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Abstract We study mean-field type optimal stochastic control problem for systems
governed bymean-field controlled forward–backward stochastic differential equations
with jump processes, in which the coefficients depend on the marginal law of the state
process through its expected value. The control variable is allowed to enter both dif-
fusion and jump coefficients. Moreover, the cost functional is also of mean-field type.
Necessary conditions for optimal control for these systems in the form of maximum
principle are established by means of convex perturbation techniques. As an applica-
tion, time-inconsistentmean-variance portfolio selectionmixedwith a recursive utility
functional optimization problem is discussed to illustrate the theoretical results.
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1 Introduction

In this paper, we consider stochastic optimal control for systems governed by non-
linear mean-field controlled forward–backward stochastic differential equations with
Poisson jump processes (FBSDEJs) of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t) = f (t, x(t), E(x(t)), u(t)) dt + σ (t, x(t), E(x(t)), u(t)) dW (t)

+ ∫

Θ
c(t, x(t−), E(x(t−)), u(t), θ)N (dθ, dt) ,

dy(t) = − ∫

Θ
g(t, x(t), E(x(t)), y(t), E(y(t)), z(t), E(z(t)), r (t, θ) ,

u(t))μ (dθ) dt + z(t)dW (t) + ∫

Θ
r (t, θ) N (dθ, dt) ,

x(0) = ζ, y(T ) = h (x(T ), E (x(T ))) ,

(1.1)

where f, σ, c, g, h are given maps and the initial condition ζ is an F0-measurable
random variable. The mean-field FBSDEJs-(1.1) called McKean–Vlasov systems are
obtained as the mean square limit of an interacting particle system of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx j
n (t) = f (t, x j

n (t), 1
n

n∑

i=1
xin(t), u(t))dt

+σ(t, x j
n (t), 1

n

n∑

i=1
xin(t), u(t))dW j (t)

+ ∫

Θ
c(t, x j

n (t−), 1
n

n∑

i=1
xin(t−), u(t), θ)N j (dθ, dt) ,

dy j
n (t) = − ∫

Θ
g(t, x j

n (t), 1
n

n∑

i=1
xin(t), y

j
n (t), 1

n

n∑

i=1
yin(t), z

j
n(t),

1
n

n∑

i=1
zin(t), r(t, θ), u(t))μ (dθ) dt

+z jn(t)dW j (t) + ∫

Θ
r (t, θ) N j (dθ, dt) ,

where (W j (·): j≥1) is a collection of independent Brownian motions and (N j (·, ·)
: j ≥ 1) is a collection of independent Poisson martingale measure. Noting that
mean-field FBSDEJs-(1.1) occur naturally in the probabilistic analysis of financial
optimization problems and the optimal control of dynamics of the McKean–Vlasov
type. Moreover, the above mathematical mean-field approaches play an important role
in different fields of economics, finance, physics, chemistry and game theory.

The expected cost to be minimized over the class of admissible control has the
form

J (u(·)) = E

[∫ T

0

∫

Θ

�(t, x(t), E(x(t)), y(t), E(y(t)), z(t), E(z(t)),

r (t, θ) , u(t)) μ (dθ) dt + φ (x(T ), E(x(T ))) + ϕ (y(0), E (y(0)))] ,

(1.2)

where �, φ, ϕ is an appropriate functions. This cost functional is also of mean-
field type, as the functions �, φ, ϕ depend on the marginal law of the state process
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through its expected value. It is worth mentioning that since the cost functional J
is possibly a nonlinear function of the expected value stands in contrast to the stan-
dard formulation of a control problem. This leads to the so-called time-inconsistent
control problem where the Bellman dynamic programming does not hold. The rea-
son for this is that one cannot apply the law of iterated expectations on the cost
functional.

An admissible control u(·) is an Ft -adapted and square-integrable process with
values in a nonempty convex subset A of �. We denote by U ([0, T ]) the set of all
admissible controls. Any admissible control u∗(·) ∈ U ([0, T ]) satisfying

J
(
u∗(·)) = inf

u(·)∈U([0,T ])
J (u(·)) , (1.3)

is called an optimal control.
The mean-field stochastic differential equation was introduced by Kac [1] as a

stochastic model for the Vlasov kinetic equation of plasma and the study of this
model was initiated by McKean [2]. Since then, many authors made contributions
on mean-field stochastic problems and their applications, see for instance [3–23].
In a recent paper, mean-field games for large population multi-agent systems with
Markov jump parameters have been investigated in Wang and Zhang [3]. Decentral-
ized tracking-type games for large population multi-agent systems with mean-field
coupling have been studied in Li and Zhang [4]. Discrete-time indefinite mean-
field linear-quadratic optimal control problem has been investigated in Ni et al. [5].
Discrete time mean-field stochastic linear-quadratic optimal control problems with
applications have been derived by Elliott et al. [6]. In Buckdahn, Li and Peng [7], a
general notion of mean-field BSDE associated with a mean-field SDE was obtained
in a natural way as a limit of some high-dimensional system of FBSDEs governed
by a d-dimensional Brownian motion, and influenced by positions of a large num-
ber of other particles. In Buckdahn et al. [8], a general maximum principle was
introduced for a class of stochastic control problems involving SDEs of mean-field
type. However, sufficient conditions of optimality for mean-field SDE have been
established by Shi [9]. In Meyer-Brandis, ∅ksendal and Zhou [10], a stochastic max-
imum principle of optimality for systems governed by controlled Itô-Levy process
of mean-field type was proved using Malliavin calculus. Mean-field singular sto-
chastic control problems have been investigated in Hafayed and Abbas [11]. More
interestingly, mean-field type stochastic maximum principle for optimal singular con-
trol has been studied in Hafayed [12], in which convex perturbations used for both
absolutely continuous and singular components. The maximum principle for opti-
mal control of mean-field FBSDEJs with uncontrolled diffusion has been studied in
Hafayed [13]. The necessary and sufficient conditions for near-optimality of mean-
field jump diffusions with applications have been derived by Hafayed et al. [14].
Singular optimal control for mean-field forward–backward stochastic systems and
applications to finance have been investigated in Hafayed [15]. Second-order neces-
sary conditions for optimal control of mean-field jump diffusion have been obtained
by Hafayed and Abbas [16]. Under partial information, mean-field type stochastic
maximum principle for optimal control has been investigated in Wang, Zhang and
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166 M. Hafayed et al.

Zhang [17]. Under the condition that the control domain is convex, Andersson and
Djehiche [18] and Li [19] investigated problems for two types of more general con-
trolled SDEs and cost functionals, respectively. The linear-quadratic optimal control
problem for mean-field SDEs has been studied by Yong [20] and Shi [9]. The mean-
field stochastic maximum principle for jump diffusions with applications has been
investigated in Shen and Siu [21] Recently, maximum principle for mean-field jump
diffusions stochastic delay differential equations and its applications to finance have
been derived by Yang, Meng and Shi [22]. Mean-field optimal control for backward
stochastic evolution equations in Hilbert spaces has been investigated in Xu and Wu
[23].

The optimal control problems for stochastic systems described by Brownian
motions and Poisson jumps have been investigated by many authors including
[24,25,27–30]. The necessary and sufficient conditions of optimality for FBSDEJs
were obtained by Shi and Wu [24]. General maximum principle for fully coupled
FBSDEJs has been obtained in Shi [25], where the author generalized Yong’s maxi-
mum principle [26] to jump case.

In this paper, our main goal is to derive a maximum principle for optimal stochastic
control of mean-field FBSDEJs, where the coefficient depends not only on the state
process but also its marginal law of the state process through its expected value. The
cost functional is also of mean-field type. Our mean-field control problem is not
simple extension from the mathematical point of view, but also provide interesting
models in many applications such as mathematical finance; (mean-variance portfolio
selection problems), optimal control for mean-field systems. The proof of our result
is based on convex perturbation method. These necessary conditions are described in
terms of two adjoint processes, corresponding to themean-field forward and backward
components with jumps and a maximum conditions on the Hamiltonian. In the end, as
an application to finance, a mean-variance portfolio selection mixed with a recursive
utility optimization problem is given,where explicit expression of the optimal portfolio
selection strategy is obtained in feedback form involving both state process and its
marginal distribution, via the solutions of Riccati ordinary differential equations. To
streamline the presentation of this paper, we only study the 1-dimensional case.

The rest of this paper is structured as follows. In Sect. 2, we formulate the mean-
field stochastic control problem and describe the assumptions of the model. Section 3
is devoted to prove our mean-field stochastic maximum principle. As an illustration,
using these results, a mean-variance portfolio selection mixed problem with recursive
utility (time-inconsistent solution) is discussed in the last Sect. 4.

2 Problem Statement and Preliminaries

We consider stochastic optimal control problem of mean-field type of the following
kind. Let T > 0 be a fixed time horizon and (Ω,F , (Ft )t∈[0,T ] , P) be a fixed fil-
tered probability space equipped with a P-completed right continuous filtration on
which a 1-dimensional Brownian motion W = (W (t))t∈[0,T ] is defined. Let η be a

123



Mean-Field Maximum Principle for Optimal Control... 167

homogeneous (Ft )-Poisson point process independent ofW . We denote by Ñ (dθ, dt)
the random counting measure induced by η, defined on Θ × �+, where Θ is a fixed
nonempty subset of � with its Borel σ -field B (Θ). Further, let μ (dθ) be the local
characteristic measure of η, i.e., μ (dθ) is a σ -finite measure on (Θ,B (Θ)) with
μ (Θ) < +∞. We then define N (dθ, dt) := Ñ (dθ, dt) − μ (dθ) dt, where N (·, ·) is
Poisson martingale measure on B (Θ) × B (�+) with local characteristics μ (dθ) dt.
We assume that (Ft )t∈[0,T ] is P-augmentation of the natural filtration (F (W,N )

t )t∈[0,T ]
defined as follows

F (W,N )
t := σ (W (s) : s∈ [0, t]) ∨ σ

(∫ s

0

∫

B
N (dθ, dr) : s∈ [0, t] , B∈B (Θ)

)

∨G0,

where G0 denotes the totality of P-null sets, and σ1 ∨σ2 denotes the σ -field generated
by σ1 ∪ σ2.

In the sequel, L2
F ([0, T ] ; �) denotes the Hilbert space of Ft -adapted processes

(X (t))t∈[0,T ] such that E
∫ T
0 |X (t)|2 dt < +∞ and M2

F ([0, T ] ; �) denote the
Hilbert space ofFt -predictable processes (ψ (t, θ))t∈[0,T ] defined on [0, T ]×Θ such
that E

∫ T
0

∫

Θ
|ψ (t, θ)|2 μ(θ)dt < +∞. In what follows, C represents a generic con-

stants, which can be different from line to line. For simplicity of notation, we still use
fx (t) = ∂ f

∂x (t, x∗(·), E(x∗(·)), u∗(·)), etc.
Throughout this paper, we also assume that the functions f, σ : [0, T ]× � × � ×

A → �, c : [0, T ]×�×A×Θ → �, g, � : [0, T ]×�×�×�×�×�×�×�×A →
� and h, φ, ϕ : � × � → � satisfy the following standing assumptions:
Assumption (H1) 1. The functions f, σ and c are global Lipschitz in (x, x̃, u) and g
is global Lipschitz in (x, x̃, y, ỹ, z, z̃, r, u).
2. The functions f, σ, �, c, g, h, φ andϕ are continuously differentiable in their vari-
ables including (x, x̃, y, ỹ, z, z̃, r, u).
Assumption (H2) 1. The derivatives of f, σ, g, φ with respect to their variables includ-
ing (x, x̃, y, ỹ, z, z̃, r, u) are bounded, and

∫

Θ

(|cx (t, x, x̃, u, θ)|2 + |cx̃ (t, x, x̃, u, θ)|2 + |cu (t, x, x̃, u, θ)|2)μ (dθ) < +∞.

2. The derivatives bρ are bounded by C(1+|x |+ |̃x |+ |y|+ |̃y|+ |z|+ |̃y|+ |r |+ |u|)
for ρ = x, x̃, y, ỹ, z, z̃, r, u and b = f, σ, g, c, �. Moreover, ϕy, ϕỹ are bounded by
C (1 + |y| + |̃y|) and hx , hx̃ are bounded by C (1 + |x | + |̃x |) .

3. For all t ∈ [0, T ] , f (t, 0, 0, 0), g(t, 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2
F ([0, T ] ; �) , σ (t, 0,

0, 0) ∈ L2
F ([0, T ] ; � × �) and c(t, 0, 0, 0, ·) ∈ M2

F ([0, T ] ; �) .

Under the assumptions (H1) and (H2), the FBSDEJ-(1.1) has a unique solution
(x(t), y(t), z(t), r(t, ·)) ∈ L2

F ([0, T ] ; �) × L2
F ([0, T ] ; �) × L2

F ([0, T ] ; �) ×
L2
F ([0, T ] ; �). (See [21, Theorem 3.1], for mean-field BSDE with jumps)
For anyu(·) ∈ U ([0, T ])with its corresponding state trajectories (x (·) , y (·) , z (·) ,

r(·, ·)) we introduce the following adjoint equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΨ (t) = −{ fx (t) Ψ (t) + E( fx̃ (t) Ψ (t)) + σx (t) Q(t) + E(σx̃ (t) Q(t))

+ ∫

Θ
[gx (t, θ)K (t) + E(gx̃ (t, θ)K (t)) + cx (t, θ) R (t, θ)

+E(cx̃ (t, θ)R (t, θ)) + �x (t, θ) + E(�x̃ (t, θ))]μ (dθ)}dt
+Q(t)dW (t) + ∫

Θ
Rt (θ) N (dθ, dt) ,

Ψ (T ) = −[hx (x(T ), E(x(T ))) K (T ) + E(hx̃ (x(T ), E(x(T ))) K (T ))]
+φx (x(T ), E(x(T ))) + E(φx̃ (x(T ), E(x(T )))),

dK (t) = ∫

Θ
[gy (t, θ) K (t) + E(gỹ (t, θ) K (t)) − �y(t, θ) − E(�ỹ (t, θ))]μ (dθ) dt

+ ∫

Θ
[gz(t, θ)K (t) + E(g̃z(t, θ)K (t)) − �z(t, θ)−E (�̃z (t, θ))]μ (dθ) dW (t)

+ ∫

Θ
(gr (t, θ)K (t) − �r (t, θ))N (dθ, dt),

K (0) = −(ϕy (0) + E(ϕỹ (0))).
(2.1)

Note that thefirst adjoint equation (backward) corresponding to the forward component
turns out to be a linear mean-field backward SDE with jumps, and the second adjoint
equation (forward) corresponding to the backward component turns out to be a linear
mean-field (forward) SDE with jump processes. Further, we define the Hamiltonian
function

H : [0, T ] × � × � × � × � × � × � × � × A × � × � × � × � → �,

associated with the stochastic control problems (1.1) and (1.2) as follows

H (t, x, x̃, y, ỹ, z, z̃, r, u, Ψ, Q, K , R) := Ψ (t) f (t, x, x̃, u) + Q(t)σ (t, x, x̃, u)

−
∫

Θ

[K (t)g (t, x, x̃, y, ỹ, z, z̃, r, u) + R (t, θ) c (t, x, x̃, u, θ))

+ � (t, x, x̃, y, ỹ, z, z̃, r, u)]μ (dθ) . (2.2)

If we denote by

H(t) :=H(t, x(t), x̃(t), y(t), ỹ(t), z(t), z̃(t), r(t, ·), u(t), Ψ (t), Q(t), K (t), R(t, ·)),

then the adjoint equation (2.1) can be rewritten as the following stochastic Hamiltonian
system’s type

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−dΨ (t)=(Hx (t)+E(Hx̃ (t)))dt−Q(t)dW (t)−∫

Θ
R (t, θ) N (dθ, dt) ,

Ψ (T )=−[hx (x(T ), E(x(T ))) K (T )+E(hx̃ (x(T ), E(xT (t)))K (T ))]
+φx (x(T ), E(x(T ))) + E(φx̃ (x(T ), E(x(T )))).

−dK (t) = (Hy (t) + E(Hỹ (t)))dt + (Hz (t) + E (H̃z (t)))dW (t)
+ ∫

Θ
Hr (t, θ) N (dθ, dt)

K (0) = −(ϕy (0) + E(ϕỹ (0))).

(2.3)

Thanks to Lemma 3.1 in Shen and Siu [21], under assumptions (H1) and (H2), the
adjoint equations (2.1) admit a unique solution (Ψ (t), Q(t), K (t), R(t, ·)) such that
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(Ψ (t), Q(t), K (t), R(t, ·))
∈ L2

F ([0, T ] ; �) × L2
F ([0, T ] ; �) × L2

F ([0, T ] ; �) × M2
F ([0, T ] ; �).

Moreover, since the derivatives of f, σ, c, g, h, ϕ, φ with respect to x, x̃, y, ỹ, z, z̃, r
are bounded, we deduce from standard arguments that there exists a constant C > 0
such that

E

{

sup
t∈[0,T ]

|Ψ (t)|2+ sup
t∈[0,T ]

|K (t)|2+
∫ T

0
|Q(t)|2 dt+

∫ T

0

∫

Θ

|R (t, θ)|2 μ (dθ) dt

}

<C.

(2.4)

3 Mean-Field Type Necessary Conditions for Optimal Control of
FBSDEJs

In this section, we establish a set of necessary conditions of Pontraygin’s type for
a stochastic control to be optimal where the system evolves according to nonlinear
controlled mean-field FBSDEJs. Convex perturbation techniques are applied to prove
our mean-field stochastic maximum principle.

The following theorem constitutes the main contribution of this paper.
Let (x∗(·), y∗(·), z∗(·), r∗(·, ·)) be the trajectory of the mean-field FBSDEJ-(1.1)

corresponding to the optimal control u∗(·), and (Ψ ∗(·), Q∗(·), K ∗(·), R∗(·, ·)) be the
solution of adjoint equation (2.1) corresponding to u∗(·).
Theorem 3.1 (Maximum principle for mean-field FBSDEJs) Let Assumptions (H1)
and (H2) hold. If (u∗(·), x∗(·), y∗(·), z∗(·), r∗(·, ·)) is an optimal solution of the mean-
field control problems (1.1) and (1.2). Then the maximum principle holds, that is
∀u ∈ A

Hu
(
t, λ∗(t, θ), u∗,Λ∗(t, θ)

)
(u − u∗(t)) ≥ 0, P − a.s., a.e., t ∈ [0, T ] , (3.1)

where λ∗(t, θ) = (x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗(t, θ)) and
Λ∗(t, θ) = (Ψ ∗(t), Q∗(t), K ∗(t), R∗(t, θ)).

We derive the variational inequality (3.1) in several steps, from the fact that

J
(
uε(·)) ≥ J

(
u∗(·)) . (3.2)

Since the control domain A is convex and for any given admissible control u(·) ∈
U([0, T ]) the following perturbed control process

uε(t) = u∗(t) + ε
(
u(t) − u∗(t)

)
,

is also an element of U([0, T ]).
Let λε(t, θ) = (xε(t), yε(t), zε(t), rε(t, θ)) be the solution of state equation (1.1)

andΛε(t, θ) = (Ψ ε (t) , Qε (t) , K ε (t) , Rε (t, θ)) be the solution of the adjoint equa-
tion (2.1) corresponding to perturbed control uε(·).
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170 M. Hafayed et al.

Variational equations. We introduce the following variational equations which have
a mean-field type. Let

(
xε
1(·), yε

1(·), zε1(·), rε
1 (·, ·)

)
be the solution of the following

forward–backward stochastic system described by Brownian motions and Poisson
jumps of mean-field type

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε
1(t) = {

fx (t)xε
1(t) + fx̃ (t)E(xε

1(t)) + fu(t)u(t)
}
dt

+ {
σx (t)xε

1(t) + σx̃ (t)E
(
xε
1(t)

) + σu(t)u(t)
}
dW (t)

+ ∫

Θ
[cx (t, θ)xε

1(t) + cx̃ (t, θ)E(xε
1(t)) + cu(t, θ)u(t)]N (dθ, dt),

xε
1(0) = 0,

dyε
1(t) = − ∫

Θ
{gx (t, θ)xε

1(t) + gx̃ (t, θ)E(xε
1(t)) + gy(t, θ)yε

1(t)

+gỹ(t, θ)E(yε
1(t)) + gz(t, θ)zε1(t) + g̃z(t, θ)E(zε1(t)) + gr (t, θ)rε

1 (t, θ)

+gu(t, θ)u(t)}μ(dθ)dt + zε1(t)dW (t) + ∫

Θ
rε
1 (t, θ)N (dθ, dt),

yε
1(T ) = − [hx (T ) + E(hx̃ (T ))] xε

1(T ).

(3.3)
Duality relations. Our first Lemma below deals with the duality relations between
Ψ ∗(t), xε

1(t) and K ∗(t), yε
1(t). This Lemma is very important for the proof of Theo-

rem 3.1.

Lemma 3.2 We have

E
(
Ψ ∗(T )xε

1(T )
) = E

∫ T

0
[Ψ ∗(t) fu(t)u(t) + Q∗(t)σu(t)u(t)

+
∫

Θ

R∗(t, θ)cu(t, θ)u(t)μ(dθ)]dt

−E
∫ T

0

∫

Θ

{
xε
1(t)gx (t, θ)K (t)

+xε
1(t)E(gx̃ (t, θ)K (t)) + xε

1(t)�x (t, θ)

+xε
1(t)E(�x̃ (t, θ))

}
μ(dθ)dt, (3.4)

similarly, we get

E
(
K ∗(T )yε

1(T )
) = −E

{[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε
1(0)

}

+E
∫ T

0

∫

Θ

{
K ∗(t)gx (t, θ)xε

1(t) + K ∗(t)gx̃ (t, θ)E
(
xε
1(t)

)

−K ∗(t)gu(t, θ)u(t) − yε
1(t)�y(t, θ) − yε

1(t)E(�ỹ(t, θ))

− zε1(t)�z(t, θ) − zε1(t)E(�̃z(t, θ)) − rε
1 (t, θ)�r (t, θ)

}
μ(dθ)dt,

(3.5)

and

E
{
[φx (x(T ), E(x(T ))) + E(φx̃ (x(T ), E(x(T ))))] xε

1(T )
}

+E
{[ϕy (y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε

1(0)
}
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= E
∫ T

0

∫

Θ

{
xε
1(t)�x (t, θ) + xε

1(t)E(�x̃ (t, θ)) − yε
1(t)�y(t, θ)

−yε
1(t)E(�ỹ(t, θ)) − zε1(t)�z(t, θ) − zε1(t)E(�̃z(t, θ))

− rε
1 (t, θ)�r (t, θ) − �u(t, θ)u(t)

}
μ(dθ)dt + E

∫ T

0
Hu(t)u(t)dt. (3.6)

Proof By applying integration by parts formula for jump processes (see Lemma 6.1)
to Ψ ∗(t)xε

1(t), we get

E
(
Ψ ∗(T )xε

1(T )
) = E

∫ T

0
Ψ ∗(t)dxε

1(t) + E
∫ T

0
xε
1(t)dΨ

∗(t)

+E
∫ T

0
Q∗(t)

[
σx (t)x

ε
1(t) + σx̃ (t)E

(
xε
1(t)

) + σu(t)u(t)
]
dt

+E
∫ T

0

∫

Θ

[
cx (t, θ)xε

1(t) + cx̃ (t, θ)E(xε
1(t))

+ cu(t, θ)u(t)] R(t, θ)μ(dθ)dt

= I ε
1 + I ε

2 + I ε
3 + I ε

4 . (3.7)

A simple computation shows that

I ε
1 = E

∫ T

0
Ψ ∗(t)dxε

1(t)

= E
∫ T

0

{
Ψ ∗(t) fx (t)xε

1(t)+Ψ ∗(t) fx̃ (t)E
(
xε
1(t)

)+Ψ ∗(t) fu (t) u(t)
}
dt, (3.8)

and

I ε
2 = E

∫ T

0
xε
1(t)dΨ

∗(t) = −E
∫ T

0

{
xε
1(t) fx (t) Ψ ∗(t) + xε

1(t)E
(
fx̃ (t)Ψ

∗(t)
)

+xε
1(t)σx (t) Q∗(t) + xε

1(t)E
(
σx̃ (t)Q

∗(t)
)

+
∫

Θ

[
xε
1(t)gx (t, θ) K ∗(t) + xε

1(t)E
(
gx̃ (t, θ)K ∗(t)

)

+xε
1(t)cx (t, θ) R (t, θ) + xε

1(t)E(cx̃ (t, θ) R (t, θ))

+ xε
1(t)�x (t, θ) + xε

1(t)E(�x̃ (t, θ))
]
μ (dθ)

}
dt. (3.9)

From (3.7), we get

I ε
3 = E

∫ T

0
Q∗(t)

[
σx (t)x

ε
1(t) + σx̃ (t)E

(
xε
1(t)

) + σu(t)u(t)
]
dt

= E
∫ T

0
Q∗(t)σx (t)xε

1(t)dt + E
∫ T

0
Q∗(t)σx̃ (t)E

(
xε
1(t)

)
dt
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+E
∫ T

0
Q∗(t)σu(t)u(t)dt

I ε
4 = E

∫ T

0

∫

Θ

[cx (t, θ)xε
1(t) + cx̃ (t, θ)E(xε

1(t))

+cu(t, θ)u(t)]R(t, θ)μ(dθ)dt

= E
∫ T

0

∫

Θ

cx (t, θ)xε
1(t)R(t, θ)μ(dθ)dt

+E
∫ T

0

∫

Θ

cx̃ (t, θ)E(xε
1(t))R(t, θ)μ(dθ)dt

+E
∫ T

0

∫

Θ

cu(t, θ)u(t)R(t, θ)μ(dθ)dt. (3.10)

The duality relation (3.4) follows immediately from combining (3.8)–(3.10) and (3.7).
Let us turn to second duality relation (3.5). By applying integration by parts formula

for jump process (Lemma 6.1) to K ∗(t)yε
1(t), we get

E
(
K ∗(T )yε

1(T )
) = E

(
K ∗(0)yε

1(0)
)+E

∫ T

0

(
K ∗(t)dyε

1(t)
)+E

∫ T

0

(
yε
1(t)dK

∗(t)
)

+E
∫ T

0

∫

Θ

zε1(t)[gz(t, θ)K ∗(t) + E
(
g̃z(t, θ)K ∗(t)

)

−�z(t, θ) − E (�̃z (t, θ))]μ (dθ) dt

+E
∫ T

0

∫

Θ

[
rε
1 (t, θ)(gr (t, θ)K ∗(t) − �r (t, θ))

]
μ(dθ)dt.

= I ε
1 + I ε

2 + I ε
3 + I ε

4 + I ε
5 . (3.11)

From (3.4), we obtain

I ε
2 = E

∫ T

0
K ∗(t)dyε

1(t)

= −E
∫ T

0

∫

Θ

{
K ∗(t)gx (t, θ)xε

1(t) + K ∗(t)gx̃ (t, θ)E
(
xε
1(t)

)

+K ∗(t)gy(t, θ)yε
1(t) + K ∗(t)gỹ(t, θ)E

(
yε
1(t)

) + K ∗(t)gz(t, θ)zε1(t)

+K ∗(t)g̃z(t, θ)E
(
zε1(t)

) + K ∗(t)gr (t, θ)rε
1 (t, θ)

+ K ∗(t)gu(t, θ)u(t)
}
μ(dθ)dt, (3.12)

from (2.1), we obtain

I ε
3 = E

∫ T

0
yε
1(t)dK

∗(t) = E
∫ T

0

∫

Θ

{yε
1(t)gy (t, θ) K ∗(t) + yε

1(t)E(gỹ(t, θ)K ∗(t))

−yε
1(t)�y(t, θ) − yε

1(t)E(�ỹ (t, θ))}μ(dθ)dt, (3.13)
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and

I ε
4 = E

∫ T

0

∫

Θ

[
zε1(t)gz(t, θ)K ∗(t) + zε1(t)E

(
g̃z(t, θ)K ∗(t)

)

− zε1(t)�z(t, θ) − zε1(t)E (�̃z (t, θ))
]
μ(dθ)dt,

I ε
5 = E

∫ T

0

∫

Θ

{
rε
1 (t, θ)gr (t, θ)K ∗(t) − rε

1 (t, θ)�r (t, θ)
}
μ(dθ)dt. (3.14)

Since

I ε
1 = E

(
K ∗(0)yε

1(0)
)

= −E
{[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε

1(0)
}
,

the duality relation (3.5) follows immediately by combining (3.12)–(3.14) and (3.11).
Let us turn to (3.6). Combining (3.4) and (3.5) we get

E
(
Ψ ∗(T )xε

1(T )
) + E

(
K ∗(T )yε

1(T )
)

= −E[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0)))]yε
1(0)

+E
∫ T

0

∫

Θ

{
xε
1(t)�x (t, θ) + xε

1(t)E(�x̃ (t, θ)) − �y(t, θ) − E(�ỹ(t, θ))

−�u(t, θ)u(t) − �z(t, θ) − E(�̃z(t, θ)) − rε
1 (t, θ)�r (t, θ)

}
μ(dθ)dt

+E
∫ T

0
Hu(t)u(t)dt.

From (2.3) and (3.3), we get

E
(
Ψ ∗(T )xε

1(T )
) + E

(
K ∗(T )yε

1(T )
)

= [φx (x(T ), E(x(T ))) + E(φx̃ (x(T ), E(x(T )))] xε
1(T ).

Using (2.2), we obtain

E
∫ T

0
{Ψ (t) fu (t) u(t) + Q(t)σu (t) u(t)

+
∫

Θ

[−K (t)gu (t) u(t) + R (t, θ) cu (t, θ) u(t))

+ �u (t, θ) u(t)]μ (dθ)} dt = E
∫ T

0
Hu (t) u(t)dt,

which implies that

E
{
[φx (x(T ), E(x(T ))) + E(φx̃ (x(T ), E(x(T ))))] xε

1(T )
}

+E
{[ϕy (y(0), E(y(0))) + E(ϕỹ (y(0), E(y(0))))]yε

1(0)
}
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= E
∫ T

0

∫

Θ

{
xε
1(t)�x (t, θ) + xε

1(t)E(�x̃ (t, θ))

−yε
1(t)�y(t, θ) − yε

1(t)E(�ỹ(t, θ)) − zε1(t)�z(t, θ) − zε1(t)E(�̃z(t, θ))

− rε
1 (t, θ)�r (t, θ) − �u(t, θ)u(t)

}
μ(dθ)dt + E

∫ T

0
Hu(t)u(t)dt.

This completes the proof of (3.6). �

The second Lemma presents the estimates of the perturbed state process (xε(·),

yε(·), zε(·), rε(·, ·)).
Lemma 3.3 Under assumptions (H1) and (H2), the following estimations hold

E

(

sup
0≤t≤T

∣
∣xε

1(t)
∣
∣2

)

→ 0, as ε → 0,

E

(

sup
0≤t≤T

∣
∣yε

1(t)
∣
∣2

)

+ E
∫ T

0
[∣∣zε1(s)

∣
∣2

+
∫

Θ

∣
∣rε
1 (s, θ)

∣
∣2 μ(dθ)]ds → 0, as ε → 0, (3.15)

sup
0≤t≤T

∣
∣E

(
xε
1(t)

)∣
∣2 → 0, as ε → 0,

sup
0≤t≤T

∣
∣E

(
yε
1(t)

)∣
∣2 +

∫ T

t

∣
∣E

(
zε1(s)

)∣
∣2 ds

+
∫ T

0

∫

Θ

∣
∣E

(
rε
1 (s, θ)

)∣
∣2 μ(dθ)ds → 0, as ε → 0, . (3.16)

E

(

sup
0≤t≤T

∣
∣xε(t) − x∗(t)

∣
∣2

)

→ 0, as ε → 0,

E

(

sup
0≤t≤T

∣
∣yε(t) − y∗(t)

∣
∣2

)

+ E

(∫ T

0

∣
∣zε(t) − z∗(t)

∣
∣2

)

dt

+E
∫ T

0

∫

Θ

∣
∣rε(t, θ) − r∗(t, θ)

∣
∣2 μ(dθ)dt → 0, as ε → 0, (3.17)

and

E

(

sup
0≤t≤T

∣
∣
∣
∣
1

ε

[
xε(t) − x∗(t)

] − xε
1(t)

∣
∣
∣
∣

2
)

→ 0, as ε → 0,

E

(

sup
0≤t≤T

∣
∣
∣
∣
1

ε

[
yε(t) − y∗(t)

] − yε
1(t)

∣
∣
∣
∣

2
)

→ 0, as ε → 0,

E
∫ T

0

∣
∣
∣
∣
1

ε

[
zε(s) − z∗(s)

] − zε1(s)

∣
∣
∣
∣

2

ds → 0, as ε → 0,
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E
∫ T

0

∫

Θ

∣
∣
∣
∣
1

ε

[
rε(s, θ)−r∗(s, θ)

]−rε
1 (s, θ)

∣
∣
∣
∣

2

μ(dθ)ds → 0, as ε → 0.

(3.18)

Let us also point out that the above estimates (3.15)–(3.17) can be proved using similar
arguments developed in ([21, Lemmas 4.2 and 4.3]) and ([24, Lemmas 2.1]). So we
omit their proofs.

Proof of (3.18). We set

x̂ε(t) = 1

ε

[
xε(t) − x∗(t)

] − xε
1(t),

ŷε(t) = 1

ε

[
yε(t) − y∗(t)

] − yε
1(t),

ẑε(t) = 1

ε

[
zε(t) − z∗(t)

] − zε1(t),

r̂ε(t, θ) = 1

ε

[
rε(t, θ) − r∗(t, θ)

] − rε
1 (t, θ), (3.19)

and

f (t) = f (t, x∗(t), E(x∗(t)), u∗(t)), σ (t) = σ(t, x∗(t), E(x∗(t)), u∗(t)),
c(t, θ) = c(t, x∗(t), E(x∗(t)), u∗(t), θ)

g(t, θ) = g(x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗(t, θ), u∗(t)).

From Eq. (1.1) we have

dx̂ε(t) = 1

ε

[
dxε(t) − dx∗(t)

] − dxε
1(t)

= 1

ε
[ f (t, x∗(t)+ε(̂xε(t)+xε

1(t)), E(x∗(t)+ε(̂xε(t)+xε
1(t)), u

ε(t))− f (t)]dt
− [

fx (t)x
ε
1(t) + fx̃ (t)E

(
xε
1(t)) + fu(t)u(t)

)]
dt

+1

ε
[σ(t, x∗(t) + ε(̂xε(t) + xε

1(t)), E(x∗(t) + ε(̂xε(t) + xε
1(t))), u

ε(t))

−σ(t)]dW (t) − [
σx (t)x

ε
1(t) + σx̃ (t)E

(
xε
1(t)

) + σu(t)u(t)
]
dW (t)

+
∫

Θ

[c(t, x∗(t) + ε(̂xε(t)+xε
1(t)), E(x∗(t)+ε(̂xε(t) + xε

1(t))), u
ε(t), θ)

−c(t, θ)]N (dθ, dt) −
∫

Θ

[cx (t, θ)xε
1(t) + cx̃ (t, θ)E(xε

1(t))

+cu(t, θ)u(t)]N (dθ, dt). (3.20)

We denote

xλ,ε(t) = x∗(t) + λε(̂xε(t) + xε
1(t)),

yλ,ε(t) = y∗(t) + λε(ŷε(t) + yε
1(t)),
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zλ,ε(t) = z∗(t) + λε(̂zε(t) + zε1(t)),

rλ,ε(t, θ) = r∗(t, θ) + λε(̂rε(t, θ) + rε
1 (t, θ)),

uλ,ε(t) = u∗(t) + λεu(t). (3.21)

By Taylor’s expansion with a simple computations, we show that

x̂ε(t) = 1

ε

[
xε(t) − x∗(t)

] − xε
1(t) = Ĩ1(ε) + Ĩ2(ε) + Ĩ3(ε), (3.22)

where

Ĩ1(ε) =
∫ t

0

∫ 1

0
fx (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))(̂xε(s) + xε
1(s))dλds

+
∫ t

0

∫ 1

0
fx̃ (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))E (̂xε(s) + xε
1(s))dλds

+
∫ t

0

∫ 1

0

[
fx (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − fx (s)
]
xε
1(s)dλds

+
∫ t

0

∫ 1

0

[
fx̃ (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − fx̃ (s)
]
E(xε

1(s))dλds

+
∫ t

0

∫ 1

0

[
fu(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − fu(s)
]
u(s)dλds, (3.23)

Ĩ2(ε) =
∫ t

0

∫ 1

0
σx (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))[̂xε(s) + xε
1(s)]dλds

+
∫ t

0

∫ 1

0
σx̃ (s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))E [̂xε(s) + xε
1(s)]dλds

+
∫ t

0

∫ 1

0
[σx (s, xλ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − σx (s)]xε

1(s)dλds

+
∫ t

0

∫ 1

0
[σx̃ (s, xλ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − σx̃ (s)]E(xε

1(s))dλds

+
∫ t

0

∫ 1

0

[
σu(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s)) − σu(s)
]
u(s)dλds, (3.24)

and

Ĩ3(ε)

=
∫ t

0

∫

Θ

∫ 1

0
cx (s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)[̂xε(s) + xε
1(s)]dλN (dθ, ds)

+
∫ t

0

∫

Θ

∫ 1

0
cx̃ (s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)E [̂xε(s) + xε
1(s)]dλN (dθ, ds).

+
∫ t

0

∫

Θ

∫ 1

0

[
cx (s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ) − cx (s, θ)
]
xε
1(s)dλN (dθ, ds)
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+
∫ t

0

∫

Θ

∫ 1

0
[cx̃ (s, xλ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ) − cx̃ (s, θ)]E(xε

1(s))dλN (dθ, ds)

+
∫ t

0

∫

Θ

∫ 1

0
[cu(s, xλ,ε(s), E(xλ,ε(s)), uλ,ε(s), θ) − cu(s, θ)]u(s)dλN (dθ, ds), (3.25)

we proceed as in Anderson and Djehiche [18, pp. 7–8], we get

E

(

sup
0≤t≤T

∣
∣ Ĩ1(ε)

∣
∣2

)

→ 0, as ε → 0,

E

(

sup
0≤t≤T

∣
∣ Ĩ2(ε)

∣
∣2

)

→ 0, as ε → 0. (3.26)

Applying similar estimations for the third term with the help of Proposition 3.2 (in
Appendix Bouchard and Elie [27]), we have

E

(

sup
0≤t≤T

∣
∣ Ĩ3(ε)

∣
∣2

)

→ 0, as, ε → 0. (3.27)

From (3.26) and (3.27) we obtain

E

(

sup
0≤t≤T

∣
∣
∣
∣
1

ε

[
xε(t) − x∗(t)

] − xε
1(t)

∣
∣
∣
∣

2
)

→ 0, as ε → 0. (3.28)

We proceed to estimate the last terms in (3.18). First, from (3.19) and since ŷε(t) =
1
ε

[
yε(t) − y∗(t)

] − yε
1(t), we get

d ŷε(t) = −1

ε

∫

Θ

[g(t, x∗(t) + ε(̂xε(t) + xε
1(t)), E(x∗(t) + ε(̂xε(t) + xε

1(t))),

y∗(t) + ε(ŷε(t) + yε
1(t)), E(y∗(t) + ε(ŷε(t) + yε

1(t))), z
∗(t) + ε(̂zε(t) + zε1(t)),

E(z∗(t)+ε(̂zε(t)+zε1(t))), r
∗(t, θ)+ε(̂rε(t, θ)+rε

1 (t, θ)), uε(t))−g(t, θ)]μ(dθ)dt

−
∫

Θ

[gx (t, θ)xε
1(t) + gx̃ (t, θ)E(xε

1(t)) + gy(t, θ)yε
1(t) + gỹ(t, θ)E(yε

1(t))

+gz + (t, θ)zε1(t) + g̃z(t, θ)E(zε1(t)) + gr (t, θ)rε
1 (t, θ) + gu(t, θ)u(t)]μ(dθ)dt

+̂zε(t)dW (t) +
∫

Θ

r̂ε(t, θ)N (dθ, dt),

and

ŷε(T ) = 1

ε
[h(xε(T ), E(xε(T ))) − h(x(T ), E(x(T )))]

+[hx (x(T ), E(x(T ))) + hx̃ (x(T ), E(x(T )))]xε
1(T ).
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Applying Taylor’s expansion, we get

−d ŷε(t) =
∫

Θ

∫ 1

0
gx (t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)),

rλ,ε(t, θ), uλ,ε(t)) × (̂xε(t) + xε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
gx̃ (t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × E (̂xε(t) + xε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gx (t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gx (t, θ)]xε
1(t)dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gx̃ (t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gx̃ (t, θ)]E(xε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gu(t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gu(t, θ)]u(t)dλμ(dθ)dt

+
∫

Θ

∫ 1

0
gy(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × (ŷε(t) + yε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
gỹ(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × E(ŷε(t) + yε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gy(t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gy(t, θ)]yε
1(t)dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gỹ(t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gỹ(t, θ)] × E(yε
1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
gz(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × (̂zε(t) + zε1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
g̃z(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × E (̂zε(t) + zε1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gz(t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gz(t, θ)] × zε1(t)dλμ(dθ)dt
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+
∫

Θ

∫ 1

0
[g̃z(t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − g̃z(t, θ)]E(zε1(t))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
gr (t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) × (̂rε(t, θ) + rε
1 (t, θ))dλμ(dθ)dt

+
∫

Θ

∫ 1

0
[gr (t, xλ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t)) − gr (t, θ)]rε
1 (t, θ)dλμ(dθ)dt

−̂zε(t)dW (t) −
∫

Θ

r̂ε(t, θ)N (dθ, dt),

finally, using similar arguments developed in [24, pp. 222–224], the desired result
follows. This completes the proof of (3.18). �
.
Lemma 3.4 Let assumptions (H1)and (H2)hold. The following variational inequality
holds

E
∫ T

0

∫

Θ

[�x (t, θ)xε
1(t) + �x̃ (t, θ)E(xε

1(t)) + �y(t, θ)yε
1(t) + �ỹ(t, θ)E(yε

1(t))

+�z(t, θ)zε1(t) + �̃z(t, θ)E(zε1(t)) + �r (t, θ)rε
1 (t, θ) + �u(t, θ)u(t)]μ(dθ)dt

+E[φx (T )xε
1(T ) + φx̃ (T )E(xε

1(T ))]+E[ϕy(0)y
ε
1(0)+ϕỹ(0)E

(
yε
1(0)

)] ≥ o (ε) .

Proof From (3.2) we have

J
(
uε(·)) − J

(
u∗(·))

= E
{ ∫ T

0

∫

Θ

[�(t, xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε (t, θ) , uε(t))

−�(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t)]μ (dθ) dt

+ [
φ

(
xε(T ), E(xε(T ))

) − φ
(
x∗(T ), E(x∗(T ))

)]

+ [
ϕ

(
xε(0), E

(
xε(0)

)) − ϕ
(
y∗(0), E

(
y∗(0)

))] }
≥ 0. (3.29)

By applying Taylor’s expansion and Lemma 3.3, we have

1

ε
E[φ(xε(T ), x̃ε(T )) − φ(x∗(T ), x̃∗(T ))]

= 1

ε
E

{∫ 1

0
φx (x

∗(T ) + λ(xε(T ) − x∗(T )), x̃∗(T )

+λ(̃xε(T ) − x̃∗(T )))dλ(xε(T ) − x∗(T ))

+
∫ 1

0
φx̃ (x

∗(T ) + λ(xε(T ) − x∗(T )), x̃∗(T )

+ λ(̃xε(T ) − x̃∗(T )))dλ(̃xε(T ) − x̃∗(T )))
} + o (ε) .
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From estimate (3.18), we get

1

ε
E[φ(xε(T ), x̃ε(T )) − φ(x∗(T ), x̃∗(T ))]
→ E[φx (x

∗(T ), E(x∗(T )))xε
1(T ) + φx̃ (x

∗(T ), E(x∗(T )))E(xε
1(T ))]

= E
[
φx (T )xε

1(T ) + φx̃ (T )E(xε
1(T ))

]
, as ε → 0. (3.30)

Similarly, we have

1

ε
E[ϕ(yε(0), ỹε(0)) − ϕ(y∗(0), ỹ∗(0))]
→ E[ϕy(y

∗(0), ỹ∗(0))yε
1(0) + ϕỹ(y

∗(0), ỹ∗(0))E
(
yε
1(0)

)]
= E

[
ϕy(0)y

ε
1(0) + ϕỹ(0)E

(
yε
1(0)

)]
, as ε → 0, (3.31)

and

1

ε
E

∫ T

0

∫

Θ

[�(t, xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε (t, θ) , uε(t))

−�(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t))]μ (dθ) dt

→ E
∫ T

0

∫

Θ

[�x (t, θ)xε
1(t) + �x̃ (t, θ)E(xε

1(t)) + �y(t, θ)yε
1(t) + �ỹ(t, θ)E(yε

1(t))

+�z(t, θ)zε1(t) + �̃z(t, θ)E(zε1(t)) + �r (t, θ)rε
1 (t, θ) + �u(t, θ)u(t)]μ(dθ)dt,

as ε → 0. (3.32)

The desired result follows by combining (3.29)–(3.32). This completes the proof of
Lemma 3.4. �

Proof of Theorem 3.1 The desired result follows immediately by combining (3.6) in
Lemmas 3.3 and 3.4. �


4 Application: Mean-Variance Portfolio Selection Problem Mixed with a
Recursive Utility Functional, Time-Inconsistent Solution

The mean-variance portfolio selection theory, which was first proposed in Markowitz
[31] is a milestone in mathematical finance and has laid down the foundation of
modern finance theory. Using sufficient maximum principle, the authors in [30] gave
the expression for the optimal portfolio selection in a jump diffusion market with
time consistent solutions. The near-optimal consumption-investment problemhas been
discussed in Hafayed, Abbas and Veverka [28]. The continuous time mean-variance
portfolio selection problem has been studied in Zhou and Li [32]. The mean-variance
portfolio selection problem where the state driven by SDE (without jump terms) has
been studied in [18]. Optimal dividend, harvesting rate, and optimal portfolio for
systems governed by jump diffusion processes have been investigated in [10]. Mean-
variance portfolio selection problemmixed with a recursive utility functional has been
studied by Shi and Wu [24], under the condition that
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E(xπ (T )) = c,

where c is a given real positive number.
In this section, we will apply our mean-field stochastic maximum principle of

optimality to study amean-variance portfolio selection problemmixedwith a recursive
utility functional time-inconsistent solutions in a financial market and we will derive
the explicit expression for the optimal portfolio selection strategy. This optimal control
is represented by a state feedback form involving both x(·) and E(x(·)).

Suppose that we are given a mathematical market consisting of two investment
possibilities:

1. Risk-free security (Bond price). The first asset is a risk-free security whose price
P0(t) evolves according to the ordinary differential equation

{
dP0 (t) = ρ(t)P0 (t) dt, t ∈ [0, T ] ,
P0 (0) > 0,

(4.1)

where ρ (·) : [0, T ] → �+ is a locally bounded and continuous deterministic
function.

2. Risk-security (Stock price). A risk-security (e.g., a stock), where the price P1 (t)
at time t is given by

{
dP1 (t) = P1 (t−)

[
ς(t)dt + G(t)dW (t) + ∫

Θ
ξ (t, θ) N (dθ, dt)

]
,

P1 (0) > 0, t ∈ [0, T ] .
(4.2)

Assumptions. In order to ensure that P1 (t) > 0 for all t ∈ [0, T ], we assume

1. The functions ς(·) : [0, T ] → �,G(·) : [0, T ] → � are bounded deterministic
such that

ς(t),G(t) �= 0, ς(t) > ρ(t),∀t ∈ [0, T ],
2. ξ (t, θ) > −1 for μ−almost all θ ∈ Θ and all t ∈ [0, T ],
3.

∫

Θ
ξ2 (t, θ) μ(dθ) is bounded.

Portfolio strategy, the price dynamic with recursive utility process. A portfolio is a
Ft−predictable process e (t) = (e1(t), e2(t)) giving the number of units of the risk-
free and the risky security held at time t . Let π(t) = e1 (t) P0 (t) denote the amount
invested in the risky security. We call the control process π(·) a portfolio strategy.

Let xπ (0) = ζ > 0 be an initial wealth. By combining (4.1) and (4.2), we introduce
the wealth process xπ (·) and the recursive utility process yπ (·) corresponding to
π (·) ∈ U ([0, T ]) as solution of the following FBSDEJs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dxπ (t) = [ρ(t)xπ (t) + (ς(t) − ρ(t))π(t)] dt
+G(t)π(t)dW (t) + ∫

Θ
ξ (t, θ) π(t)N (dθ, dt) ,

−dyπ (t) = [ρ(t)xπ (t) + (ς(t) − ρ(t))π(t) − αyπ (t)] dt
−zπ (t)dW (t) − ∫

Θ
rπ (t, θ) N (dθ, dt) ,

xπ (0) = ζ, yπ (T ) = xπ (T ).

(4.3)
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Mean-variance portfolio selection problem mixed with a recursive utility func-
tional: In this section, the objective is to apply our maximum principle to study the
mean-variance portfolio selection problem mixed with a recursive utility functional
maximization.

The cost functional, to be minimized, is given by

J (π (·)) = γ

2
Var(xπ (T )) − E(xπ (T )) − yπ (0). (4.4)

By a simple computation, we can show that

J (π (·)) = E
[γ

2
xπ (T )2 − xπ (T )

]
− γ

2

[
E(xπ (T ))

]2 − yπ (0), (4.5)

where the wealth process xπ (·) and the recursive utility process yπ (·) corresponding
to π (·) ∈ U ([0, T ]) are given by FBSDEJ-(4.3). We note that the cost functional
(4.5) becomes a time-inconsistent control problem. LetA be a compact convex subset
of �. We denote U ([0, T ]) the set of admissible Ft−predictable portfolio strategies
π (·) valued inA. The optimal solution is denoted by (x∗(·), π∗(·)). The Hamiltonian
functional (2.2) gets the form

H (t, x, x̃, y, ỹ, z, z̃, r, π, Ψ, Q, K , R)

= [ρ(t)x(t) + (ς(t) − ρ(t))π(t)] (Ψ (t) + K (t))

+G(t)π(t)Q(t) − αK (t)y(t) +
∫

Θ

ξ (t, θ) π(t)R (t, θ) μ (dθ) .

According to the maximum condition ((3.1), Theorem 3.1), and since π∗(·) is optimal
we immediately get

(ς(t) − ρ(t))
(
Ψ ∗(t) + K ∗(t)

) + G(t)Q∗(t)

+
∫

Θ

ξ (t, θ) R∗ (t, θ) μ (dθ) = 0. (4.6)

The adjoint equation (2.1) being

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dΨ ∗(t) = −ρ(t) (K ∗(t) + Ψ ∗(t)) dt + Q∗(t)dW (t)

+ ∫

Θ
R∗ (t, θ) N (dθ, dt) .

Ψ ∗(T ) = γ (x∗(T ) + E(x∗(T ))) − 1 − K ∗(T ),

dK ∗(t) = −αK ∗(t)dt, K ∗(0) = 1, t ∈ [0, T ] .

(4.7)

In order to solve the above equation (4.7) and to find the expression of optimal portfolio
strategy π∗(·), we conjecture a process Ψ ∗(t) of the form:

Ψ ∗(t) = A1(t)x
∗(t) + A2(t)E

(
x∗(t)

) + A3(t), (4.8)

where A1(·), A2(·), and A3(·) are deterministic differentiable functions. (see Shi and
Wu [24], Shi [9], Framstad, ∅ksendal and Sulem [30], Li [19], Yong [20], for other
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models of conjecture). From last equation in (4.7), which is a simple ordinary differ-
ential equation (ODE in short), we get immediately

K ∗(t) = exp (−αt) . (4.9)

Noting that from (4.3), we get

d(E(x∗(t)) = {
ρ(t)E(x∗(t)) + (ς(t) − ρ(t))E(π∗(t))

}
dt.

Applying Itô’s formula to (4.8) (see Lemma 6.1, Appendix) in virtue of SDE-(4.3),
we get

dΨ ∗(t) = A1(t)
{[

ρ(t)x∗(t) + (ς(t) − ρ(t))π∗(t)
]
dt

+G(t)π∗(t)dW (t) +
∫

Θ

ξ (t−, θ) π∗(t)N (dθ, dt)

}

+x∗(t)A′
1(t)dt + A2(t)

[
ρ(t)E(x∗(t)) + (ς(t) − ρ(t))E(π∗(t))

]
dt

+E
(
x∗(t)

)
A′
2(t)dt + A′

3(t)dt,

which implies that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dΨ ∗(t) = {
A1(t)

[
ρ(t)x∗(t) + (ς(t) − ρ(t)) π∗(t)

] + x∗(t)A′
1(t)

+A2(t)
[
ρ(t)E(x∗(t)) + (ς(t) − ρ(t))E(π∗(t))

]

+ A′
2(t)E (x∗(t)) + A′

3(t)
}
dt + A1(t)G(t)π∗(t)dW (t)

+ ∫

Θ
A1(t)ξ (t−, θ) π∗(t)N (dθ, dt) ,

Ψ ∗(T ) = A1(T )x∗(T ) + A2(T )E (x∗(T )) + A3(T ),

(4.10)

where A′
1(t), A

′
2(t) and A′

3(t) denote the derivatives with respect to t .
Next, comparing (4.10) with (4.7), we get

− ρ(t)
(
K ∗(t) + Ψ ∗(t)

) = A1(t)
[
ρ(t)x∗(t) + (ς(t) − ρ(t))π∗(t)

] + x∗(t)A′
1(t)

+A2(t)
[
ρ(t)E(x∗(t)) + (ς(t) − ρ(t))E(π∗(t))

]

+A′
2(t)E

(
x∗(t)

) + A′
3(t), (4.11)

Q∗(t) = A1(t)G(t)π∗(t), (4.12)

R∗(t, θ) = A1(t)ξ (t, θ) π∗(t). (4.13)

By looking at the terminal condition of Ψ ∗(t), in (4.10), it is reasonable to get

A1(T ) = γ, A2(T ) = −γ, A3(T ) = −1 − K ∗(T ). (4.14)

Combining (4.11) and (4.8), we deduce that A1(·), A2(·), and A3(·) satisfying the
following ODEs:
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⎧
⎪⎨

⎪⎩

A′
1(t) = −2ρ(t)A1(t), A1(T ) = γ,

A′
2(t) = −2ρ(t)A2(t), A2(T ) = −γ,

A′
3(t) + ρ(t)A3(t) = ρ(t) exp {−αt} , A3(T ) = − exp {−αT } − 1.

(4.15)

By solving the first two ordinary differential equations in (4.15), we obtain

A1(t) = −A2(t) = γ exp

{

2
∫ T

t
ρ(s)ds

}

. (4.16)

Using integrating factor method for the third equation in (4.15), we get

A3(t) = −χ(t)−1
[

exp (−αT ) + 1 +
∫ T

t
χ(s)ρ(s) exp {−αs} ds

]

, (4.17)

where the integrating factor is χ(t) = exp
{∫ T

t ρ(s)ds
}

, χ(T ) = 1.

Combining (4.6), (4.9), (4.12) and (4.13) and denoting

Γ (t) = A1(t)

(

G2(t) +
∫

Θ

ξ2 (t, θ) μ (dθ)

)

, (4.18)

we get

π∗(t) = Γ (t)−1(ρ(t) − ς(t))
[
A1(t)

(
x∗(t) − E(x∗(t))

) + A3(t) − exp(−αt)
]
,

(4.19)
and

E(π∗(t)) = Γ (t)−1(ρ(t) − ς(t))
[
A3(t) − exp {−αt}] . (4.20)

Finally, we give the explicit optimal portfolio selection strategy in the state feedback
form involving both x∗(·) and E(x∗(·)).

Theorem 4.1 The optimal portfolio strategy π∗(t) of our mean-variance portfolio
selection problems (4.3)–(4.5) is given in feedback form by

π∗(t, x∗(t), E(x∗(t)) = Γ (t)−1(ρ(t)

−ς(t))
[
A1(t)

(
x∗(t) − E(x∗(t))

) + A3(t) − exp {−αt}] ,

and

E(π∗(t, x∗(t), E(x∗(t))) = Γ (t)−1(ρ(t) − ς(t))
[
A3(t) − exp {−αt}] ,

where A1(t), A3(t), and Γ (t) are given by (4.16), (4.17) and (4.18) respectively.
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5 Conclusions

In this paper, we have discussed the necessary conditions for optimal stochastic control
of mean-field forward–backward stochastic differential equations with Poisson jumps
(FBSDEJs). Time-inconsistentmean-variance portfolio selectionmixedwith recursive
utility functional optimization problem has been studied to illustrate our theoretical
results.Wewould like to indicate that the general maximum principle for fully coupled
mean-field FBSDEJs is not addressed, and we will work for this interesting issue in
the future research.
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6 Appendix

The following result gives special case of the Itô formula for mean-field jump diffu-
sions.

Lemma 6.1 (Integration by parts formula for mean-field jump diffusions). Suppose
that the processes x1(t) and x2(t) are given by for i = 1, 2, t ∈ [0, T ]

⎧
⎨

⎩

dxi (t) = f (t, xi (t), E(xi (t)), u(t)) dt + σ (t, xi (t), E(xi (t)), u(t)) dW (t)
+ ∫

Θ
g (t, xi (t−), E(xi (t−)), u(t), θ) N (dθ, dt) ,

xi (0) = 0.

Then we get

E (x1(T )x2(T )) = E

[∫ T

0
x1(t)dx2(t) +

∫ T

0
x2(t)dx1(t)

]

+E
∫ T

0
σ (t, x1(t), E(x1(t)), u(t)) σ (t, x2(t), E(x2(t)), u(t)) dt

+E
∫ T

0

∫

Θ

g (t, x1(t), E(x1(t)), u(t), θ) g (t, x2(t), E(x2(t)), u(t), θ) μ(dθ)dt.

Applying a similar method as in [30, Lemma 2.1], for the proof of the above Lemma.
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