1 (E|X Z |p)1/p ≤ 2(2p)−1/2

(
E|X |2p)1/2p (2p)−1/2

(
E|Z |2p)1/2p. Taking the

supremum over p ≥ 1/2 leads to (5.2).
The Ui are iid random variables, and their sub-exponential norm is bounded

as ‖Ui‖ψ1 ≤ ‖Xi Zi‖ψ1 + |EX Z | ≤ 2‖X‖ψ2‖Z‖ψ2 + (
EX2

EZ2
)1/2

. Further,

by definition
(
EX2

)1/2 ≤ √
2‖X‖ψ2 , hence the sub-exponential norm is at most

‖Ui‖ψ1 ≤ 4‖X‖ψ2‖Z‖ψ2 . The main result then follows by a direct application of
Bernstein’s inequality, see Corollary 5.17 from [28]. ��

With these preparations, we now prove Theorem 3.2 for the sub-gaussian case. By
a union bound over the Lp entries of the matrix Ψ − Ψ̂

P(‖Ψ − Ψ̂ ‖max ≥ t) ≤
∑

i, j

P(|Ψi, j − Ψ̂i, j | ≥ t) ≤ Lpmax
i, j

P(|Ψi, j − Ψ̂i, j | ≥ t).

By Lemma 5.3 each probability is bounded by a term of the form 2 exp(−cn
min(t/K , t2/K 2)), where K varies with i, j . The largest of these bounds corresponds
to the largest of the K − s. Hence the K in the largest term is 4maxi, j ‖Xi‖Ψ2‖Z j‖Ψ2 .
By the definition of sub-gaussian norm, this is at most 4‖X‖Ψ2 ‖Z‖Ψ2 , where the
X and Z are now p and L-dimensional vectors, respectively. Therefore we have the
uniform bound

P(‖Ψ − Ψ̂ ‖max ≥ t) ≤ 2Lp exp(−cnmin(t/K , t2/K 2)) (5.3)

with K = 4‖X‖Ψ2‖Z‖Ψ2 .
We choose t such that (a + 1) log(2Lp) = cnt2/K 2, that is t = K [(a +

1) log(2Lp)/cn]1/2. Since we can assume (a + 1) log(2Lp) ≤ cn by assumption,
the relevant term is the one quadratic in t : the total probability of error is (2Lp)−a .
From now on, we will work on the high-probability event that ‖Ψ − Ψ̂ ‖max ≤ t .

For any vector v, |Ψ v|∞ −
∣∣∣Ψ̂ v

∣∣∣∞ ≤
∣∣∣(Ψ − Ψ̂ )v

∣∣∣∞ ≤ ‖Ψ − Ψ̂ ‖max|v|1 ≤ t |v|1.
With high probability it holds uniformly for all v that

∣∣∣Ψ̂ v

∣∣∣∞ ≥ |Ψ v|∞ − R

√
log(2pL)

n
|v|1 (5.4)

for the constant R =
√
K 2(a + 1)/c.

For vectors v in C(s, α), we bound the �1 norm by the �q norm, q ≥ 1, in the usual
way, to get a term depending on s rather than on all p coordinates:

|v|1 ≤ (1 + α)|vS|1 ≤ (1 + α)s1−1/q |vS|q ≤ (1 + α)s1−1/q |v|q . (5.5)

Introducing this into (5.4) gives with high probability over all v ∈ C(s, α):

s1/q
∣∣∣Ψ̂ v

∣∣∣∞
|v|q ≥ s1/q |Ψ v|∞

|v|q − R(1 + α)s

√
log(2pL)

n
.
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Regularity Properties for Sparse Regression 15

If we choose n such that n ≥ K 2(1+a)(1+α)2s2 log(2pL)/(cδ2), then the second
term will be at most δ. Further since Ψ obeys the �q sensitivity assumption, the first
term will be at least γ . This shows that Ψ̂ satisfies the �q sensitivity assumption with
constant γ − δ with high probability, and finishes the proof. To summarize, it suffices
if the sample size is at least

n ≥ log(2pL)(a + 1)

c
max

(
1,

K 2(1 + α)2

δ2
s2

)
. (5.6)

5.2.2 Bounded Variables

If the components of the vectors X, Z are bounded, then essentially the sameproof goes
through. The sub-exponential norm of Xi Z j − E(Xi Z j ) is bounded—by a different
argument—because |Xi Z j − E(Xi Z j )| ≤ 2CxCz , hence ‖Xi Z j − E(Xi Z j )‖Ψ1 ≤
2CxCz . Hence Lemma 5.3 holds with the same proof, where now the value of K :=
2CxCz is different. The rest of the proof only relies on Lemma 5.3, so it goes through
unchanged.

5.2.3 Variables with Bounded Moments

For variates with bounded moments, we also need a large deviation inequality for
inner products. The general flow of the argument is classical, and relies on theMarkov
inequality and amoment-of-sumcomputation (e.g., [18]). The result is a generalization
of a lemma used in covariance matrix estimation [21], and our proof is shorter.

Lemma 5.4 (deviation for bounded moments—Khintchine–Rosenthal) Let X and Z
be zero-mean random variables, and r a positive integer, such that EX4r = Cx ,
EZ4r = Cz. Given n iid samples from X and Z , the sample covariance satisfies the
tail bound:

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi Zi − E(X Z)

∣∣∣∣∣ ≥ t

)
≤ 22r r2r

√
CxCz

t2r nr
.

Proof Let Yi = Xi Zi − EX Z , and k = 2r . By the Markov inequality, we have

P

(∣∣∣∣∣
1

n

n∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ E

∣∣∑n
i=1 Yi

∣∣k

(tn)k
.

We now bound the k-th moment of the sum
∑n

i=1 Yi using a type of classical
argument, often referred to as Khintchine’s or Rosenthal’s inequality. We can write,
recalling that k = 2r is even,

E

∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣

k

=
∑

i1,i2,...,ik∈{1,...,n}
E(Yi1Yi2 . . . Yik ). (5.7)
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16 E. Dobriban, J. Fan

By independence of Yi , we haveE(Ya1
1 Ya2

2 . . . Yan
n ) = EYa1

1 EYa2
2 . . .EYan

n . AsEYi =
0, the summands for which there is a Yi singleton vanish. For the remaining terms, we
bound by Jensen’s inequality (E|Y |r1)1/r1 ≤ (E|Y |r2)1/r2 for 0 ≤ r1 ≤ r2. So each
term is bounded by (E|Y |k)a1/k . . . (E|Y |k)an/k = E|Y |k .

Hence, each nonzero term in (5.7) is uniformly bounded. We count the number of
sequences of non-negative integers (a1, . . . , an) that sum to k, and such that if some
ai > 0, then ai ≥ 2. Thus, there are at most k/2 = r nonzero elements. This shows
that the number of such sequences is not more than the number of ways to choose r
places out of n, multiplied by the number of ways to distribute 2r elements among
those places, which can be bounded by

(n
r

)
r2r ≤ nrr2r . Thus, we have proved that

E
∣∣∑n

i=1 Yi
∣∣2r ≤ nrr2rE|Y |2r .

We can make this even more explicit by the Minkowski and Jensen inequalities:

E|Y |k = E|Xi Zi − EXi Zi |k ≤ (
(E|Xi Zi |k)1/k + E|Xi Zi |

)k ≤ 2kE|Xi Zi |k . Com-

bining this with E|Xi Zi |k ≤ √
E|Xi |2kE|Zi |2k = √

CxCz leads to the desired bound
P

(∣∣ 1
n

∑n
i=1 Yi

∣∣ ≥ t
) ≤ 22r r2r

√
CxCz/(t2r nr ). ��

To prove Theorem 3.2, we note that by a union bound, the probability that ‖Ψ −
Ψ̂ ‖max ≥ t is at most Lp22r r2r

√
CxCz/(t2r nr ). Since r is fixed, for simplicity of

notation, we can denoteC2r
0 = 22r r2r

√
CxCz . Choosing t =C0(Lp)1/2r n−1/2+a/(2r),

the above probability is at most 1/na .

The bound |Ψ v|∞ −
∣∣∣Ψ̂ v

∣∣∣∞ ≤
∣∣∣(Ψ − Ψ̂ )v

∣∣∣∞ ≤ ‖Ψ − Ψ̂ ‖max|v|1 holds as before,
so we conclude that with probability 1 − 1/na , for all v ∈ C(s, α):

s1/q
∣∣∣Ψ̂ v

∣∣∣∞
|v|q ≥ s1/q |Ψ v|∞

|v|q − (1 + α)st.

From the choice of t , for sample size at least n1−a/r ≥ C2
0 (1 + α)2(Lp)1/r s2/(δ2),

the error term on the left-hand side is at most δ, which is what we need. ��

5.3 Proof of Theorem 3.4

To bound the term |Ψ v|∞ in the �1 sensitivity, we use the s-comprehensive property.
For any v ∈ C(s, α), by the symmetry of the s-comprehensive property, we can assume
without loss of generality that |v1| ≥ |v2| ≥ · · · ≥ |vp|. Then if S denotes the first s
components, α|vS|1 ≥ |vSc |1.

Consider the sign pattern of the top s components of v: ε = (sgn(v1), . . . , sgn(vs)).
Since Ψ is s-comprehensive, it has a row w with matching sign pattern. Then we can
compute

〈w, v〉 =
∑

i∈S
|wi |sgn(wi )vi =

∑

i∈S
|wi |sgn(vi )vi =

∑

i∈S
|wi ||vi |.

Hence the inner product is lower bounded by mini∈S |wi | ∑i∈S |vi | ≥ c
∑

i∈S |vi |.
Combining the above, we get the desired bound:

123



Regularity Properties for Sparse Regression 17

s|〈w, v〉|
|v|1 ≥ sc|vS|1

(1 + α)|vS|1 = cs

(1 + α)
. ��

5.4 Proof of Claims in Examples 1, 3

We bound the �1 sensitivity for the two specific covariance matrices Σ . For the diag-
onal matrix in Example 1, with entries d1, . . . , dp > 0, we have m = |Σv|∞ =
max(|d1v1|, . . . , |dpvp|). Then summing |vi | ≤ m/di for i in any set S with size
s, we get |vS|1 ≤ m

∑
i∈S 1/di . To bound this quantity for v ∈ C(s, α), let S

be the subset of dominating coordinates for which |vSc |1 ≤ α|vS|1. It follows that
|v|1 ≤ (1 + α)|vS|1 ≤ (1 + α)m

∑
i∈S 1/di . Therefore

s|Σv|∞
|v|1 ≥ s

(1 + α)
∑

i∈S 1/di
≥ 1

(1 + α)s−1
∑s

i=1 1/d(i)
,

where {d(i)}pi=1 is the order of {di }pi=1, arranged from the smallest to the largest. The
harmonic average in the lower bound can be bounded away from zero even several
di -s are of order O(1/s). For instance if d(1) = · · · = d(k) = 1/s and d(k+1) > 1/c for
some constant c and integer k < s, then the �1 sensitivity is at least s|Σv|∞/|v|1 ≥
1/[(1+α)(k+(1−k/s)c)],which is bounded away from zero whenever k is bounded.
In this setting the smallest eigenvalue of Σ is 1/s, so only the �1 sensitivity holds out
of all regularity properties.

For the covariance matrix in Example 3,

m = |Σv|∞ = max(|v1 + ρv2|, |v2 + ρv1|, |v3|, . . . , |vp|).

The coordinate v1 can be bounded as follows:

|v1| =
∣∣∣∣

1

1 − ρ2 (v1 + ρv2) − ρ

1 − ρ2 (ρv1 + v2)

∣∣∣∣ ≤ m

(
1

1 − ρ2 + ρ

1 − ρ2

)

leading to |v1| ≤ m/(1 − ρ). Similarly |v2| ≤ m/(1 − ρ). Furthermore, For each
i /∈ {1, 2}, we have |vi | ≤ m. Thus, for any set S, |vS|1 ≤ m[2/(1 − ρ) + s − 2]. For
any v ∈ C(s, α), |v|1 ≤ (1 + α)|vS|1 ≤ (1 + α)m (2/(1 − ρ) + s − 2) leading to a
lower bound on the �1 sensitivity:

s|Σv|∞
|v|1 ≥ s

(1 + α)(2/(1 − ρ) + s − 2)
.

If 1 − ρ = 1/s, this bound is at least 1/3(1 + α), showing that �1 sensitivity holds.
However, the smallest eigenvalue is also 1−ρ = 1/s, so the other regularity properties
(restricted eigenvalue, compatibility), fail to hold as s → ∞. ��

123



18 E. Dobriban, J. Fan

5.5 Proof of Proposition 3.5

For the first claim, note (Z ′)TX ′v = ZTX (Mv). If v is any vector in the coneC(s, α),
we have Mv ∈ C(s′, α′) by the cone-preserving property. Hence by the �q sensitivity
of X, Z s1/q |n−1ZTX (Mv)|∞/|Mv|q ≥ γ.Multiplying this by |Mv|q ≥ c|v|q yields
the �q sensitivity for X ′, Z .

For the second claim, we write (Z ′)TX ′v = MZTXv. By the �q sensitivity
of X, Z , for all v ∈ C(s, α), s1/q |n−1ZTXv|∞/|v|q ≥ γ. Multiplying this by
n−1|MZTXv|∞ ≥ cn−1|ZTXv|∞ finishes the proof. ��
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