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Abstract Based on Perelman’s entropy monotonicity, uniform logarithmic Sobolev
inequalities along the Ricci flow are derived. Then uniform Sobolev inequalities along
the Ricci flow are derived via harmonic analysis of the integral transform of the relevant
heat operator. These inequalities are fundamental analytic properties of the Ricci flow.
They are also extended to the volume-normalized Ricci flow and the Kähler–Ricci
flow.
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1 Introduction

Consider a compact manifold M of dimension n ≥ 3. Let g = g(t) be a smooth
solution of the Ricci flow

∂g

∂t
= −2Ric (1.1)

on M ×[0, T ) for some (finite or infinite) T > 0 with a given initial metric g(0) = g0.
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2 R. Ye

Theorem 1.1 For each σ > 0 and each t ∈ [0, T ), there holds

∫
M

u2 ln u2dvol ≤ σ

∫
M

(
|∇u|2 + R

4
u2

)
dvol − n

2
ln σ

+A1

(
t + σ

4

)
+ A2 (1.2)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where

A1 = 4

C̃S(M, g0)2volg0(M)
2
n

− min Rg0 ,

A2 = n ln C̃S(M, g0) + n

2
(ln n − 1),

and all geometric quantities are associated with the metric g(t) (e.g., the volume
form dvol and the scalar curvature R), except the scalar curvature Rg0 , the modified
Sobolev constant C̃S(M, g0) (see Sect. 2 for its definition) and the volume volg0(M)

which are those of the initial metric g0.
Consequently, there holds for each t ∈ [0, T )

∫
M

u2 ln u2dvol ≤ n

2
ln

[
αI

(∫
M

(
|∇u|2 + R

4
u2

)
dvol + A1

4

)]
(1.3)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where

αI = 2e

n
e

2(A1 t+A2)

n . (1.4)

Indeed, a more general result holds true, in which the logarithmic Sobolev inequality
along g(t) is derived from a logarithmic Sobolev inequality for g0, see Theorem 4.2.
The exact factor n

2 in the term − n
2 ln σ in the logarithmic Sobolev inequality (1.2) (also

in (1.5) and (1.8) below) is crucial for the purpose of Theorems 1.5 and 1.6. Note that
an upper bound for the Sobolev constant CS(M, g0) and the modified Sobolev constant
C̃S(M, g0) can be obtained in terms of a lower bound for the diameter rescaled Ricci
curvature and a positive lower bound for the diameter rescaled volume, see Sect. 2.
In particular, a lower bound for the Ricci curvature, a positive lower bound for the
volume, and an upper bound for the diameter lead to an upper bound for the Sobolev
constant and the modified Sobolev constant.

The logarithmic Sobolev inequality in Theorem 1.1 is uniform for all time which lies
below a given bound, but deteriorates as time becomes large. This is not a deficiency
in the result, however. In general, it is impossible to obtain a uniform logarithmic
Sobolev inequality along the Ricci flow which is independent of an upper bound for
time. Indeed, by [5], there are smooth solutions of the Ricci flow on torus bundles over
the circle which exist for all time, have bounded curvature, and collapse as t → ∞. In
view of the proofs of Theorems 1.5 and 1.7, a uniform logarithmic Sobolev inequality
fails to hold along these solutions.
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 3

To obtain a uniform logarithmic Sobolev inequality, we employ a natural geometric
condition. Let λ0 = λ0(g0) denote the first eigenvalue of the operator −�+ R

4 for the
initial metric g0.

Theorem 1.2 Assume that the first eigenvalue λ0 = λ0(g0) of the operator −� + R
4

for the initial metric g0 is positive. Let δ0 = δ0(g0) be the number defined in (3.12).
Let t ∈ [0, T ) and σ > 0 satisfy t + σ ≥ n

8 CS(M, g0)
2δ0. Then there holds

∫
M

u2 ln u2dvol ≤ σ

∫
M

(
|∇u|2 + R

4
u2

)
dvol − n

2
ln σ

+n

2
ln n + n ln CS(M, g0) + σ0(g0) (1.5)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where all geometric quantities are asso-
ciated with the metric g(t) (e.g., the volume form dvol and the scalar curvature R),
except the Sobolev constant CS(M, g0) and the number σ0(g0) (defined in (3.13))
which are those of the initial metric g0.

Consequently, there holds for each t ∈ [0, T )

∫
M

u2 ln u2dvol ≤ n

2
ln

[
αI I

∫
M

(
|∇u|2 + R

4
u2

)
dvol

]
(1.6)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where

αI I = 2eCS(M, g0)
2e

2
n σ0(g0). (1.7)

Combining Theorems 1.1 and 1.2, we obtain a uniform logarithmic Sobolev inequal-
ity along the Ricci flow.

Theorem 1.3 Assume that λ0(g0) > 0. For each t ∈ [0, T ) and each σ > 0, there
holds

∫
M

u2 ln u2dvol ≤ σ

∫
M

(
|∇u|2 + R

4
u2

)
dvol − n

2
ln σ + C (1.8)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where C depends only on the dimension
n, a positive lower bound for volg0(M), a nonpositive lower bound for Rg0 , an upper
bound for CS(M, g0), and a positive lower bound for λ0(g0).

Consequently, there holds for each t ∈ [0, T )

∫
M

u2 ln u2dvol ≤ n

2
ln

[
αI I I

∫
M

(
|∇u|2 + R

4
u2

)
dvol

]
(1.9)

for all u ∈ W 1,2(M) with
∫

M u2dvol = 1, where

αI I I = 2e

n
e

2
n C . (1.10)
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4 R. Ye

The class of Riemannian manifolds (M, g0) with λ0(g0) > 0 or, more generally,
λ0(g0) ≥ 0 is a very large one and particularly significant from a geometric point of
view. (For example, the condition λ0(g0) > 0 holds true when the scalar curvature
of g0 is nonnegative and somewhere positive.) On the other hand, we would like to
remark that if λ0 > 0, then there holds T < n

2λ0
by the proof of Proposition 1.2 in [6].

Hence, Theorem 1.3 can also be derived as a corollary of Theorem 1.1 alone. Next we
note a special consequence of Theorem 1.3.

Corollary 1.4 Assume that λ0(g0) > 0. Then we have at any time t ∈ [0, T )

volg(t)(M) ≥ e− 1
4 −C (1.11)

when R̂(t) ≤ 0, and

volg(t)(M) ≥ e− 1
4 −C R̂(t)−

n
2 (1.12)

when R̂(t) > 0. Here R̂ denotes the average scalar curvature.

Similar volume bounds follow from Theorem 1.1 without the condition λ0(g0) > 0,

but they also depend on a (finite) upper bound of T .
For a brief account of the logarithmic Sobolev inequalities on the euclidean space,

we refer to Appendix 1, which serve as the background for the idea of the logarith-
mic Sobolev inequality. Both Theorems 1.1 and 1.2 are consequences of Perelman’s
entropy monotonicity [6]. We obtained these two results, Theorems 1.3 and 4.2 in 2004
(around the time of the author’s differential geometry seminar talk “An introduction
to the logarithmic Sobolev inequality” at UCSB in June 2004). They have also been
prepared as part of the notes [13].

Next we apply the theory as presented in Chap. 2 of [2] to derive from Theorem 1.5
a Sobolev inequality along the Ricci flow without any restriction on time. (We came
to notice [2] in the paper [19]. Note that the main result presented in [19] (and [20])
is incorrect, as pointed out in [14] (the archive version of the present paper), based on
the example in [5]. Subsequently, a correction of this mistake was made in [21].) A
particularly nice feature of the theory in Chap. 2 of [2] is that no additional geometric
data (such as the volume) are involved in the passage from the logarithmic Sobolev
inequality to the Sobolev inequality. Only the non-integral terms in the logarithmic
Sobolev inequality and a nonpositive lower bound for the potential function � (see
Theorem 5.5) come into play. This leads to the form of the geometric dependence in
the following theorem.

Theorem 1.5 Assume T < ∞. There are positive constants A and B depending only
on the dimension n, a nonpositive lower bound for Rg0 , a positive lower bound for
volg0(M), an upper bound for CS(M, g0), and an upper bound for T, such that for
each t ∈ [0, T ) and all u ∈ W 1,2(M) there holds

(∫
M

|u| 2n
n−2 dvol

) n−2
n ≤ A

∫
M

(
|∇u|2 + R

4
u2

)
dvol + B

∫
M

u2dvol, (1.13)

where all geometric quantities except A and B are associated with g(t).
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 5

Under the assumption λ0(g0) > 0, this theorem can be improved as follows.

Theorem 1.6 Assume that λ0(g0) > 0. There is a positive constant A depending only
on the dimension n, a nonpositive lower bound for Rg0 , a positive lower bound for
volg0(M), an upper bound for CS(M, g0), and a positive lower bound for λ0(g0),

such that for each t ∈ [0, T ) and all u ∈ W 1,2(M) there holds

(∫
M

|u| 2n
n−2 dvol

) n−2
n ≤ A

∫
M

(
|∇u|2 + R

4
u2

)
dvol, (1.14)

where all geometric quantities except A are associated with g(t).

We also obtain two results which extend Theorems 1.5 and 1.6 to the set-up
of W 1,p(M) for all 1 < p < n, see Theorems 9.6 and 9.7 in Appendix 3.
(Theorems 1.5 and 1.6 correspond to the case p = 2.) These two general results can be
thought of as nonlocal versions of Sobolev inequality, because they involve nonlocal
pseudo-differential operators. Further results on (conventional) Sobolev inequalities
for 2 < p < n and 1 < p < 2 will be presented in [17]. (Part of these results are
derived from Theorems 1.5, 1.6, 9.6 and 9.7.) We would like to point out that the
p = 2 case of the Sobolev inequality is the most important for analytic and geometric
applications.

The theory in Chap. 2 of [2] is formulated in a general and abstract set-up of sym-
metric Markov semigroups. By Lemma 5.2, e−t H is a symmetric Markov semigroup,
where H = −� + R

4 in the case λ0(g0) > 0 and H = −� + R
4 − min R−

4 in the
general case. Hence, the general theory and results in Chap. 2 of [2] can be applied
to our situation. However, to obtain the precise geometric dependence of the Sobolev
inequalities in Theorems 1.5 and 1.6, one has to verify the exact geometric nature of
the constants which would appear in the many steps of the involved (and tightly for-
mulated) arguments in [2]. Our proofs of Theorems 1.5 and 1.6 would be unclear and
non-transparent if we go through a multitude of checking processes. Instead, we adapt
the theory in [2] to our geometric set-up and work it out in complete, self-contained
details. Another reason for doing so is to obtain some useful extensions of the theory as
presented in Sect. 5, Appendix 2 and Appendix 3 (in particular Theorems 9.5–9.7). On
the other hand, we think that our presentation makes the theory easily accessible to the
general audience of geometric analysis. In particular, our presentation demonstrates
in detail how the theory of the Ricci flow interacts with the basic theory of harmonic
analysis.

Next we deduce from Theorems 1.5 and 1.6 κ-noncollapsing estimates for the
Ricci flow which are measured relative to upper bounds of the scalar curvature to
improve Perelman’s κ-noncollapsing result [6]. The original κ-noncollapsing result
of Perelman in [6] is formulated relative to bounds for |Rm|. Later, a κ-noncollapsing
result for bounded time measured relative to upper bounds of the scalar curvature
was obtained independently by Perelman and the present author (see [11]). The κ-
noncollapsing estimates below improve these results in two ways. First, they provide
explicit estimates with clear geometric dependence on the initial metric. The estimates
below are formulated in terms of more familiar geometric quantities of the initial
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6 R. Ye

metric. (If we apply Theorem 4.2, then we obtain κ-noncollapsing estimates which
only depend on the logarithmic Sobolev inequality of the initial metric.) Moreover,
the estimates are uniform up to t = 0 (under a given upper bound for T ). Secondly,
the strategy of deriving the κ-noncollapsing estimate from the Sobolev inequality is
particularly powerful and flexible, and has among others important applications to
the Ricci flow with surgeries as constructed by Perelman in his work on the Poincaré
conjecture and the geometrization conjecture [7]. It leads to a considerable clarification
and simplification of an important step of the main arguments in [7], see Theorem 1.12
below.

Theorem 1.7 Assume that T < ∞. Let L > 0 and t ∈ [0, T ). Consider the Rie-
mannian manifold (M, g) with g = g(t). Assume R ≤ 1

r2 on a geodesic ball B(x, r)

with 0 < r ≤ L. Then there holds

vol(B(x, r)) ≥
(

1

2n+3 A + 2BL2

) n
2

rn, (1.15)

where A and B are from Theorem 1.5.

Theorem 1.8 Assume that λ0(g0) > 0. Let t ∈ [0, T ). Consider the Riemannian
manifold (M, g) with g = g(t). Assume R ≤ 1

r2 on a geodesic ball B(x, r) with
r > 0. Then there holds

vol(B(x, r)) ≥
(

1

2n+3 A

) n
2

rn, (1.16)

where A is from Theorem 1.6. In other words, the flow g = g(t), t ∈ [0, T ) is κ-
noncollapsed relative to upper bounds of the scalar curvature on all scales.

As is well-known, a major application of κ-noncollapsing estimates is to obtain
smooth blow-up limits of the Ricci flow at singularities, which is crucial for analysing
the structures of singularities of the Ricci flow.

Now we discuss how Theorems 1.5–1.8 lead to uniform Sobolev inequalities and
uniform κ-noncollapsing estimates independent of any upper bound of time for various
modified Ricci flows. In particular, they hold both on finite and infinite time intervals.

Consider the modified Ricci flow

∂g

∂t
= −2Ric + λ(g, t)g (1.17)

with a smooth scalar function λ(g, t) independent of x ∈ M . The volume-normalized
Ricci flow

∂g

∂t
= −2Ric + 2

n
R̂g (1.18)
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 7

on a closed manifold, with R̂ denoting the average scalar curvature, is an example of
the modified Ricci flow. The λ-normalized Ricci flow

∂g

∂t
= −2Ric + λg (1.19)

for a constant λ is another example. (Of course, it reduces to the Ricci flow when
λ = 0.) The normalized Kähler–Ricci flow is a special case of it.

Let g = g(t) be a smooth solution of the modified Ricci flow (1.17) on M ×[0, T )

for some T > 0, which is allowed to be finite or infinite. Let g0 = g(0) denote the
initial metric. First we have the following results.

Theorem 1.9 Theorem 1.6 and 1.8 extend to the above g = g(t).

This result simply follows from scaling invariance of the estimates in Theorems 1.6
and 1.8. Here no additional condition is required. In the general case without the
assumption λ0(g0) > 0, we need an additional condition. Set

T ∗ =
∫ T

0
e− ∫ t

0 λ(g(s),s)dsdt. (1.20)

Theorem 1.10 Assume that T ∗ < ∞.

(1) There are positive constants A and B depending only on the dimension n, a
nonpositive lower bound for Rg0 , a positive lower bound for volg0(M), an upper
bound for CS(M, g0), and an upper bound for T ∗, such that for each t ∈ [0, T )

and all u ∈ W 1,2(M) there holds

(∫
M

|u| 2n
n−2 dvol

) n−2
n ≤ A

∫
M

(
|∇u|2 + R

4
u2

)
dvol

+Be− ∫ t
0 λ(g(s),s)ds

∫
M

u2dvol. (1.21)

(2) Let L > 0 and t ∈ [0, T ). Consider the Riemannian manifold (M, g) with g =
g(t). Assume R ≤ 1

r2 on a geodesic ball B(x, r) with 0 < r ≤ L. Then there
holds

vol(B(x, r)) ≥
(

1

2n+3 A + 2Be− ∫ t
0 λ(g(s),s)ds L2

) n
2

rn . (1.22)

This theorem is a simple consequence of the scaling behavior of the estimates in
Theorems 1.5 and 1.7. Combining Theorems 1.9 and 1.10 with Perelman’s scalar
curvature estimate [10], we obtain the following corollary.

Theorem 1.11 Let g = g(t) be a smooth solution of the normalized Kähler–Ricci
flow

∂g

∂t
= −2Ric + 2γ g (1.23)
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8 R. Ye

on M × [0,∞) with a positive first Chern class, where γ is the positive constant such
that the Ricci class equals γ times the Kähler class. (We assume that M carries such a
Kähler structure.) Then the Sobolev inequality (1.24) holds true with λ(g(s), s) = 2λ.
Moreover, there is a positive constant L depending only on the initial metric g0 = g(0)

and the dimension n such that the inequality (1.22) holds true for all t ∈ [0, T ) and
0 < r ≤ L.

If λ0(g0) > 0, then the Sobolev inequality (1.14) holds true for g. Moreover, there
is a positive constant depending only on the initial metric g0 and the dimension n such
that the inequality (1.16) holds true for all t ∈ [0, T ) and 0 < r ≤ L. Consequently,
blow-up limits of g at the time infinity satisfy (1.16) for all r > 0 and the Sobolev
inequality

(∫
M

|u| 2n
n−2 dvol

) n−2
n ≤ A

∫
M

|∇u|2dvol (1.24)

for all u. (In particular, they must be noncompact.)

Finally, we would like to mention that Theorems 1.5 and 1.6 hold true for the Ricci
flow with surgeries of Perelman [7], with suitable modifications as stated below.

Theorem 1.12 Let n = 3 and g = g(t) be a Ricci flow with surgeries as constructed
in [7] on its maximal time interval [0, Tmax ), with suitably chosen surgery parameters.
Let g0 = g(0). Then there holds at each t ∈ [0, Tmax )

(∫
M

|u|6dvol

) 1
3 ≤ A(t)

∫
M

(
|∇u|2 + R

4
u2

)
dvol + B(t)

∫
M

u2dvol (1.25)

for all u ∈ W 1,2(M), where A(t) and B(t) are bounded from above in terms of a
nonpositive lower bound for Rg0 , a positive lower bound for volg0(M), an upper
bound for CS(M, g0), and an upper bound for t .

If λ0(g0) > 0, then there holds at each t ∈ [0, Tmax )

(∫
M

|u|6dvol

) 1
3 ≤ A(t)

∫
M

(
|∇u|2 + R

4
u2

)
dvol (1.26)

for all u ∈ W 1,2(M),where A(t) is bounded from above in terms of a nonpositive lower
bound for Rg0 , a positive lower bound for volg0(M), an upper bound for CS(M, g0),

a positive lower bound for λ0(g0), and an upper bound for m(t).
κ-noncollapsing estimates follow as before, which lead to a considerable simpli-

fication of the arguments in [7] about preserving the κ-noncollapsing property after
surgeries. Similar results hold true in higher dimensions whenever similar surgeries
are performed. (The constants also depend on the dimension n.)

This result follows from Theorems 1.5 and 1.6, and a general result on Sobolev
inequalities under surgeries. The details can be found in [18] and its sequel. In [7],
the surgery parameters are chosen such that several key properties of the Ricci flow
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 9

are preserved after surgery. One is the κ-noncollapsing property. Since the Sobolev
inequalities (1.25) and (1.26) are derived without using the κ-noncollapsing property,
the choice of the surgery parameters is also simplified. The κ-noncollapsing property
follows as a consequence of (1.25) and (1.26).

The results in this paper (except Theorem 1.12) extend to the dimension n = 2, see
[15].

This paper first appeared on the archive in 2007 as [14].

2 The Sobolev Inequality

Consider a compact Riemannian manifold (M, g) of dimension n ≥ 3. Its Poincaré-
Sobolev constant (for the exponent 2) is defined to be

CP,S(M, g) = sup{‖u − uM‖ 2n
n−2

: u ∈ C1(M), ‖∇u‖2 = 1}, (2.1)

where ‖u‖p denotes the L p norm of u with respect to g, i.e., ‖u‖p = (
∫

M |u|pdvol)1/p

(dvol = dvolg). In other words, CP,S(M, g) is the smallest number such that the
Poincare–Sobolev inequality

‖u − uM‖ 2n
n−2

≤ CP,S(M, g)‖∇u‖2 (2.2)

holds true for all u ∈ C1(M) (or all u ∈ W 1,2(M)). The Sobolev constant of (M, g)

(for the exponent 2) is defined to be

CS(M, g) = sup{‖u‖ 2n
n−2

− 1

vol(M)
1
n

‖u‖2 : u ∈ C1(M), ‖∇u‖2 = 1. (2.3)

In other words, CS(M, g) is the smallest number such that the inequality

‖u‖ 2n
n−2

≤ CS(M, g)‖∇u‖2 + 1

vol(M)
1
n

‖u‖2 (2.4)

holds true for all u ∈ W 1,2(M).

Definition We define the modified Sobolev constant C̃S(M, g) to be max{CS(M, g),

1}.
The Hölder inequality leads to the following basic fact.

Lemma 2.1 There holds for all u ∈ W 1,2(M)

‖u‖ 2n
n−2

≤ CP,S(M, g)‖∇u‖2 + 1

vol(M)
1
n

‖u‖2. (2.5)

In other words, there holds CS(M, g) ≤ CP,S(M, g).

123



10 R. Ye

Another basic constant, the Neumann isoperimetric constant of (M, g), is defined
to be

CN ,I (M, g) = sup

{
vol(�)

n−1
n

A(∂�)
: � ⊂ M is a C1 domain, vol(�) ≤ 1

2
vol(M)

}
,

(2.6)

where A(∂�) denotes the n − 1-dimensional volume of ∂�.

Lemma 2.2 There holds for all u ∈ W 1,2(M)

‖u − uM‖ 2n
n−2

≤ 2(1 + √
2)

n − 1

n − 2
CN ,I (M, g)‖∇u‖2. (2.7)

In other words, there holds CP,S(M, g) ≤ 2(1 + √
2) n−1

n−2 CN ,I (M, g).

For the proof, see [12]. The following estimate of the Neumann isoperimetric
constant follows from S. Gallot’s estimate in [4]. We define the diameter rescaled
Ricci curvature R̂ic(v, v) of a unit tangent vector v to be diam(M)2Ric(v, v), and
set κRic = minv{R̂ic(v, v)}. Then we set κ̂R̂ic = | min{κRic,−1}|. We also define the
diameter rescaled volume v̂ol(M) to be vol(M)diam(M)−n .

Theorem 2.3 There holds

CN ,I (g, M) ≤ C(n, κ̂R̂ic)v̂ol(M)−
1
n , (2.8)

where C(n, κ̂R̂ic) is a positive constant depending only on n and κ̂R̂ic.

Note that κ̂R̂ic can be replaced by a certain integral lower bound of the Ricci
curvature, see [3].

3 The Logarithmic Sobolev Inequalities on a Riemannian Manifold

The various versions of the logarithmic Sobolev inequality on the Euclidean space
as presented in Appendix 1 allow suitable extensions to Riemannian manifolds. We
formulate a log gradient version and a straight version, cf. Appendix 1. As in the last
section, let (M, g) be a compact Riemannian manifold of dimension n.

Theorem 3.1 There holds

∫
M

u2 ln u2dvol ≤ n ln

(
CS(M, g)‖∇u‖2 + 1

volg(M)
1
n

)
, (3.1)

provided that u ∈ W 1,2(M) and ‖u‖2 = 1.
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 11

Proof Set q = 2n
n−2 . Since ln is concave and

∫
M u2dvol = 1, we have by Jensen’s

inequality

ln
∫

M
uqdvol = ln

∫
M

u2 · uq−2dvol ≥
∫

M
u2 ln uq−2. (3.2)

It follows that
∫

M
u2 ln u ≤ 1

q − 2
ln

∫
M

uqdvol

= q

q − 2
ln ‖u‖q

≤ n

2
ln

(
CS(M, g)‖∇u‖2 + 1

volg(M)
1
n

‖u‖2

)
. (3.3)

�
Lemma 3.2 There holds

ln(x + B) ≤ αx + αB − 1 − ln α (3.4)

for all B ≥ 0, α > 0 and x > −B.

Proof Consider the function y = ln(x + B) − αx for x > −B. Since y → −∞ as
x → −B or x → ∞, it achieves its maximum somewhere. We have

y′ = 1

x + B
− α. (3.5)

Hence, the maximum point is x0 = 1
α

− B. It follows that the maximum of y is
y(x0) = αB − 1 − ln α. �
Theorem 3.3 For each α > 0 and all u ∈ W 1,2(M) with ‖u‖2 = 1, there holds

∫
M

u2 ln u2 ≤ nαCS(M, g)2

2

∫
M

|∇u|2 − n

2
ln α + n

2
(ln 2 + αvolg(M)−

2
n − 1)

(3.6)

and

∫
M

u2 ln u2 ≤ nαCS(M, g)2

2

∫
M

(
|∇u|2 + R

4
u2

)
− n

2
ln α

+nα

2

(
volg(M)−

2
n − min R−

4
CS(M, g)2

)
+ n

2
(ln 2 − 1). (3.7)

(The notation of the volume is omitted.)
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Proof By (3.1), we have for u ∈ W 1,2(M) with ‖u‖2 = 1

∫
M

u2 ln u2 ≤ n

2
ln

(
CS(M, g)‖∇u‖2 + 1

volg(M)
1
n

)2

≤ n

2
ln 2 + n

2
ln

(
CS(M, g)2

∫
M

|∇u|2 + 1

volg(M)
2
n

)
. (3.8)

Applying Lemma 3.2 with x = CS(M, g)2
∫

M |∇u|2 and B = 1, we then arrive at
(3.6). The inequality (3.7) follows from (3.6). �
Lemma 3.4 Let A > 0, B > 0 and γ > 0 such that A ≥ 1

γ+B . Then we have

ln(x + B) ≤ Ax − ln A + ln(γ + B) − ln γ − 1 (3.9)

for all x ≥ γ .

Proof First consider the function y = ln t − γ t for t > 0. Since y → −∞ as t → 0
or t → ∞, y achieves its maximum somewhere. We have y′ = 1

t − γ . Hence, the
maximum is achieved at 1

γ
. It follows that the maximum is y( 1

γ
) = − ln γ − 1. We

infer

ln A − γ A ≤ − ln γ − 1. (3.10)

Next we consider the function y = ln(x + B) − Ax + ln A for x ≥ γ . By (3.10),
we have y(γ ) = ln(γ + B) − Aγ + ln A ≤ ln(γ + B) − ln γ − 1. On the other hand,
we have y′ = 1

x+B − A ≤ 1
γ+B − A ≤ 0. We arrive at (3.9). �

Theorem 3.5 Assume that the first eigenvalue λ0 = λ0(g) of the operator −� + R
4

is positive. For each A ≥ δ0 and all u ∈ W 1,2(M) with ‖u‖2 = 1, there holds

∫
M

u2 ln u2 ≤ n AC2
S

2

∫
M

(
|∇u|2 + R

4
u2

)
− n

2
ln A + n

2
ln 2 + σ0, (3.11)

where

δ0 = δ0(g) =
(

λ0C2
S + 1

volg(M)
2
n

− C2
S

min R−

4

)−1

, (3.12)

σ0 = σ0(g) == n

2

[
ln

(
λ0C2

S + 1

volg(M)
2
n

− C2
S

min R−

4

)
− ln(λ0C2

S) − 1

]
,

(3.13)

and CS = CS(M, g).
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Proof Arguing as in the proof of Theorem 3.3, we deduce for u ∈ W 1,2(M) with
‖u‖2 = 1

∫
M

u2 ln u2 ≤ n

2
ln 2 + n

2
ln

(
C2

S

∫
M

|∇u|2 + 1

volg(M)
2
n

)

≤ n

2
ln 2 + n

2
ln

[
C2

S

∫
M

(
|∇u|2 + R

4
u2

)
+ 1

volg(M)
2
n

− C2
S

min R−

4

]
. (3.14)

Applying (3.9) with γ = λ0C2
S, B = 1

volg(M)
2
n

− C2
S

min R−
4 and x = C2

S

∫
M (|∇u|2 +

R
4 u2), we then arrive at (3.11) for each A ≥ (γ + B)−1. �

4 The logarithmic Sobolev Inequality Along the Ricci Flow

Let M be a compact manifold of dimension n. Consider Perelman’s entropy functional

W(g, f, τ ) =
∫

M

[
τ(R + |∇ f |2) + f − n

] e− f

(4πτ)
n
2

dvol, (4.1)

where τ is a positive number, g is a Riemannian metric on M, and f ∈ C∞(M)

satisfies

∫
M

e− f

(4πτ)
n
2

dvol = 1. (4.2)

All geometric quantities in (4.1) and (4.2) are associated with g. To relate to the idea
of logarithmic Sobolev inequalities, we make a change of variable

u = e− f
2

(4πτ)
n
4
. (4.3)

Then (4.2) leads to
∫

M
u2dvol = 1 (4.4)

and we have

W(g, f, τ ) = W∗(g, u, τ ) − n

2
ln τ − n

2
ln(4π) − n, (4.5)

where

W∗(g, u, τ ) =
∫

M

[
τ(4|∇u|2 + Ru2) − u2 ln u2

]
dvol. (4.6)

We define μ∗(g, τ ) to be the infimum of W∗(g, u, τ ) over all u satisfying (4.4).
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14 R. Ye

Next let g = g(t) be a smooth solution of the Ricci flow

∂g

∂t
= −2Ric (4.7)

on M × [0, T ) for some (finite or infinite) T > 0. Let 0 < t∗ < T and σ > 0. We set
T ∗ = t∗ + σ and τ = τ(t) = T ∗ − t for 0 ≤ t ≤ t∗. Consider a solution f = f (t)
of the equation

∂ f

∂t
= −� f + |∇ f |2 − R + n

2τ
(4.8)

on [0, t∗] with a given terminal value at t = t∗ (i.e., τ = σ ) satisfying (4.2) with
g = g(t∗). Then (4.2) holds true for f = f (t), g = g(t), and all t ∈ [0, t∗].
Perelman’s monotonicity formula says

dW
dt

= 2τ

∫
M

|Ric + ∇2 f − 1

2τ
g|2 e− f

(4πτ)
n
2

dvol ≥ 0, (4.9)

where W = W(g(t), f (t), τ (t)). Consequently,

d

dt
W∗(g, u, τ ) ≥ n

2

d

dt
ln τ, (4.10)

where g = g(t), τ = τ(t), and

u = u(t) = e− f (t)/2

(4πτ(t))
n
4
, (4.11)

which satisfies the equation

∂u

∂t
= −�u + |∇u|2

u
+ R

2
u. (4.12)

It follows that

μ∗(g(t1), τ (t1)) ≤ μ∗(g(t2, τ (t2)) + n

2
ln

τ1

τ2
, (4.13)

for t1 < t2, where τ1 = τ(t1) and τ2 = τ(t2). Choosing t1 = 0 and t2 = t∗, we then
arrive at

μ∗(g(0), t∗ + σ) ≤ μ∗(g(t∗), σ ) + n

2
ln

t∗ + σ

σ
. (4.14)

Since 0 < t∗ < T is arbitrary, we can rewrite (4.14) as follows

μ∗(g(t), σ ) ≥ μ∗(g(0), t + σ) + n

2
ln

σ

t + σ
(4.15)

for all t ∈ [0, T ) and σ > 0 (the case t = 0 is trivial).
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The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci... 15

We will also need the following elementary lemma.

Lemma 4.1 Let a > 0 and b be constants. Then the minimum of the function y =
aσ − n

2 ln σ + b for σ > 0 is n
2 ln(αa), where

α = 2e

n
e

2b
n . (4.16)

Proof Since y → ∞ as t → 0 or t → ∞, it achieves its minimum somewhere. We
have y′ = a − n

2σ
, whence the minimum is achieved at σ = n

2a . Then the minimum
equals y( n

2a ), which leads to the desired conclusion. �

Proof of Theorem 1.1 We apply Theorem 3.3 with g = g0 to estimate μ∗(g0, t + σ).
Consider u ∈ W 1,2(M) with ‖u‖2 = 1. We choose

α = 8(t + σ)

nC̃S(M, g0)2
(4.17)

in (3.6) and deduce

∫
M

u2 ln u2 ≤ 4(t + σ)

∫
M

|∇u|2 − n

2
ln

8(t + σ)

nC̃2
S

+n

2
· 8(t + σ)

nC̃2
Svolg0(M)

2
n

+ n

2
(ln 2 − 1)

≤ (t + σ)

∫
M

(4|∇u|2 + Ru2) + (t + σ)

(
4

nC̃2
Svolg0(M)

2
n

− min
t=0

R

)

−n

2
ln(t + σ) + n

2
(2 ln C̃S + ln n − 2 ln 2 − 1), (4.18)

where C̃S = C̃S(M, g0). It follows that

μ∗(g(0), t + σ) ≥ n

2
ln(t + σ) − (t + σ)

(
4

nC̃2
Svolg0(M)

2
n

− min
t=0

R

)

−n

2
(2 ln C̃S + ln n − 2 ln 2 − 1). (4.19)

Combining this with (4.15) leads to

μ∗(g(t), σ ) ≥ n

2
ln σ − (t + σ)

(
4

nC̃2
Svolg(M)

2
n

− min
t=0

R

)

−n

2
(2 ln C̃S + ln n − 2 ln 2 − 1), (4.20)
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or

μ∗ (
g(t),

σ

4

)
≥ n

2
ln σ −

(
t + σ

4

)(
4

nC̃2
Svolg(M)

2
n

− min
t=0

R

)

−n

2
(2 ln C̃S + ln n − 1), (4.21)

which is equivalent to (1.2).
To see (1.3), we apply Lemma 4.1 to (1.2) with a = ∫

M (|∇u|2 + R
4 u2)dvol + A1

4
and b = A1t + A2. �
Proof of Theorem 1.2 This is similar to the proof of Theorem 1.1. We apply Theorem
3.5 with g = g0 to estimate μ∗(g0, t + σ). Assume t + σ ≥ n

8 CS(M, g0)
2δ0(g0). We

set

A = 8(t + σ)

nCS(M, g0)2 . (4.22)

Then there holds A ≥ δ0(g0). Using this A in (3.11), we deduce for u ∈ W 1,2(M)

with ‖u‖2 = 1

∫
M

u2 ln u2 ≤ 4(t + σ)

∫
M

(
|∇u|2 + R

4
u2

)
− n

2
ln(t + σ)

+n

2
(2 ln CS(M, g0) + ln n − 2 ln 2) + σ0(g0). (4.23)

It follows that

μ∗(g0, t + σ) ≥ n

2
ln(t + σ) − n

2
(2 ln CS(M, g0) + ln n − 2 ln 2) − σ0(g0).

(4.24)

Combining this with (4.15) yields

μ∗(g(t), σ ) ≥ n

2
ln σ − n

2
(2 ln CS(M, g0) + ln n − 2 ln 2) − σ0(g0). (4.25)

Replacing σ by σ
4 , we then arrive at (1.5).

To see (1.6), we apply Lemma 4.1 to (1.5) with a = ∫
M (|∇u|2 + R

4 u2) and b =
n
2 ln n+n ln CS(M, g0)+σ0(g0). Note that by the maximum principle and the evolution
equation of the scalar curvature associated with the Ricci flow, min R is nondecreasing,
which implies that a > 0. �

Note that the proofs of Theorems 1.1 and 1.2 lead to the following general result.
Indeed, Theorems 1.1 and 1.2 follows from it.
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Theorem 4.2 Let g = g(t) be a smooth solution of the Ricci flow on M × [0, T ) for
some (finite or infinite) T > 0. Let h(σ ) be a scalar function for σ > 0. Assume that
the initial metric g0 = g(0) satisfies the logarithmic Sobolev inequality

∫
M

u2 ln u2dvol ≤ σ

∫
M

(
|∇u|2 + R

4
u2

)
dvol + h(σ ) (4.26)

for each σ > 0 and all u ∈ W 1,2(M) with
∫

M u2dvol = 1. Then there holds at each
t ∈ [0, T )

∫
M

u2 ln u2dvol ≤ σ

∫
M

(
|∇u|2 + R

4
u2

)
dvol + h(4(t + σ)) (4.27)

for each σ > 0 and all u ∈ W 1,2(M) with
∫

M u2dvol = 1.

Proof of Theorem 1.3 Let t ∈ [0, T ) and σ > 0. If σ < n
8 CS(M, g0)

2δ0(g0), we
apply Theorem 1.1. Otherwise, we apply Theorem 1.2. Then we arrive at (1.8). To see
(1.9), we note that by [6] the eigenvalue λ0(g(t)) is nondecreasing. Hence, λ0(g(t)) >

0 for all t, which implies that
∫

M (|∇u|2 + R
4 u2) > 0 for all t . Hence, we can apply

Lemma 4.1 to (1.8) with a = ∫
M (|∇u|2 + R

4 u2) and b = C to arrive at the desired
inequality. �

Proof of Corollary 1.4 to Theorem 1.3 Choosing u = volg(t)(M)− 1
2 in (1.8), we infer

ln
1

volg(t)(M)
≤ σ

4
R̂(t) − n

2
ln σ + C. (4.28)

If R̂(t) ≤ 0, we choose σ = 1 to arrive at (1.11). If R̂(t) > 0, we choose σ = R̂(t)−1

to arrive at (1.12). �

5 The Sobolev Inequality Along the Ricci Flow

We first present a general result which converts a logarithmic Sobolev inequality to
a Sobolev inequality. It follows straightforwardly from more general results in [2].
Consider a compact Riemannian manifold (M, g) of dimension n ≥ 1. Let � ∈
L∞(M), which we call a potential function. We set H = −� + �. Its associated
quadratic form is

Q(u) =
∫

M
(|∇u|2 + �u2)dvol, (5.1)

where u ∈ W 1,2(M). We also use Q to denote the corresponding bilinear form, i.e.,

Q(u, v) =
∫

M
(∇u · ∇v + �uv)dvol. (5.2)
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Consider the operator e−t H associated with H . It is characterized by the property that
for u0 ∈ L2(M), u = e−t H u0 satisfies the heat equation

∂u

∂t
= −Hu (5.3)

for t > 0 and the initial condition u(0) = u0. We have the spectral formula

e−t H u =
∑

e−λi tφi < u, φi >2, (5.4)

for u ∈ L2(M), where {φi } is a complete set of L2-orthonormal eigenfunctions of
H and λ1 ≤ λ2 ≤ · · · are the corresponding eigenvalues. Since λi → ∞, e−t H :
L2(M) → L2(M) is a bounded operator. On the other hand, there holds

e−t H u =
∫

M
K (·, y, t)udvoly, (5.5)

where K (x, y, t) denotes the heat kernel of H .

Lemma 5.1 The extension of e−t H for t > 0 to L1(M) by the spectral formula (5.4)
defines a bounded linear operator e−t H : L1(M) → W 2,p(M) for each 0 < p < ∞.

Proof By elliptic regularity, we have φi ∈ W 2,p(M) for each i and 0 < p < ∞. The
elliptic W 2,p estimates and Sobolev embedding lead to ‖φi‖2,p ≤ cp(|λi | + 1)mn for
some cp > 0 independent of i and a natural number mn depending only on n. The
Sobolev embedding then implies ‖φi‖∞ ≤ c(λi | + 1)mn for some c > 0 independent
of i . Now we have for u ∈ L1(M)

∑
i≥1

e−λi t | < u, φi >2 | · ‖φi‖2,p ≤
⎛
⎝∑

i≥1

e−λi t‖φi‖∞‖φi‖2,p

⎞
⎠ ‖u‖1. (5.6)

By the above estimates, the last series converges. The desired conclusion follows. �
Lemma 5.2 Assume � ≥ 0. Then e−t H for t > 0 is a contraction on L p(M) for each
1 ≤ p ≤ ∞, i.e.,

‖e−t H u‖p ≤ ‖u‖p (5.7)

for all u ∈ L p(M). It is also a contraction on W 1,2(M) with respect to the norm Q(u)
1
2

(if Q > 0, i.e., λ1 > 0) or the norm (Q(u) + ∫
M u2dvol)

1
2 (if λ1 = 0). Moreover, it

is positivity preserving, i.e., e−t H u ≥ 0 if u ≥ 0 and u ∈ L2(M).

Proof The maximum principle implies that e−t H is a contraction on L∞(M) for t > 0.
For t > 0 and u ∈ L1(M), we set φ = sgn(e−t H u), i.e., φ = 1 where e−t H u ≥ 0
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and φ = −1 where e−t H u < 0. There holds

‖e−t H u‖1 =
∫

M
φe−t H udvol =

∫
M

ue−t H φdvol

≤ ‖e−t H φ‖∞‖u‖1 ≤ ‖φ‖∞‖u‖1 = ‖u‖1. (5.8)

Hence, e−t H is a contraction on L1(M). By the Riesz–Thorin interpolation theorem
(see Appendix 3), e−t H is a contraction on L p(M) for each 1 < p < ∞.

The contraction property of e−t H on W 1,2(M) follows from the spectral formula
(5.4) because λ1 ≥ 0. (The contraction property of e−t H on L2(M) also follows
from (5.4).) Finally, the positivity preserving property of e−t H is a consequence of the
maximum principle. �
Theorem 5.3 Let 0 < σ ∗ ≤ ∞. Assume that for each 0 < σ < σ ∗ the logarithmic
Sobolev inequality

∫
M

u2 ln u2dvol ≤ σ Q(u) + β(σ) (5.9)

holds true for all u ∈ W 1,2(M) with ‖u‖2 = 1, where β is a nonincreasing continuous
function. Assume that

τ(t) = 1

2t

∫ t

0
β(σ)dσ (5.10)

is finite for all 0 < t < σ ∗. Then there holds

‖e−t H u‖∞ ≤ eτ(t)− 3t
4 inf �−‖u‖2 (5.11)

for each 0 < t < 1
4σ ∗ and all u ∈ L2(M). There also holds

‖e−t H u‖∞ ≤ e2τ( t
2 )− 3t

4 inf �−‖u‖1 (5.12)

for each 0 < t < 1
4σ ∗ and all u ∈ L1(M).

The proof of this theorem is presented in Appendix 2. Note that (5.12) is equivalent
to an upper bound for the heat kernel. The nonincreasing condition on β can easily be
removed (the function τ(t) needs to be slightly modified).

Theorem 5.4 (1) Assume � ≥ 0. Let μ > 2 and c > 0. Assume that the inequality

‖e−t H u‖∞ ≤ ct−
μ
4 ‖u‖2 (5.13)

holds true for each t > 0 and all u ∈ L2(M). Then the Sobolev inequality

‖u‖2
2μ

μ−2
≤ C(μ, c)Q(u) (5.14)
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holds true for all u ∈ W 1,2(M), where the positive constant C(μ, c) can be
bounded from above in terms of upper bounds for c, μ and 1

μ−2 .
(2) Let μ > 2 and c > 0. Assume that the inequality

‖e−t H u‖∞ ≤ c1t−
μ
4 ‖u‖2 (5.15)

holds true for each 0 < t < 1 and all u ∈ L2(M). Then the Sobolev inequality

‖u‖2
2μ

μ−2
≤ C(μ, c)(Q(u) + (1 − inf �−)‖u‖2

2) (5.16)

holds true for all u ∈ W 1,2(M), where C(μ, c) has the same property as the above
C(μ, c).

The proof of this theorem is presented in Appendix 3. Combining Theorems 5.3
and 5.4, we arrive at the following result.

Theorem 5.5 Let 0 < σ ∗ < ∞. Assume that for each 0 < σ < σ ∗ the logarithmic
Sobolev inequality

∫
M

u2 ln u2dvol ≤ σ Q(u) − μ

2
ln σ + C (5.17)

holds true for all u ∈ W 1,2(M) with ‖u‖2 = 1, where μ and c are constants such that
μ > 2. Then we have the Sobolev inequality

‖u‖2
2μ

μ−2
≤

(
σ ∗

4

)1− n
μ

C(C̄, μ)

(
Q(u) + 4 − σ ∗ min �−

σ ∗ ‖u‖2
2

)
(5.18)

for all u ∈ W 1,2(M), where C(C̄, μ) is from Theorem 5.4 and C̄ is defined in (5.22)
below.

Proof For λ > 0, we consider the metric ḡ = λ−2g and the potential function
�̄ = λ2�. Let H̄ = −�ḡ + �̄ and Q̄ be the associated quadratic form. It follows
from (5.17) that

∫
M

u2 ln u2dvolḡ ≤ σ Q̄(u) − μ

2
ln σ + (n − μ) ln λ + C (5.19)

for 0 < σ < λ−2σ ∗ and u ∈ W 1,2(M) with ‖u‖2 = 1. Choosing λ = 1
2

√
σ ∗, we

obtain
∫

M
u2 ln u2dvolḡ ≤ σ Q̄(u) − μ

2
ln σ + n − μ

2
(ln σ ∗ − 2 ln 2) + C (5.20)

for each 0 < σ < 4. By Theorem 5.3, we have for each 0 < t < 1 and u ∈ L2(M)

‖e−t H u‖∞ ≤ C̄t−
μ
4 ‖u‖2,ḡ, (5.21)
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where

C̄ = 2
μ−n

2 (σ ∗)
n−μ

4 e
μ
4 − 3σ∗

16 min �−+ 1
2 C . (5.22)

Applying Theorem 5.4 and converting back to g, we then arrive at (5.18). �
Proof of Theorem 1.6 Applying Theorems 1.3 and 5.5 with � = R

4 ,μ = n, and
σ ∗ = 4, we deduce

‖u‖2
2n

n−2
≤ c

(∫
M

(
|∇u|2 + R

4
u2

)
dvol +

(
1 − mint R−

4

)∫
M

u2dvol

)
, (5.23)

where c = c(C,− mint R−). By the maximum principle, we have mint R− ≥
mint=0 R−. Hence, we arrive at

‖u‖2
2n

n−2
≤ c

(∫
M

(
|∇u|2 + R

4
u2

)
dvol +

(
1 − min0 R−

4

) ∫
M

u2dvol

)
(5.24)

with c = c(C,− min0 R−). Since λ0 is nondecreasing along the Ricci flow [6], we
obtain

‖u‖2
2n

n−2
≤ c

(
1 + 1

λ0(g0)

(
1 − min0 R−

4

)) (∫
M

(
|∇u|2 + R

4
u2

)
dvol

)

(5.25)

which leads to (1.14). �
Proof of Theorem 1.5 This is similar to the above proof. �

6 The κ-Noncollapsing Estimate

It is obvious that Theorems 1.7 and 1.8 follow from Theorem 1.5, Theorem 1.6, and
the following result.

Theorem 6.1 Consider the Riemannian manifold (M, g) for a given metric g, such
that for some A > 0 and B > 0 the Sobolev inequality

(∫
M

|u| 2n
n−2 dvol

) n−2
n ≤ A

∫
M

(
|∇u|2 + R

4
u2

)
dvol + B

∫
M

u2dvol (6.1)

holds true for all u ∈ W 1,2(M). Let L > 0. Assume R ≤ 1
r2 on a geodesic ball B(x, r)

with 0 < r ≤ L. Then there holds

vol(B(x, r)) ≥
(

1

2n+3 A + 2BL2

) n
2

rn . (6.2)
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Proof Let L > 0. Assume that R ≤ 1
r2 on a closed geodesic ball B(x0, r) with

0 < r ≤ L , but the estimate (6.2) does not hold, i.e.,

vol(B(x0, r)) < δrn, (6.3)

where

δ =
(

1

2n+3 A + 2BL2

) n
2

. (6.4)

We derive a contradiction. Set ḡ = 1
r2 g. Then we have for ḡ

vol(B(x0, 1)) < δ (6.5)

and R ≤ 1 on B(x0, 1). Moreover, (6.1) leads to the following Sobolev inequality for
ḡ

(∫
M

|u| 2n
n−2

) n−2
n ≤ A

∫
M

(
|∇u|2 + R

4
u2

)
+ BL2

∫
M

u2, (6.6)

where the notation of the volume form is omitted. For u ∈ C∞(M) with support
contained in B(x0, 1), we then have

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n ≤ A

∫
B(x0,1)

(
|∇u|2 + 1

4
u2

)
+ BL2

∫
B(x0,1)

u2. (6.7)

By Hölder’s inequality and (6.5), we have

∫
B(x0,1)

u2 ≤ δ
2
n

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n

. (6.8)

Hence, we deduce

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n ≤ A

∫
B(x0,1)

|∇u|2 +
(

A

4
+ BL2

)
δ

2
n

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n

≤ A
∫

B(x0,1)

|∇u|2 + 1

2

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n

. (6.9)

It follows that

(∫
B(x0,1)

|u| 2n
n−2

) n−2
n ≤ 2A

∫
B(x0,1)

|∇u|2. (6.10)
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Next consider an arbitrary domain � ⊂ B(x0, 1). For u ∈ C∞(�) with support
contained in �, we deduce from (6.10) via Hölder’s inequality

∫
B(x0,1)

|u|2 ≤ 2Avol(�)
2
n

∫
�

|∇u|2. (6.11)

Hence, we arrive at the following Faber-Krahn inequality:

λ1(�)vol(�)
2
n ≥ 1

2A
, (6.12)

where λ1(�) denotes the first Dirichlet eigenvalue of −� on �. By the proof of
Proposition 2.4 in [1], we then infer

vol(B(x, ρ)) ≥
(

1

2n+3 A

) n
2

ρn (6.13)

for all B(x, ρ) ⊂ B(x0, 1). Consequently, we have

vol(B(x0, 1)) ≥
(

1

2n+3 A

) n
2

, (6.14)

contradicting (6.5).
For the convenience of the reader, we reproduce here the arguments in the proof of

Proposition 2.4 in [1]. Consider B(x, ρ) ⊂ B(x0, 1). Set u(y) = ρ − d(x, y). Then
we obtain

λ1(B(x, ρ)) ≡ λ1(int B(x, ρ)) ≤ vol(B(x, r))∫
B(x,ρ/2)

u2
≤ 4vol(B(x, ρ))

ρ2vol(B(x, ρ/2))
. (6.15)

By (6.12), we then infer

vol(B(x, ρ)) ≥
(

ρ2

2A

) n
n+2

4− n
n+2 vol

(
B

(
x,

ρ

2

)) n
n+2

. (6.16)

Iterating (6.16), we obtain

vol(B(x, ρ)) ≥
(

ρ2

2A

)∑m
l=1

(
n

n+2

)l

4
−∑m

l=1 l
(

n
n+2

)l

vol
(

B
(

x,
ρ

2m

))(
n

n+2

)m

(6.17)
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for all natural numbers m ≥ 1. Letting m → ∞, we finally arrive at

vol(B(x, ρ)) ≥
(

ρ2

2A

)∑∞
l=1

(
n

n+2

)l

4
−∑∞

l=1 l
(

n
n+2

)l

=
(

ρ2

2A

) n
2

4− n(n+2)
4 =

(
1

2n+3 A

) n
2

ρn . (6.18)

�

Appendix 1: The Logarithmic Sobolev Inequalities on the Euclidean
Space

In this appendix, we review several versions of the logarithmic Sobolev inequality on
the euclidean space for the purpose of presenting the background of the logarithmic
Sobolev inequalities. These versions are equivalent to each other.

The Gaussian version

This is the original version of L. Gross.

Theorem 7.1 Let u ∈ W 1,2
loc (Rn) satisfy

∫
Rn u2dμ = 1, where

dμ = (2π)−
n
2 e− |x |2

2 dx . (7.1)

Then

∫
Rn

u2 ln u2dμ ≤ 2
∫

Rn
|∇u|2dμ. (7.2)

The straight (Euclidean volume element) version

Theorem 7.2 There holds

∫
u2 ln u2dx ≤ 2

∫
|∇u|2dx, (7.3)

provided that u ∈ W 1,2(Rn) and
∫

u2dx = (2π)n/2en . Equivalently, for β > 0,

∫
u2 ln u2dx ≤ 2

∫
|∇u|2dx + β ln β − n

2
β ln(2πe2), (7.4)

provided that u ∈ W 1,2(Rn) and
∫

u2 = β.
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The log gradient version

It appears to be stronger than the other versions because of the logarithm in front of
the Dirichlet integral of u.

Theorem 7.3 There holds

∫
u2 ln u2dx ≤ n

2
ln

[
2

πne

∫
|∇u|2dx

]
, (7.5)

provided that u ∈ W 1,2(Rn) and
∫

u2dx = 1.

The entropy version (as formulated in [6])

This version is intimately related to Perelman’s entropy functional W . Indeed, it can
be viewed as the motivation for W .

Theorem 7.4 There holds

∫ (
1

2
|∇ f |2 + f − n

)
e− f dx ≥ 0, (7.6)

provided that f ∈ W 1,2
loc (Rn) and

∫
e− f dx = (2π)n/2.

Appendix 2: The Estimate for et H

In this appendix, we present the proof of Theorem 5.3. The global case σ ∗ = ∞ of
this theorem follows from Corollary 2.2.8 in [2]. On the other hand, the proof of this
corollary in [2] can easily be extended to cover the local case σ ∗ < ∞, as is done
below. The global case is customarily phrased in terms of “ultracontractivity,” i.e., the
logarithmic Sobolev inequality implies the ultracontractivity of e−t H , see e.g., [2].
Note that the global case suffices for the main purpose of this paper. The local case
should be useful for further applications.

Proof of Theorem 5.3 Part 1 We first assume � ≥ 0, i.e., min �− = 0. It follows
from (5.9)

∫
M

u2 ln u2 ≤ σ Q(u) + β(σ)‖u‖2
2 + ‖u‖2

2 ln ‖u‖2
2 (8.1)

for all u ∈ W 1,2(M). Here the notation of the volume form is omitted. Replacing u
by |u|p/2 for p > 2 and u ∈ W 1,2(M) ∩ L∞(M), we deduce

p
∫

M
|u|p ln |u| ≤ σ Q(|u| p

2 ) + β(σ)‖u‖p
p + p‖u‖p

p ln ‖u‖2
p. (8.2)
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Since

Q(|u| p
2 ) = p2

4(p − 1)
Q(|u|, |u|p−1), (8.3)

we arrive at

∫
M

|u|p ln |u| ≤ σ p

4(p − 1)
Q(|u|, |u|p−1) + β(σ)

p
‖u‖p

p + ‖u‖p
p ln ‖u‖p. (8.4)

By the nonincreasing property of β, we then infer, replacing σ by 4(p−1)
p σ

∫
M

|u|p ln |u| ≤ σ Q(|u|, |u|p−1) + β(σ)

p
‖u‖p

p + ‖u‖p
p ln ‖u‖p (8.5)

for σ ∈ (0,
p

4(p−1)
σ ∗].

Part 2 We continue with the assumption � ≥ 0. Consider 0 < t ≤ 1
4σ ∗. Let σ(p)

be a nonnegative continuous function for p ≥ 2 such that σ(p) ∈ (0,
p

4(p−1)
σ ∗] for

p > 2, which will be chosen later. Then we have

∫
M

|u|p ln |u| ≤ σ(p)Q(|u|, |u|p−1) + �(p)‖u‖p
p + ‖u‖p

p ln ‖u‖p (8.6)

for each p > 2 and all u ∈ W 1,2(M) ∩ L∞(M), where �(p) = β(σ(p))
p . Define the

function p(s) for 0 ≤ s < t by

d p

ds
= p

σ(p)
, p(0) = 2. (8.7)

Assume that

p(s) → ∞ (8.8)

as s → t . We also define the function N (s) for 0 ≤ s < t by

dN

ds
= �(p(s))

σ (s)
, N (0) = 0 (8.9)

and set

N∗ = lim
s→t

≡
∫ ∞

2

�(p)

p
d p. (8.10)

For u ∈ W 1,2(M) ∩ L∞(M) with u ≥ 0, we set us = e−s H u for 0 < s < t . By
the contraction properties of e−s H , we have us ∈ W 1,2(M) ∩ L∞(M) for all s. If
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� ∈ C∞(M), we have for a fixed q > 2

d

ds
‖us‖q

q = q
∫

M

∂us

∂s
· uq−1

s = −q
∫

M
Hus · uq−1

s . (8.11)

Hence,

d

ds
‖us‖q

q = −q Q(us, uq−1
s ). (8.12)

In the general case � ∈ L∞(M), this formula follows from the spectral formula for
e−s H . Using this formula, we compute

d

ds
ln(e−N (s)‖us‖p(s)) = d

ds

(
−N (s) + 1

p(s)
ln ‖us‖p(s)

p(s)

)

= �

σ
− 1

p2

p

σ
ln ‖us‖p

p + 1

p
‖us‖−p

p

(
−pQ(us, u p−1

s ) + p

σ

∫
M

u p
s ln us

)

= 1

σ
‖us‖−p

p

(∫
M

u p
s ln us − σ Q(us, u p−1

s ) − �‖us‖p
p − ‖us‖p

p ln ‖us‖p

)
.

(8.13)

By (8.6), this is nonpositive. Hence, e−N (s)‖us‖p(s) is nonincreasing, which leads to

‖e−s H u‖p(s) ≤ eN (s)‖ f ‖2 (8.14)

for all 0 ≤ s < t . By the contraction properties, we have ‖e−t H u‖p(s) ≤ ‖e−s H u‖p(s),

whence

‖e−t H u‖p(s) ≤ eN (s)‖ f ‖2 (8.15)

for all 0 ≤ s < t . It follows that

‖e−t H u‖∞ ≤ eN∗‖u‖2. (8.16)

This estimate extends to u ∈ L2(M) with u ≥ 0 by an approximation. For a general
u ∈ L2(M), we use the pointwise inequality |e−t H u| ≤ e−t H | f | (a consequence of
the positivity preserving property) to deduce

‖e−t H u‖∞ ≤ ‖e−t H |u|‖∞ ≤ eN∗‖u‖2. (8.17)

Now we choose

σ(p) = 2t

p
(8.18)
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for p ≥ 2. Then p(s) = 2t
t−s . One readily sees that σ(p) ∈ (0,

p
4(p−1)

σ ∗] for p > 2
and p(s) → ∞ as s → t . We have for this choice

N∗ = 1

2t

∫ t

0
β(σ)dσ. (8.19)

Hence, we arrive at

‖e−t H u‖∞ ≤ eτ(t)‖u‖2 (8.20)

for all u ∈ L2(M) and 0 < t ≤ 1
4σ ∗.

Part 3 For a general �, we consider �̄ = � − min �− and denote the corresponding
operator and quadratic form by H̄ and Q̄, respectively. We have by (5.9)

∫
M

u2 ln u2dvol ≤ σ Q̄(u) + β̄(σ ) (8.21)

for all u ∈ L2(M) with ‖u‖2 = 1, where β̄(σ ) = β(σ)+σ min �−. We apply (8.20)
to deduce for 0 < t ≤ 1

4σ ∗ and u ∈ L2(M)

‖e−t H̄ u‖∞ ≤ e
1
2t

∫ t
0 β̄(σ )dσ ‖u‖2 = eτ(t)+ t

4 min �−‖u‖2. (8.22)

The desired estimate (5.11) follows.
The estimate (5.12) follows from (5.11) in terms of duality, namely we have for

u, v ∈ L2(M)

∫
M

ve−t H u =
∫

M
ue−t H v ≤ ‖e−t H v‖∞‖u‖1 ≤ eτ(t)− 3t

4 min �−‖v‖2‖u‖1. (8.23)

It follows that

‖e−t H u‖2 ≤ eτ(t)− 3t
4 min �−‖u‖1 (8.24)

and then

‖e−t H u‖∞ ≤ eτ( t
2 )− 3t

8 min �−‖e− t
2 H u‖2 ≤ e2τ( t

2 )− 3t
4 min �−‖u‖1. (8.25)

By Lemma 5.1, we arrive at (5.12) for all u ∈ L1(M). The estimate (5.12) also follows
from the arguments in Part 2 by choosing σ(p) = t

p and p(s) = t
t−s . �

Appendix 3: From the Estimate for e−t H to the Sobolev Inequality

In this appendix, we present the proof of Theorem 5.4. We also present a more general
result Theorem 9.5, and its implication for the Ricci flow. Consider a compact Rie-
mannian manifold (M, g) of dimension n ≥ 1 and � ∈ L∞(M) as in the set-up for
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Theorem 5.4. If Q ≥ 0, then we define the spectral square root H
1
2 of the operator

H = −� + � as follows. For u = ∑
i≥1 aiφi ∈ L2(M), we set

H
1
2 u =

∑
i≥1

λ
1
2
i aiφi , (9.1)

whenever the series converges in L2(M).

Lemma 9.1 Assume Q ≥ 0. Then H
1
2 is a bounded operator from W 1,2(M) to

L2(M). Indeed, there holds for all u ∈ W 1,2(M)

‖H
1
2 u‖2

2 = Q(u). (9.2)

Proof For u = ∑
ı≥1 aiφi ∈ C2(M), there holds Q(u) =< Hu, u >2= ∑

i≥1 λi a2
i .

By approximation, we derive Q(u) = ∑
i≥1 λi a2

i for all u ∈ W 1,2(M). Now we have
for N ≥ 1

∥∥∥∥∥∥
∑

1≤i≤N

λ
1
2
i aiφi

∥∥∥∥∥∥
2

2

=
∑

1≤i≤N

λi a
2
i . (9.3)

Taking the limit as N → ∞, we infer ‖H
1
2 u‖2

2 = Q(u). �

If Q > 0, i.e., the first eigenvalue of H is positive, then the inverse H− 1
2 :

L2(M) → W 1,2(M) of H
1
2 exists. We have H− 1

2 u = ∑
i≥1 λ

− 1
2

i aiφi for u =∑
i≥1 aiφi ∈ L2(M). More generally, we define H− 1

2 in the case Q ≥ 0 by

H− 1
2 u = ∑

λi >0 λ
− 1

2
i aiφi for u = ∑

i≥1 aiφi ∈ L2(M).

Lemma 9.2 Assume Q ≥ 0. We set φ∗
1 = φ1 if λ1 = 0 and φ∗

1 = 0 if λ1 > 0. There
holds

H− 1
2 u = �(

1

2
)−1

∫ ∞

0
t−

1
2 e−t H udt (9.4)

for all u ∈ L2(M) with u ⊥ φ∗
1 . Moreover, if u ∈ L2(M) with u ⊥ φ∗

1 satisfies
‖e−t H u‖∞ ≤ φ(t) on an open interval (a, b) ⊂ (0,∞) for a nonnegative continuous
function φ, then there holds

∥∥∥∥
∫ b

a
t−

1
2 e−t H udt

∥∥∥∥∞
≤

∫ b

a
t−

1
2 φ(t)dt. (9.5)
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Proof For u ∈ L2(M) with u ⊥ φ∗
1 , we write u = ∑

λi >0 aiφi , where the series
converges in L2(M). We have e−t H u = ∑

λi >0 e−λi t aiφi . We have

∑
λi >0

∫ ∞

0
t−

1
2 e−λi t aiφi dt = �

(
1

2

) ∑
λi >0

λ
− 1

2
i aiφi = �

(
1

2

)
H− 1

2 u. (9.6)

Hence, the formula (9.4) follows. Next we note that convergence in L2 implies almost
everywhere convergence. Moreover, if uk converges to u almost everywhere, then
‖u‖∞ ≤ lim inf ‖uk‖∞. These two facts lead to (9.5). �

Next we recall, for the sake of clarity and precise estimates, the Marcinkiewicz
interpolation theorem [8] and the Riesz–Thorin interpolation theorem [8], which we
formulate in the special case of the measure space (M, μ), where μ denotes the
Lebesgue measure associated with the volume element dvol of g.

Theorem 9.3 (Marcinkiewicz interpolation theorem) Let L be an additive operator
from L∞(M) to the space of measurable functions on M. Let 1 ≤ p0 ≤ q0 ≤ ∞ and
1 ≤ p1 ≤ q1 ≤ ∞ with q0 �= q1. Assume that L is of weak type (p0, q0) with constant
K0 and of weak type (p1, q1) with constant K1, i.e.,

μ({|L(u)| > α}) ≤
(

K0
‖u‖p0

α

)q0

(9.7)

and

μ({|L(u)| > α}) ≤
(

K1
‖u‖p1

α

)q1

(9.8)

for all u ∈ L∞(M). Then L is of type (pt , qt ) on L∞(M) with constant Kt for each
0 < t < 1, i.e.,

‖L(u)‖qt ≤ Kt‖u‖pt (9.9)

for all u ∈ L∞(M) and α > 0, where

1

pt
= 1 − t

p0
+ t

p1
,

1

qt
= 1 − t

q0
+ t

q1
, (9.10)

Kt ≤ K K 1−t
0 K t

1, (9.11)

and K = K (p0, q0, p1, q1, t) is bounded for 0 < ε ≤ t ≤ 1 − ε with each given
ε > 0, but tends to infinity as t → 0 or t → 1.

It follows that for each 0 < t < 1, L extends uniquely to an additive operator
L : L pt (M) → Lqt (M) with the bound (9.10).

This follows from [8, Theorem 5.2]. The space of simple functions is used in [8,
Theorem 5.2] instead of L∞(M). Moreover, L is only assumed to be sublinear. Note
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that Theorem 9.3 holds both in the set-up of real-valued functions and the set-up of
complex-valued functions.

Theorem 9.4 (Riesz–Thorin interpolation theorem) Let L be a linear operator from
L∞

C (M), i.e., the complex-valued L∞(M), to the space of complex-valued measurable
functions on M. Let 1 ≤ p0, p1, q0, q1 ≤ ∞. Assume that L is of type (p0, q0) on
L∞

C (M) with constant K0, and of type (p1, q1) on L∞
C (M) with constant K1. Then L

is of type (pt , qt ) on L∞
C (M) with constant Kt for each 0 ≤ t ≤ 1, where pt and qt

are given by (9.10) and

Kt ≤ K 1−t
0 K t

1. (9.12)

Consequently, for each 0 ≤ t ≤ 1, L extends uniquely to a linear operator L :
L pt

C (M) → Lqt
C (M) with the bound

‖L(u)‖qt ≤ Kt‖u‖pt (9.13)

for all u ∈ L pt
C (M), where L p

C (M) denotes the complex-valued L p(M).
If we replace the complex-valued spaces by real-valued spaces, then the same holds

except that (9.12) is replaced by

Kt ≤ 2K 1−t
0 K t

1. (9.14)

The bound (9.12) still holds in the set-up of real-valued functions, provided that p0 ≤
q0, p1 ≤ q1, or T is a positive operator.

Now we are ready to prove Theorem 5.4. We present a more general result which
implies Theorem 5.4.

Theorem 9.5 (1) Let μ > 1. Assume that � ≥ 0 and for some c > 0 the inequality

‖e−t H u‖∞ ≤ ct−
μ
4 ‖u‖2 (9.15)

holds true for each t > 0 and all u ∈ L2(M). Let 1 < p < μ. Then there holds

‖H− 1
2 u‖ μp

μ−p
≤ C(c, μ, p)‖u‖p (9.16)

for all u ∈ L p(M), where the positive constant C(μ, c, p) can be bounded from
above in terms of upper bounds for c, μ, 1

μ−p and 1
p−1 . Consequently, there holds

‖u‖ μp
μ−p

≤ C(c, μ, p)‖H
1
2 u‖p (9.17)

for all u ∈ W 1,p(M).
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(2) Let μ > 1. Assume that for some c > 0 the inequality

‖e−t H u‖∞ ≤ ct−
μ
4 ‖u‖2 (9.18)

holds true for each 0 < t < 1 and all u ∈ L2(M). Set H0 = H − inf �− + 1. Let
1 < p < μ. Then there holds

‖H
− 1

2
0 u‖ μp

μ−p
≤ C(μ, c, p)‖u‖p (9.19)

for all u ∈ L p(M), where the positive constant C(μ, c, p) has the same property
as the C(μ, c, p) above. Consequently, there holds

‖u‖ μp
μ−p

≤ C(μ, c, p)‖H
1
2

0 u‖p (9.20)

for all u ∈ W 1,p(M).

Proof (1) For simplicity, we work in the set-up of real-valued functions. The case
p = 2 follows from [2, Theorem 2.4.2]. The proof of that theorem in [2] extends in
a standard way to the general case of (9.16), so we follow it here. By the proof of
Theorem 5.3 in Appendix 2, we have with τ(t) = ln c1 − μ

4 ln t

‖e−t H u‖∞ ≤ e2τ( t
2 )‖u‖1 = 2

μ
2 c2

t
μ
2

‖u‖1 (9.21)

for all u ∈ L1(M) and all t > 0. On the other hand, we have by Lemma 5.2
‖e−t H u‖∞ ≤ ‖u‖∞ for all u ∈ L∞(M). By Theorem 9.4, we then have

‖e−t H u‖∞ ≤
(

2
μ
2 c2

t
μ
2

) 1
p

‖u‖p (9.22)

for each 1 ≤ p ≤ ∞ and all u ∈ L p(M).
Next we consider 1 ≤ p < μ and set

1

q
= 1

p
− 1

μ
, i.e., q = μp

μ − p
. (9.23)

Observe that (9.15) implies that the first eigenvalue λ1 of H is positive. Otherwise,
since Q ≥ 0, λ1 would be zero. Then e−t H φ1 = φ1 for all t > 0. This contradicts
(9.15). Thus (9.4) is valid for all u ∈ L2(M). We show that H− 1

2 : L∞(M) → L2(M)

is of weak type (p, q). For a given T ∈ (0,∞), we write H− 1
2 (u) = G0,T (u) +

GT,∞(u), where

Ga,b(u) = �

(
1

2

)−1 ∫ b

a
t−

1
2 e−t H udt. (9.24)
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We have by Lemma 9.2 and (9.22)

‖GT,∞(u)‖∞ ≤ �

(
1

2

)−1 ∫ ∞

T
t−

1
2

(
2

μ
2 c2

1

t
μ
2

) 1
p

‖u‖pdt

= c1(μ, p)T
1
2 − μ

2p ‖u‖p (9.25)

for all u ∈ L p(M), where

c1(μ, p) = 2p

μ − p
�

(
1

2

)−1 (
2

μ
2 c2

) 1
p
. (9.26)

On the other hand, we have by Lemma 5.2

‖G0,T (u)‖p ≤ �

(
1

2

)−1 ∫ T

0
t−

1
2 ‖u‖pdt = 2�

(
1

2

)−1

T
1
2 ‖u‖p (9.27)

for all u ∈ L p(M). Given u ∈ L∞(M) and α > 0, we define T by

α

2
= c1(μ, p)‖u‖pT

1
2 − μ

p . (9.28)

Then ‖GT,∞(u)‖∞ ≤ α
2 , and hence

μ({|H− 1
2 (u)| > α}) ≤ μ

({
|G0,T (u)| >

α

2

})
≤

(α

2

)−p ‖G0,T (u)‖p
p

≤
(α

2

)−p
(

2�

(
1

2

)−1

T
1
2

)p

‖u‖p
p

= c2(μ, p)

(‖u‖p

α

)q

, (9.29)

where

c2(μ, p) = 2
p(2μ−p)

μ−p c1(μ, p)
p2

μ−p �

(
1

2

)−p

. (9.30)

It follows that H− 1
2 is of weak type (p, q) with constant c2(μ, p)1/q .

Given 1 < p < μ, we set γ = max{ p
p−1 , 2,

2μ−p
μ−p } + 1, p0 = γ−1

γ
p and p1 =

γ−1
γ−2 p. Then 1 < p0 < p1 < μ and

1

p0
+ 1

p1
= 2

p
,

1

q0
+ 1

q1
= 2

q
, (9.31)
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where 1/q0 = 1/p0 − 1/μ and 1/q1 = 1/p1 − 1/μ, and q is the same as before, i.e.,
1/q = 1/p − 1/μ. Applying (9.29) and Theorem 9.3 with t = 1

2 , we then arrive at
(9.16) with

C(μ, c, p) = K

(
p0, q0, p1, q1,

1

2

)
c2(μ, p0)

1
2q0 c2(μ, p1)

1
2q1 . (9.32)

The property of C(μ, c, p) is easy to see from this formula.

By [9], the operator H
1
2 is a pseudo-differential operator of order 1. Since M is

compact, it follows that H
1
2 is a bounded operator from W 1,p(M) into L p(M) for all

1 < p < ∞. (The special case p = 2 is contained in Lemma 9.1). For 2 ≤ p < μ

(assuming μ > 2), we have W 1,p(M) ⊂ W 1,2(M), and hence H− 1
2 H

1
2 u = u by

Lemma 9.1. Replacing u in (9.16) by H
1
2 u for u ∈ W 1,p(M), we then arrive at (9.17).

For 1 < p < min{2, μ}, we can argue this way to arrive at (9.16) for u ∈ C∞(M).

By the boundedness of H
1
2 : W 1,p(M) → L p(M), we then arrive at (9.16) for all

u ∈ W 1,p(M) via approximation.

By [9], the operator H− 1
2 is a pseudo-differential operator of order −1. It follows

that H− 1
2 is a bounded map from L p(M) into W 1,p(M) for all 1 < p < ∞. It also

follows that H− 1
2 : L p(M) → W 1,p(M) is the inverse of H

1
2 : W 1,p(M) → L p(M).

Moreover, by approximation, the inequality (9.17) also implies the inequality (9.16).
(2) For 0 < t < 1, we have for u ∈ L2(M)

‖e−t H0 u‖∞ = e−t (1−inf �−)‖e−t H u‖∞ ≤ ct−
μ
4 ‖u‖2. (9.33)

For t ≥ 1, we write t = m
2 + t0 for a natural number m such that 1/2 ≤ t0 < 1. Then

we have for u ∈ L2(M)

‖e−t H0 u‖∞ = e−t (1−inf �−)‖e− m
2 t H e−t0 H u‖∞ ≤ e−t‖e−t0 H u‖∞

≤ ce−t t
− μ

4
0 ‖u‖2 ≤ c2

μ
4 e−t‖u‖2

≤ c2
μ
4 e− μ

4

(μ

4

)μ
4

t−
μ
4 ‖u‖2. (9.34)

Hence, we can apply the result in (1) to arrive at the desired inequalities (9.19) and
(9.20). (Note that by the above arguments they are equivalent to each other.) �

Proof of Theorem 5.4 1) Let u ∈ W 1,2(M). Applying (9.17) with p = 2, we arrive
at

‖u‖ 2μ
μ−2

≤ C(μ, c, 2)‖H
1
2 u‖2. (9.35)

Combining this with (9.2), we then obtain the desired inequality. 2) This is similar to
1). Note that the quadratic form of H − inf �− + 1 is Q(u) + (1 − inf �−)‖u‖2

2. �
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Combining Theorems 1.1, 1.3, 5.3 and 9.5, we obtain the following two results for
the Ricci flow, which extend Theorems 1.5 and 1.6. Let g = g(t) be a smooth solution
of the Ricci flow on M × [0, T ) as before.

Theorem 9.6 Assume that Rg0 ≥ 0 and λ0(g0) > 0. Let 1 < p < n. There is a
positive constant C depending only on the dimension n, a positive lower bound for
λ0(g0), a positive lower bound for volg0(M), an upper bound for CS(M, g0), an upper
bound for 1

p−1 , and an upper bound for 1
n−p , such that for each t ∈ [0, T ) and all

u ∈ W 1,p(M) there holds

‖u‖ np
n−p

≤ C‖
(

−� + R

4

) 1
2

u‖p. (9.36)

Theorem 9.7 Assume T < ∞ and 1 < p < n. There is a positive constant C
depending only on the dimension n, a nonpositive lower bound for Rg0 , a positive
lower bound for volg0(M), an upper bound for CS(M, g0), an upper bound for T , an
upper bound for 1

p−1 , and an upper bound for 1
n−p , such that for each t ∈ [0, T ) and

all u ∈ W 1,p(M) there holds

‖u‖ np
n−p

≤ C‖H
1
2

0 u‖p, (9.37)

where

H0 = −� + R

4
− min R−

g0

4
+ 1. (9.38)
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