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Abstract A subgroup E of a finite group G is called hypercyclically embedded in G
if every chief factor of G below E is cyclic. Let A be a subgroup of a group G. Then
we call any chief factor H/AG of G a G-boundary factor of A. For any G-boundary
factor H/AG of A, we call the subgroup (A ∩ H)/AG of G/AG a G-trace of A.
On the basis of these notions, we give some new characterizations of hypercyclically
embedded subgroups.
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group, p is
supposed to be a prime.

It is obvious that a maximal subgroup M of G cannot be written as a proper intersec-
tion of subgroups of G. Proper subgroups of G with this property are called primitive
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350 W. Guo et al.

[1] or meet-irreducible [2] since, in fact, they are just the meet-irreducible elements
in the sense of Birkhoff [3, p. 93] of the lattice L(G) of all subgroups of G.

Recall that a normal subgroup of G is called hypercyclically embedded [4, p. 217]
in G if either E = 1 or E �= 1 and every chief factor of G below E is cyclic. With
study and applications of hypercyclically embedded subgroup are connected a large
number of researches. Some results related to such subgroups are discussed in the
books [2,4,5]. Among recent papers in this line of researches, see for example [6–13].

Our goal here is to give new characterizations of hypercyclically embedded sub-
groups on the basis of the following new notion.

Definition 1.1 Let A be a proper subgroup of G. We call any chief factor H/AG of
G/HG a G-boundary factor or simply boundary factor of A. For any G-boundary
factor H/AG of A, we call the subgroup (A ∩ H)/AG of G/AG a G-trace of A or
simply a trace of A.

Example 1.2 A subgroup A of G is said to be a C AP-subgroup [14, p. 37] if A either
covers or avoids each chief factor of G; a partial C AP-subgroup [15,16] or semi
C AP-subgroup [17] if H either covers or avoids each factor of some chief series of
G. It is clear that if A is a C AP-subgroup of G, then every G-trace of A is identity.
If A is a proper partial C AP-subgroup, then some G-trace of A is identity. Indeed,
let 1 = G0 < G1 < · · · < Gt = G be a chief series of G such that H either
covers or avoids each factor of this series. Then there is an index i such that Gi ≤ A
and Gi+1 � A. Hence A does not cover the factor Gi+1/Gi , so A avoids it, that is,
A ∩ Gi+1 ≤ Gi . Thus the trace (A ∩ Gi+1)/Gi is identity.

Example 1.3 Let M be a maximal subgroup of G and H/MG and H1/MG be chief
factors of G. Then |H/MG | = |H1/MG | by Baer’s theorem [14, Ch.A, 15.2(3)], and
the number |H/MG | is called the normal index of M (Deskins). In general, the chief
trace (H ∩ M)/MG may be non-trivial (for example, if G is a simple non-abelian
group). But if G is soluble, then every chief factor of G is abelian and so any trace
of M is trivial by [14, Ch.A,15.2(1)(2)]. Hence in this case, the normal index of M
coincides with its index |G : M | (Deskins).

Example 1.4 Let G be p-soluble (respectively, p-supersoluble). Let A be a proper
subgroup of G and H/AG be any G-boundary factor of A such that p divides |H/AG |.
Then H/AG is an abelian p-group (respectively, H/AG is a group of order p). Hence
the trace (H ∩ A)/AG is subnormal in G/AG , and it is trivial in the case where G is
p-supersoluble. Therefore, if G is soluble, then every trace of any proper subgroup of
G is subnormal; if G is supersoluble, then every trace of any proper subgroup of G is
trivial.

Example 1.5 Every subgroup A of order 2 of the alternative group A4 of degree 4 is
meet-irreducible and A has a unique boundary factor which coincides with the Sylow
2-subgroup of A4.

Recall that a subgroup A of G is said to permute with a subgroup B if AB = B A.
Now we can state our first result.
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Theorem A A non-identity normal subgroup E of G is hypercyclically embedded in
G if and only if for every meet-irreducible subgroup X of E and some G-boundary
factor H/XG of X , where H ≤ E, the trace (H ∩ X)/XG permutes with some Sylow
q-subgroup of G/XG for every prime q dividing |G/XG |.

Let F be a class of groups. If 1 ∈ F, then we write GF to denote the intersection
of all normal subgroups N of G with G/N ∈ F. A non-empty class F of groups is
said to be a formation provided, for every group G, every homomorphic image of
G/GF belongs to F. A formation F is said to be solubly saturated if G ∈ F whenever
GF ≤ �(S) for some normal soluble subgroup S of G.

It is not difficult to show that if G/E ∈ F, where F is a solubly saturated formation,
and E is hypercyclically embedded in G, then G ∈ F (see [13, Lemma 2.16]). Hence,
the following result follows directly from Theorem A.

Corollary 1.6 Let F be a solubly saturated formation containing all supersoluble
groups and E a non-identity normal subgroup of G with G/E ∈ F. Suppose that
for every meet-irreducible subgroup X of E and some G-boundary factor H/XG of
X , where H ≤ E, the trace (H ∩ X)/XG permutes with some Sylow q-subgroup of
G/XG for every prime q dividing |G/XG |. Then G ∈ F.

Corollary 1.7 G is supersoluble if and only if for every meet-irreducible subgroup
X of G and some G-boundary factor H/XG of X , the trace (H ∩ X)/XG permutes
with some Sylow q-subgroup of G/XG for every prime q dividing |G/XG |.

It is clear that if |G : A| = pn , then for every prime q ∈ π(G) there is a Sylow
q-subgroup Q of G such that A permutes with Q. Thus from Corollary 1.7 we get

Corollary 1.8 (See Johnson [1]). If the index |G : X | is a prime power for every
meet-irreducible subgroup X of G, then G is supersoluble.

The following example shows that in general the inverse of Corollary 1.8 is not
true.

Example 1.9 Let p and q be primes such that q divides p−1. Let G = (〈a〉�〈b〉)×〈c〉,
where |a| = |c| = p, |b| = q and A = 〈a〉 � 〈b〉 is a non-abelian group of order pq.
Then G is a supersoluble group, so any G-trace of the subgroup E = 〈ac〉 is trivial.
Moreover, |G : E | = pq and E does not permute with any Sylow q-subgroup of G.
Hence E is a meet-irreducible subgroup of G.

The product of all normal quasinilpotent subgroups of G is denoted by F∗(G) and
it is called the generalized Fitting subgroup of G.

Theorem B A non-identity normal subgroup E of G is hypercyclically embedded in
G if and only if for every two meet-irreducible subgroups X and Y of E with XG = YG,
there are G-boundary factors H/XG and H1/XG of X and Y , respectively, where
H ≤ E and H1 ≤ E , such that the traces (X ∩ H)/XG and (Y ∩ H1)/XG are
conjugated by an element of the generalized Fitting subgroup F∗(G/XG).

Corollary 1.10 Let F be a solubly saturated formation containing all supersoluble
groups and E a non-identity normal subgroup of G with G/E ∈ F. Suppose that
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for every two meet-irreducible subgroups X and Y of E with XG = YG , there are
G-boundary factors H/XG and H1/XG of X and Y , respectively, where H ≤ E and
H1 ≤ E , such that the traces (X ∩ H)/XG and (Y ∩ H1)/XG are conjugated by an
element of the generalized Fitting subgroup F∗(G/XG). Then G ∈ F.

It is well known [18, II, 3.2] that in a soluble group G any two maximal subgroups
M and L with MG = LG are conjugated. It is not difficult to show that the inverse
statement is also true: If any two maximal subgroups M and L with MG = LG are
conjugated, then G is soluble (see the proof of Theorem B*). These observations are
the motivation for our next result.

Corollary 1.11 G is supersoluble if and only if for every two meet-irreducible sub-
groups X and Y of G with XG = YG , there are G-boundary factors H/XG and
H1/XG of X and Y , respectively, such that the traces (X ∩ H)/XG and (Y ∩ H1)/XG

are conjugated by an element of the generalized Fitting subgroup F∗(G/XG).

It is clear that if A is a meet-irreducible subgroup of G, then there is a unique
subgroup A ≤ A0 of G such that A is a maximal subgroup of A0. We say that A0 is the
covering subgroup for A, |A0 : A| is the small index of A and denote it by |G : A|0.

Theorem C A non-identity normal subgroup E of G is hypercyclically embedded in G
if and only if for every meet-irreducible subgroup X of E and some of its G-boundary
factor H/XG , where H ≤ E, we have |E : X |0 = |H/XG |.
Corollary 1.12 Let F be a solubly saturated formation containing all supersoluble
groups and E a non-identity normal subgroup of G with G/E ∈ F. Suppose that for
every meet-irreducible subgroup X of E and some of its G-boundary factor H/XG

of X , where H ≤ E , we have |E : X |0 = |H/XG |. Then G ∈ F.

The following result is well known (see Deskins [19]): A group G is soluble if and
only if the normal index |G : M |n of any maximal subgroup M of G coincides with
the index |G : M |. Our next result is an analogue of this result for supersoluble groups.

Corollary 1.13 G is supersoluble if and only if for every meet-irreducible subgroup
X of G and some of its G-boundary factor H/XG, we have |E : X |0 = |H/XG |.

2 Proofs of Theorems A, B and C

The following results are useful in our proof.

Lemma 2.1 (See [2, Ch. 4, 5.1])). Let R ≤ A ≤ G, where R is normal in G.

(1) If A ≤ B ≤ G, where A is a meet-irreducible subgroup of B, then there is a
meet-irreducible subgroup X of G such that A = B ∩ X.

(2) A is a meet-irreducible subgroup of G if and only if A/R is a meet-irreducible
subgroup of G/R.

Lemma 2.2 (See [20]). Let H ,K and N be pairwise permutable subgroups of G and
H is a Hall subgroup of G. Then N ∩ H K = (N ∩ H)(N ∩ K ).
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Recall that the largest normal subgroup E of G such that every chief factor of G
below E is cyclic is called the U-hypercentre of G and is denoted by ZU(G) (see [14,
p. 389]).

Theorem A is a corollary of the following more general result since ∩pi ∈π(E)Op′
i
(E)

= 1.

Theorem A* Let E be a non-identity normal subgroup of G. Then E/Op′(E) ≤
ZU(G/Op′(E)) if and only if for every meet-irreducible subgroup X of E such that
p divides the order of some G-boundary factor H/XG of X , where H ≤ E , the
trace (H ∩ X)/XG permutes with some Sylow q-subgroup of G/XG for all primes q
dividing |G/XG |.
Proof Sufficiency. Assume that this is false and let G be a counterexample with |G|+
|E | minimal. Let R be a minimal normal subgroup of G contained in E . Then

(1) The hypothesis holds for (G/R, E/R). Hence (E/R)/Op′(E/R) ≤ ZU((G/R)

/Op′(E/R)).
Let X/R be any meet-irreducible subgroup of G/R such that p divides the order of
some (G/R)-boundary factor (H/R)/(X/R)G/R of X/R, where H/R ≤ E/R.
Let q be any prime dividing |(G/R)/(X/R)G/R | = |(G/R)/(XG/R)| =
|G/XG |. Then, by hypothesis, there is a Sylow q-subgroup Q/XG of G/XG

such that

Q(H ∩ X)/XG = (Q/XG)((H ∩ X)/XG)

= ((H ∩ X)/XG)(Q/XG) = (H ∩ X)Q/XG ,

so

(Q(H ∩ X)/R)/(XG/R) = ((H ∩ X)Q/R)/(XG/R).

Hence

((Q/R)/(X/R)G/R)(((H/R) ∩ (X/R))/(X/R)G/R)

= (((H/R) ∩ (X/R))/(X/R)G/R)((Q/R)/(X/R)G/R),

where (Q/R)/(X/R)G/R = (Q/R)/(XG/R) is a Sylow q-subgroup of
(G/R)/(X/R)G/R . Therefore the hypothesis holds for (G/R, E/R). The choice
of G implies that (E/R)/Op′(E/R) ≤ ZU((G/R)/Op′(E/R)).

(2) Op′(E) = 1. Hence pdivides |R|.
Assume that Op′(E) �= 1. Without loss of generality, we can assume
that R ≤ Op′(E). Then Op′(E/R) = Op′(E)/R. Claim (1) implies that
(E/R)/Op′(E/R) ≤ ZU((G/R)/Op′(E/R)). On the other hand, from the G-
isomorphism E/Op′(E) 
 (E/R)/(Op′(E)/R) it follows that every chief factor
of G between E and Op′(E) is cyclic. Hence E/Op′(E) ≤ ZU(G/Op′(E)),
contrary to the choice of G. Therefore Op′(E) = 1 and so p divides |R|.
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(3) If R is the only minimal normal subgroup of G contained in E and X is a meet-
irreducible subgroup of E , then X ∩ R permutes with some Sylow q-subgroup Q
of G for every prime q dividing |G|.
If R ≤ X , it is evident. Now assume that R � X . Then XG = 1. Since R is
the unique minimal normal subgroup of G contained in E, R/1 is the unique
G-boundary of X . Therefore, by hypothesis, there is a Sylow q-subgroup Q of G
such that (X ∩ R)Q = Q(X ∩ R).

(4) CE (R) �= 1. Hence E is p-soluble by (1) and R is a p-group.
If G has two different minimal normal subgroups contained in E , then it follows
from Claim (1). We may, therefore, assume that R is the unique minimal normal
subgroup of G contained in E . Now, in view of Claims (1) and (2), it is enough
to show that R is abelian. Suppose that this is false. Then by the Feit–Thompson
theorem, 2 divides |R| and R is not a 2-group. Let R0 = P1 ∩ R be a Sylow
2-subgroup of R, where P1 is some Sylow 2-subgroup of G, and V a maximal
subgroup of R0. Then NR(V )/V is 2-nilpotent by [18, IV,2.8], so NR(V ) has
a subgroup W such that |NR(V ) : W | = 2 and V ≤ W . Then W is a meet-
irreducible subgroup of NR(V ). Hence by Lemma 2.1, there is a meet-irreducible
subgroup X0 of R such that W = X0 ∩ NR(V ). Clearly, 2 divides |R : X0| and 4
does not divide |R : X0|. Again applying Lemma 2.1, we obtain that X0 = X ∩ R
for some meet-irreducible subgroup X of G.
Claim (3) implies that G has a Sylow 2-subgroup P such that X0 P = P X0. Let
R2 = P ∩ R be a Sylow 2-subgroup of R. Then X0 P ∩ R = X0(P ∩ R) = X0 R2
is a subgroup of R, and X0 < X0 R2 since 2 divides |R : X0|.
Suppose that some prime q �= 2 divides |R : X0|. Since R is the unique minimal
normal subgroup of G contained in E , Claim (3) implies that there is a Sylow
q-subgroup Q of G such that X0 Q = Q X0. Then X0 Q ∩ R = X0(Q ∩ R) is a
subgroup of R and X0 < X0 Rq , where Rq = Q ∩ R is a Sylow q-subgroup of
R. It is also clear that X0 Q ∩ X0 R2 = X0. Hence X0 is not a meet-irreducible
subgroup of R. This contradiction shows that |R : X0| = 2, so X0 is normal in R.
It follows that 1 �= O2(R) �= R. Since O2(R) is characteristic in R, it is normal
in G, which contradicts the minimality of R. Hence R is an abelian p-group.

(5) If R is the only minimal normal subgroup of G contained in E , then |R| = p.
In view of Claim (4), R is a p-group. Let V be a maximal subgroup of R such
that V is normal in a Sylow p-subgroup G p of G. Let q �= p be any other prime
dividing |G|. By Lemma 2.1, there is a meet-irreducible subgroup X of G such
that V = X ∩ R. Claim (3) implies that for some Sylow q-subgroup Q of G we
have V Q = QV . It is also clear that V = V Q ∩ R is normal in V Q, so q does
not divide |G : NG(V )|. Hence V is normal in G and therefore |R| = p.

(6) If R ≤ �(G), then Op′(E/R) = 1 and so E/R ≤ ZU(G/R).
Claim (1) implies that (E/R)/Op′(E/R) ≤ ZU((G/R)/Op′(E/R)). Let V/R =
Op′(E/R). Clearly, V is p-soluble, so by the Frattini argument we have G =
V NG(S) = RSNG(S) = NG(S), where S is a Hall p′-subgroup of V . But this
contradicts Claim (2). Hence Op′(E/R) = 1, and so E/R ≤ ZU(G/R).

(7) If for some minimal normal subgroup L of G we have L ≤ E and L �= R, then
R and L are cyclic p-groups.
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First note that p divides |L| by Claim (2). On the other hand, by Claim (1),
(E/R)/Op′(E/R) ≤ ZU((G/R)/Op′(E/R)), so from the G-isomorphism L 

L R/R we see that L is either a p′-group or a cyclic group. Hence L must be a
cyclic p-group. Similarly, R is cyclic p-groups.

(8) �(G) ∩ Op(E) = 1.
Assume that �(G) ∩ Op(E) �= 1. Then E has a minimal normal subgroup
R ≤ �(G). Hence E/R ≤ ZU(G/R) by Claim (6). But by Claims (5) and (7), R
is cyclic. It follows that E ≤ ZU(G). This contradiction shows that we have (8).
Final contradiction for the sufficiency.
Since �(Op(E)) ≤ �(G), Claim (8) implies that �(Op(E)) = 1, so Op(E) is
abelian. Therefore, again by Claim (8), for every minimal normal subgroup N of G
contained in Op(E), there is a maximal subgroup M of G such that Op(E) = N ×
(Op(E)∩ M), where Op(E)∩ M is normal in G. Hence Op(E) = N1 ×· · ·× Nt

for some minimal normal subgroups N1, . . . , Nt of G. Let Ci = CG(Ni ). Then
C = CG(Op(E)) = C1 ∩ · · · ∩ Ct . Since E is p-soluble by Claim (4) and
Op′(E) = 1 by Claim (2), Op(E) = C ∩ E by [18, VI,6.5]. Note that |Ni | = p
for all i = 1, . . . t . Indeed, if t > 1, then it follows from Claim (7). Suppose that
t = 1. Then Claims (2), (4) and (7) imply that N1 = R is a unique minimal normal
subgroup of G contained in E , so |N1| = p by Claim (5). Hence G/Ci is cyclic
for all i = 1, . . . , t . This implies that G/C is an abelian group. Therefore from
the G-isomorphism C E/C 
 E/C ∩ E = E/Op(E), we see that every chief
factor of G between E and Op(E) is cyclic. Thus E ≤ ZU(G) by the Jordan-
Hölder theorem [14, Ch.A,3.2]. The final contradiction completes the proof of
the sufficiency.
Necessity. Let X be any meet-irreducible subgroup of E such that p divides the
order of some G-boundary factor H/XG of X , where H ≤ E . Since E/Op′(E) ≤
ZU(G/Op′(E)), E is p-supersoluble, so |H/XG | = p. Hence (H ∩ X)/XG = 1.
The theorem is proved. ��

A group G is called semisimple if either G = 1 or G is the direct product of some
simple non-abelian groups.

Theorem B is a corollary of the following our result.

Theorem B* Let E be a non-identity normal subgroup of G. Then E/Op′(E) ≤
ZU(G/Op′(E)) if and only if for every two meet-irreducible subgroups X and Y
of E with XG = YG such that p divides the order of some G-boundary factors
H/XG and H1/XG of X and Y respectively, where H ≤ E and H1 ≤ E , the traces
(X∩H)XG/XG and (Y ∩H1)XG/XG are conjugated by an element of the generalized
Fitting subgroup F∗(G/XG).

Proof Sufficiency. Assume that this is false and let G be a counterexample with |G|+
|E | minimal. Let R be a minimal normal subgroup of G contained in E . We first show
that the hypothesis holds for (G/R, E/R).

Let X/R and Y/R be meet-irreducible subgroups of E/R with (X/R)G/R =
(Y/R)G/R such that p divides the orders of some (G/R)-boundary factors (H/R)/

(X/R)G/R and (H1/R)/(X/R)G/R of X/R and Y/R respectively, where H/R ≤ E/R
and H1/R ≤ E/R. Then X and Y are meet-irreducible subgroups of E with XG = YG
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such that p divides the orders of the G-boundary factors H/XG and H1/XG of X
and Y respectively, where H ≤ E and H1 ≤ E . By hypothesis, for some element
x XG ∈ F∗(G/XG) we have

((X ∩ H)/XG)x XG = (Y ∩ H1)/XG .

Let f : G/XG → (G/R)/(XG/R) be the natural isomorphism. Then

f (x XG) = x R(XG/R) ∈ F∗((G/R)/(XG/R))

and

f (((X ∩ H)/XG))x XG ) = (((X ∩ H)/R)/(XG/R))x R(XG/R)

= ((X/R) ∩ (H/R))/(X/R)G/R)x R(XG/R)

= f ((Y ∩ H1)/XG) = ((Y/R) ∩ (H1/R))/(X/R)G/R .

Therefore the hypothesis holds for (G/R, E/R).
Then Op′(E) = 1 and so p divides |R| (see Claim (2) in the proof of Theorem A∗).

Moreover, if for some minimal normal subgroup L of G we have L ≤ E and L �= R,
then R and L are cyclic p-groups (see Claim (6) in the proof of Theorem A∗).

Now assume that R is the only minimal normal subgroup of G contained in E . We
now show that |R| = p. First we claim that R is a p-group. Assume that this is false.
Then R is a non-abelian group, so the Frattini argument implies that, for any prime
q dividing |R|, there is a maximal subgroup L of E such that R � L and a Sylow
q-subgroup Rq of R is contained in R ∩ L . On the other hand, if M is a maximal
subgroup of E such that R � M , then R/1 = R/MG is the only G-boundary factor
of M . Hence for any two maximal subgroups M and L not containing R, we have
|M ∩ R| = |L ∩ R| by hypothesis. It follows that R ∩ M = R, a contradiction. Thus
R is a p-group.

Next we show that |R| = p. Indeed, assume that |R| > p. Then it has two different
maximal subgroups V and W . Hence V and W are meet-irreducible subgroups of
R. By Lemma 2.1, there are meet-irreducible subgroups X and Y of E such that
V = X ∩ R and W = Y ∩ R. Since R is the only minimal normal subgroup of G
contained in E, R/1 = R/MG is the only G-boundary factor of V and W satisfying
R ≤ E . Therefore by hypothesis there is an element x ∈ F∗(G) such that W = V x . If
F∗(G)∩ E = 1, then F∗(G) ≤ CG(E) and so W = V x = V , a contradiction. Hence
F∗(G) ∩ E �= 1. But then R ≤ F∗(G) ∩ E . By [21, X, 13.6], F∗(G)/Z∞(F∗(G))

is a semisimple group. Since R is a p-group, it follows that R ≤ Z∞(F∗(G)). Thus
F∗(G)/CF∗(G)(R) is a p-group by [22, Ch.5, 3.2]. On the other hand, Z∞(F∗(G)) =
F(G) by [21, X, 13.7]. Hence Z∞(F∗(G)) ≤ CG(R) by [2, AppendixC, 3.2]. But then
we have CF∗(G)(R) = F∗(G) and so again we get that W = V . This contradiction
shows that |R| = p.

The above shows that every minimal normal subgroup of G contained in E is
a cyclic p-group. Now, the final part of the proof of the sufficiency can be proved
similarly as the final part of the proof of the sufficiency in Theorem A∗.
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Necessity. Let X and Y be any two meet-irreducible subgroups with XG = YG

such that p divides the order of some G-boundary factors H/XG and H1/XG of
X and Y , respectively, where H ≤ E and H1 ≤ E . Then, since E/Op′(E) ≤
ZU(G/Op′(E)), |H/XG | = p = |H1/XG | and so the traces (X ∩ H)/XG and
(Y ∩ H1)/XG are the identities.

The theorem is proved. ��
Lemma 2.3 Let R be a normal subgroup and A a meet-irreducible subgroup of G.

(1) If R ≤ A, then |G : A|0 = |G/R : A/R|0.
(2) If R � A, then A0 = A(A0 ∩ R) and |G : A|0 = |(A0 ∩ R) : (A ∩ R)|.
Proof Both assertions are evident. Indeed, if, for example, R � A, then A < AR
and so A0 ≤ AR. Hence A0 = A(A0 ∩ R). It follows that |G : A|0 = |A0 : A| =
|(A0 ∩ R) : (A ∩ A0 ∩ R)| = |(A0 ∩ R) : (A ∩ R)|. ��

Theorem C is a corollary of the following result.

Theorem C* Let E be a non-identity normal subgroup of G. Then E/Op′(E) ≤
ZU(G/Op′(E) if and only if for every meet-irreducible subgroup X of E such that p
divides the order of some G-boundary factor H/XG of X , where H ≤ E , we have
|E : X |0 = |H/XG |.
Proof Sufficiency. Assume that this is false and let G be a counterexample with |G|+
|E | minimal. Let R be a minimal normal subgroup of G contained in E .

We first show that the hypothesis holds for (G/R, E/R). Indeed, let X/R be a meet-
irreducible subgroup of E/R such that p divides the order of a (G/R)-boundary factor
(H/R)/(X/R)G/R of X/R satisfying H/R ≤ E/R. Then X is a meet-irreducible
subgroup of E and H/XG is a G-boundary factor of X such that H ≤ E and p
divides |H/XG |. Hence |E : X |0 = |H/XG | by hypothesis, so

|E/R : X/R|0 = |E : X |0 = |(H/R)/(XG/R)| = |(H/R)/(X/R)G/R |.

This shows that the hypothesis holds for (G/R, E/R). It follows that Op′(E) = 1
and so p divides |R| (see Claim (2) in the proof of Theorem A∗).

If for some minimal normal subgroup L of G we have L ≤ E and L �= R, then R
and L are cyclic p-groups (see Claim (7) in the proof of Theorem A∗).

Now assume that R is the only minimal normal subgroup of G contained in E . If R is
a non-abelian group, then for some Sylow p-subgroup Rp of R we have NE (Rp) �= E .
Let M be a maximal subgroup of E such that NE (Rp) ≤ M . The Frattini argument
implies that R � M . Then, in view of the G-isomorphism RMG/MG 
 R, we have
that RMG/MG is a G-boundary factor of M such that p divides |RMG/MG | and
RMG ≤ E . The hypothesis implies that |RMG/MG | = |E : M |0 = |E : M |. Hence
p divides |E : M |. But for a Sylow p-subgroup E p of E containing Rp we have
E p ∩ R = Rp, so E p ≤ NE (Rp) ≤ M. Hence p does not divide |E : M |. This
contradiction show that R is a p-group.

Now we show that |R| = p. Assume that this is false. Let V be a maximal subgroup
of R. Then V �= 1 and, by Lemma 2.1, for some meet-irreducible subgroup X of E we
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have V = X ∩ R. It is clear that R � X , so XG = 1 since R is the only minimal normal
subgroup of G contained in E . Hence R/1 = R/MG is the only G-boundary factor of
X satisfying R ≤ E . Thus |E : X |0 = |R| by hypothesis. But |E : X |0 = |R/V | = p,
so V = 1. This contradiction shows that |R| = p.

The above shows that every minimal normal subgroup of G contained in E is
a cyclic p-group. Now, the final part of the proof of the sufficiency can be proved
similarly as the final proof of the sufficiency in Theorem A∗.

Necessity. Let X be any meet-irreducible subgroup of E such that p divides the
order of some G-boundary factor H/XG of X where H ≤ E . Since E/Op′(E) ≤
ZU(G/Op′(E)), E is p-supersoluble. This implies that |H/XG | = p. Hence by
Lemma 2.3(2), 1 �= |E : X |0 = |H ∩ X0 : X ∩ H | = |H ∩ X0 : XG |. Conse-
quently |E : X |0 = |H/XG |. The theorem is thus proved. ��

3 Some Other Applications

In this section, we discuss some other applications of the notions of boundary factor
and trace of a subgroup.

1. Recall that a series M < T < G, where T is a maximal subgroup of G and M
is a maximal subgroup of T , is said to be a maximal chain of G of length 2.

A large number of results are based on a stronger condition for subgroups “cover or
avoid chief factors”. For example, it is known that if either every maximal subgroup
of G is a (partial) C AP-subgroup of G or every second maximal subgroup of G is a
(partial) C AP-subgroup of G (see [17,23]), then G is soluble. Note that the subgroup
A in Example 1.5 is 2-maximal and it is not a partial C AP subgroup of A4.

Nevertheless, we can prove the following theorem which contains the above-
mentioned results in [17,23].

Theorem 3.1 G is soluble if and only if every maximal chain of G of length 2 contains
a proper subgroup M of G such that some G-trace of M is subnormal.

In order to prove Theorem 3.1, the following well-known result (see [24, (6.6.3)])
is used.

Lemma 3.2 Let G = R � M. If M is a soluble maximal subgroup of G, then R is
abelian.

Proof of Theorem 3.1. In view of Example 1.4, it is enough to prove that if every
maximal chain of G of length 2 contains a proper subgroup M of G such that some
G-trace of M is subnormal, then G is soluble. Assume that this is false and let G be
a counterexample of minimal order. Let R be a minimal normal subgroup of G, q the
largest prime dividing |R| and Rq a Sylow q-subgroup of R. Then:

(1) G/R is soluble. Hence R is the unique minimal normal subgroup of G, R �⊆
�(G), CG(R) = 1 and so q > 3.
Let M/R < T/R < G/R be any maximal chain of G/R of length 2. Then
M < T < G is a maximal chain of G of length 2, so for one of the subgroups M
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or T (we denote it by L) some G-trace (H1 ∩ L)/LG of L is subnormal in G/LG

by hypothesis. But then the (G/R)-trace

((H1/R) ∩ (L/R))/(L/R)G/R = ((H1 ∩ L)/R)/(LG/R)

of L/R is subnormal in (G/R)/(L/R)G/R . This shows that the hypothesis holds
for G/R. The choice of G implies that G/R is soluble, and it follows that R is the
unique minimal normal subgroup of G, R �⊆ �(G), CG(R) = 1. It is clear that
2 ∈ π(R) and q > 3 by the well-known Feit–Thompson theorem and Burnside
paqb-theorem.

(2) For some maximal subgroup M of G and some Sylow q-subgroup Gq of G, we
have Rq ≤ Gq ≤ NG(Rq) ≤ M and MG = 1. (This follows from Claim (1) and
Frattini argument).

(3) R �= G, so D = M ∩ R �= M .
Suppose that R = G is a simple non-abelian group. Then G/1 is the only G-
boundary factor of any proper subgroup of G. By Claim (1), G is not 2-nilpotent
and so G has a 2-closed Schmidt subgroup H = H2 � Ht by [18, IV, 5.4]. It is
clear that |H2| �= 2 and H �= G. Hence G has a maximal chain T < L < G,
where T �= 1. Since p divides |G|, at least one of the subgroups T or L is a proper
non-identity subnormal subgroup of G by hypothesis, so G is not a simple non-
abelian group. This contradiction shows that R �= G. Since MG = 1, M R = G
and so D = M ∩ R �= M .

(4) D is a normal non-nilpotent subgroup of M , so D � �(M).
Clearly, Rq is a Sylow subgroup of D. Suppose that D is nilpotent. Then Rq is a
characteristic subgroup of D, so M ≤ NG(Rq) since D is normal in M . Hence,
in view of Claim (1), we have M = NG(Rq) and so NR(Rq) = D is nilpotent.
Then NR(Rq)/CR(Rq) is a q-group and hence Oq(R) �= R by [21, X, 8.13] since
q > 3 by Claim(1). But in view of Claim (1) again, every composition factor of
R is non-abelian, a contradiction. Thus we have (4).

(5) M has a maximal subgroup T such that M = DT and D ∩ T �= 1.
In view of Claim (4), there is a maximal subgroup T of M such that M = DT .
Assume that D ∩ T = 1. Then D is a minimal normal subgroup of M . Note also
that

G/R 
 M R/R 
 M/M ∩ R = M/D 
 T

is soluble by Claim (1). Then D is a abelian group by Lemma 3.2, which contra-
dicts Claim (4). Hence D ∩ T �= 1.

(6) At least one of the subgroups T ∩ R or D = M ∩ R is subnormal in G.
By hypothesis, a maximal chain T < M < G contains a proper subgroup L of G
such that some G-trace of L is subnormal. In view of Claim (1), R/1 is the unique
G-boundary factor of L . Therefore, L ∩ R is subnormal in G by [14, Ch.A, 14.2]
Final contradiction.
By [14, A, 14.3], R normalizes every subnormal subgroup of G. Hence, in view
of Claim (6), either R ≤ NG(T ∩ R) or R ≤ NG(D). Then since (T ∩ R)G =
(T ∩ R)RM ≤ (T ∩ R)M ≤ DM ≤ MG and 1 �= D ∩ T ≤ T ∩ R, we obtain

123



360 W. Guo et al.

that MG �= 1. But this contradicts Claim (2). The final contradiction completes
the proof. ��

Question 3.3 Is it true that G is p-soluble if and only if every maximal chain of G of
length 2 contains a proper subgroup M of G such that either some G-trace of M is
subnormal or every G-boundary factor of M is a p′-group?

2. It is clear that every trace of any maximal subgroup of a soluble group is abelian.
This fact is a motivation for our next observations, which can be proved similarly as
Theorem 3.1.

Theorem 3.4 G is soluble if and only if every maximal subgroup of G has a nilpotent
trace.

Corollary 3.5 (O. Yu. Schmidt [14, Ch.A, 10.7]). If every maximal subgroup of G is
nilpotent, then G is soluble.

Nevertheless, we do not know the answer to the following

Question 3.6 Suppose that every maximal subgroup of G has a supersoluble trace.
Does it true then that G is soluble?

3. It is well known that a p-soluble group is p-supersoluble if and only if for
every its maximal subgroup M , we have that |G : M | is either p or a p′-number [18,
VI,9.2,9.3]. Note that if G is p-soluble and p divides the order of some boundary
factor H/MG of a maximal subgroup M of G, then H/MG is abelian p-group and so
|H/MG | = |G : M |. This elementary observation is a motivation for the following
generalization of the Theorems 9.2 and 9.3 in [18].

Theorem 3.7 G is p-supersoluble if and only if for every maximal subgroup M of
G such that p divides the order of some boundary factor H/MG of M , we have
|H/MG | = |G : M |.
Proof See the proof of Theorem C∗. ��
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