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Abstract For a large class of integral operators or second-order differential operators,
their isospectral (or cospectral) operators are constructed explicitly in terms of h-
transform (duality). This provides us a simple way to extend the known knowledge
on the spectrum (or the estimation of the principal eigenvalue) from a smaller class of
operators to a much larger one. In particular, an open problem about the positivity of
the principal eigenvalue for birth–death processes is solved in the paper.
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1 Introduction

Let us consider the elliptic operators

L =
∑

i, j

ai j (x)∂
2
i j +
∑

i

bi (x)∂i + c(x),

L̃ =
∑

i, j

ãi j (x)∂
2
i j +
∑

i

b̃i (x)∂i ,
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18 M.-F. Chen, X. Zhang

on L2(μ) and L2(μ̃) (real), respectively, where μ̃ = h2μ for a given measure μ and
some h �= 0. Their main difference is that c(x) �≡ 0. We are interested in when the
operators L and L̃ are L2-isospectral in the following sense:

(L f, f )μ = (L̃ f̃ , f̃
)
μ̃
, for every f̃ := f/h, f ∈ D(L).

Here is one of our typical results in the note (cf. Theorems 3.1 and 3.6 in Sect. 3).

Theorem 1.1 (1) Given L on L2(μ) having domain D(L), let h �= 0, μ-a.e. be L-
harmonic: Lh = 0, μ-a.e., then, L is L2-isospectral to L̃:

L̃ = L0 + 2h−1〈a∇h,∇〉, D
(
L̃
) = { f : f h ∈ D(L)},

where L0 = L − c.
(2) Given L̃ on L2(μ̃) having domain D

(
L̃
)
, then for each h �= 0, μ-a.e., L̃ is L2-

isospectral to L:

L = L̃ − 2

h

〈
ã∇h,∇〉+

[
2

h2

〈
ã∇h,∇h

〉− 1

h
L̃h

]
,

D(L) = { f : f/h ∈ D
(
L̃
)}
,

where 〈·, ·〉 denotes the Euclidean inner product.

As a typical application of Theorem 1.1, we obtain the next result. To state it, we
need to explain the meaning of eigenvalue in different sense. We say that λ is an
eigenvalue of L in the ordinary sense if Lg = λg for some g �= 0. It is called a
L2-eigenvalue if additionally, g ∈ L2(μ).

Corollary 1.2 For each h ∈ C 2(R), h �= 0, a.e., the operator

Lh = 1

2

d2

dx2 −
(

x + h′

h

)
d

dx
+
[(

h′

h

)2

+ x
h′

h
− h′′

2h

]

has L2-eigenvalues λn
(
Lh
) = −n with eigenfunctions

gn(x) = (−1)nh(x)ex2 dn

dxn

(
e−x2)

, n � 0,

respectively. A particular class of Lh is the following:

Lb = 1

2

d2

dx2 − b(x)
d

dx
+ 1

2

[
b(x)2 − b′(x)− x2 + 1

]
, b ∈ C 1(R).

Proof Noting that the Ornstein–Uhlenbeck operator

L̃ = 1

2

d2

dx2 − x
d

dx
, D

(
L̃
) ⊃ C ∞

0 (R)
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Isospectral Operators 19

has ordinary eigenvalues λn
(
L̃
) = −n with eigenfunctions

gn(x) = (−1)nex2 dn

dxn

(
e−x2)

, n � 0,

respectively (cf. [3, Example 5.1]). Clearly, the polynomial function gn ∈ L2(μ̃) for
every n � 0, where μ̃(dx) = exp(−x2)dx . Hence, the eigenvalues are all L2-ones.
Now, the first assertion follows from part (2) of Theorem 1.1. The last assertion then
follows by setting h = expψ with ψ ′ = b − x :

(
h′

h

)2

+ x
h′

h
− h′′

2h
= ψ ′2+ xψ ′ − 1

2

(
ψ ′′ + ψ ′2) = ψ ′

(
x + 1

2
ψ ′
)

− 1

2
ψ ′′.

��
Corollary 1.2 says that a large class of operators are all isospectral to the rather sim-

ple Ornstein–Uhlenbeck operator. This indicates the value of the study on isospectral
operators. It should be pointed out that the technique is still valuable even if you know
only some estimates of the principal eigenvalue of L̃ but have no knowledge on the
other part of the spectrum of L̃ , since our knowledge on the principal eigenvalue of L
is still rather limited.

Actually, Theorem 1.1 comes from a very simple observation. For completeness,
here we write its complex version, even though we will use only its real version later
on.

Lemma 1.3 Let (E,E , μ) be a measure space and let h be Lebesgue measurable:
E → C, h �= 0, μ-a.s. Then,

(1) f̃ := 1[h �=0] f/h is an isometry from L2(E, μ) to L2(E, μ̃) (complex), where
μ̃ = |h|2μ.

(2) Let L be an operator on L2(E, μ) with domain D(L). Define an operator L̃ as
follows:

L̃ f̃ = 1[h �=0]
1

h
L
(

f̃ h
)
, D
(
L̃
) = { f̃ ∈ E : f̃ h ∈ D(L)

}
. (1)

Then, the operators (L ,D(L)) on L2(E, μ) and
(
L̃,D
(
L̃
))

on L2
(
E, μ̃
)

are
isospectral (say L and L̃ are L2-isospectral, for short) (in the following sense):

(L f, f )μ = (L̃ f̃ , f̃
)
μ̃
, f ∈ D(L).

(3) If additionally, h ∈ D(L), then L̃� = 0, μ̃-a.e. iff h is L-harmonic: Lh = 0,
μ-a.s.

Proof Recall the inner product in a complex L2-space:

( f, g)μ =
∫

E

f ḡdμ.
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20 M.-F. Chen, X. Zhang

The first assertion is obvious:
∫

E

| f |2dμ =
∫

E [h �=0]

∣∣ f̃
∣∣2|h|2dμ =

∫

E

∣∣ f̃
∣∣2dμ̃.

By definition, for f̃ ∈ D
(
L̃
)
, we have f̃ h ∈ D(L) ⊂ L2(E, μ). Then, we have not

only f̃ ∈ L2
(
E, μ̃
)

but also L
(

f̃ h
) ∈ L2(E, μ). This means that L̃ f̃ ∈ L2

(
E, μ̃
)
.

Hence, as an operator on L2
(
E, μ̃
)
, L̃ is well defined. Furthermore, we have

(L f, f )μ=(L( f̃ h
)
, f̃ h
)
μ

=
∫

E

f̃ h L
(

f̃ h
)
dμ =

∫

E

¯̃f (h̄h)
1

h
L
(

f̃ h
)
dμ = (L̃ f̃ , f̃

)
μ̃
.

We have thus proved the second assertion. Clearly, if h ∈ D(L), then 1h = h ∈
L2(E, μ), and hence 1 ∈ L2

(
E, μ̃
)

which implies that μ̃(E) < ∞. Furthermore,
1 ∈ D

(
L̃
)

by definition of D
(
L̃
)
. Therefore, the last assertion follows by definition

of L̃ . ��
For non-symmetric operators, their spectrum can be complex. Hence, it is natural to

use the complex L2-theory. However, in this note, we use the real L2-spaces only. Thus,
the L2-isospectral (real) here means the spectrum of their symmetrized operators. The
last assertion of the lemma suggests us, as we will do often later, to choose h as an L-
harmonic function in a weak (pointwise) sense (in other words, h is in a weak domain
of L) without assuming h ∈ D(L). Then, L̃1 = 0 is meaningful in the weak sense.
In this way, we can construct the operator L̃ explicitly, which is the main goal of this
note. Furthermore, part (3) of the lemma has the following extension.

Remark 1.4 For fixed B ∈ E , L̃1 = 0, μ̃-a.e. on B iff Lh = 0, μ-a.s. on B.

We will illustrate later an application of this assertion in the context of Markov
chains. Clearly, the L-harmonic function is an eigenfunction corresponding to the
eigenvalue λ = 0. However, λ = 0 is not necessary an eigenvalue in the L2-sense
unless h ∈ L2(E, μ).

One may write L̃ = h−1L(h •) (μ-a.e.) for short. Because of this, L̃ is called a
h-transform of L . Alternatively, define an operator H :

H f = h f, D(H) = { f ∈ L2(E, μ) : h f ∈ D(L)}.

Then, we indeed have L̃ = H−1L H . In view of this, L and L̃ are similar and so are
L2-isospectral. More generally (without assuming the invertibility of H ),

H L̃ = L H.

Because of this, L and L̃ are called dual with respect to H . Therefore, the h-transform
is indeed a special duality. For a different dual, refer to [2, §5 and §10]. Note that in
the later case, we were interested in the principal eigenvalue only, but the transform
used there is still isospectral. The reason is that the isospectral transform is easier to
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Isospectral Operators 21

handle even though it looks rather strong. We remark that when E has boundary ∂E ,
one may deduce a boundary condition for L̃ from that of L , based on the transform
f̃ = 1[h �=0] f/h.

Having figured out the dual operators, in the study of their spectrum for Markov
processes, it is more convenient in practice to use their extension to the Dirichlet forms,
especially for the operator

(
L̃,D
(
L̃
))

. Generally speaking, Lemma 1.3 says that for
a given Dirichlet form (D,D(D)) on L2(μ), its dual form

(
D̃,D

(
D̃
))

on L2(μ̃) is
given by

D̃
(

f̃
) = D

(
f̃ h, f̃ h

)
, D

(
D̃
) = { f̃ ∈ E : f̃ h ∈ D(D)

}
.

Certainly, one may go to the inverse way, defining (D,D(D)) in terms of
(
D̃,D

(
D̃
))

.
In particular, for the O.-U. operator used in the proof of Corollary 1.2, corresponding
to
(
L̃,D
(
L̃
))

, the Dirichlet form
(
D̃( f ),D

(
D̃
))

is

D̃( f ) =
∫

R

f ′2e−x2
dx,

D
(
D̃
) = { f ∈ L2(μ̃) : D̃( f )<∞} =

{
f :
∫

R

[
f 2 + f ′2]e−x2

dx<∞
}
.

In the case that the potential term ch (the last term) in Lh is non-positive, then Lh cor-
responds to the operator of a diffusion having killing rate −ch , to which we certainly
have a Dirichlet form

(
Dh,D

(
Dh
))

on L2(μh):

Dh( f ) =
∫

R

[
f ′2(x)− ch(x) f 2(x)

]
e−x2 dx

h(x)2
,

D
(
Dh) =

{
f :
∫

R

[
f 2 + ( f ′h − f h′)2

]
e−x2

dx<∞
}
,

ch(x) =
[(

h′

h

)2

+ x
h′

h
− h′′

2h

]
(x), μh(dx) = e−x2 dx

h(x)2
.

Here, D
(
Dh
)

is deduced from D
(
D̃
)
, based on Lemma 1.3. For general ch(x) ∈ R,

this symmetric form may not be a Dirichlet one even though it does have non-negative
spectrum in view of our isospectral property. Actually, Lemma 1.3 is meaningful in a
very general setup rather than Markov processes.

The h-transform, or the Doob’s h-transform is a well-known topic in probabil-
ity/potential theory. Here, we mention only two related papers [9,10] where the tool
is used to study the principal eigenvalue. In [9], the following model

L = 1

2

d

dx
a

d

dx
− 1

2

(
b2

a
+ b′
)
,
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22 M.-F. Chen, X. Zhang

L̃ = 1

2

d

dx
a

d

dx
+ b

d

dx
,

h(x) = exp

[ x∫

0

b

a
(y)dy

]

is carefully handled and applied to multi-dimensional diffusion operators. In [10], a
class of symmetric Markov processes having killings are studied, and some upper and
lower estimates for the first eigenvalue are presented.

The remainder of this note is organized as follows. In the next two sections, we
apply Lemma 1.3, respectively, to two special classes of operators: either integral
operators for Markov pure jump processes or the operators for diffusions.

2 Integral Operators

Theorem 2.1 Let (q(x), q(x, dy)) be a totally stable and conservative q-pair on
(E,E , μ) (cf. [1, Definition 1.9]). For a given function c ∈ E with c � q, define an
operator �

� f (x) =
∫

E

q(x, dy)
[

f (y)− f (x)
]+ c(x) f (x), x ∈ E

with domain D(�) ⊂ L2(E, μ). Next, let h (> 0, μ-a.e.) be �-harmonic (if exists):
� h = 0, μ-a.e. on E . Define a new totally stable and conservative q-pair(
q̃(x), q̃(x, cy)

)
as follows:

q̃(x, A) = 1[h(x) �=0]
1

h(x)

∫

A

q(x, dy)h(y), A ∈ E ,

q̃(x) = q̃(x, E), μ-a.e. x ∈ E .

Set

�̃ f (x) =
∫

E

q̃(x, dy)
[

f (y)− f (x)
]
, μ-a.e. x ∈ E,

D
(
�̃
) = { f̃ ∈ E : f̃ h ∈ D(�)

}
.

Then, � and �̃ are L2-isospectral.

Proof Noting that h (> 0, μ-a.e.) is �-harmonic by assumption, we have

[
q(x)− c(x)

]
h(x) =

∫

E

q(x, dy)h(y) � 0.
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Isospectral Operators 23

Hence, h is q(x, ·)-integrable for a.e.-x ∈ E , and moreover q � c. Therefore, the new
q-pair

(
q̃(x), q̃(x, dy)

)
is totally stable. It is clearly conservative. By definition of �̃,

we have on the set [h > 0],

�̃( f )(x) =
∫

E

q̃(x, dy)
[

f (y)− f (x)
]

= 1

h(x)

∫

E

q(x, dy)
{[
( f h)(y)− ( f h)(x)

]+ f (x)
[
h(x)− h(y)

]}
⎤

⎦

= 1

h(x)

⎡

⎣
∫

E

q(x, dy)
[
( f h)(y)− ( f h)(x)

]− f (x)
∫

E

q(x, dy)
[
h(y)− h(x)

]

= 1

h(x)

[
�( f h)(x)− c( f h)(x)− f (x)[�h(x)− (ch)(x)]]

= 1

h(x)

[
�( f h)(x)− f (x)�h(x)

]
.

Now, by harmonic property of h, the right-hand side is equal to

1

h(x)
�( f h)(x) on [h > 0].

The assertion then follows from Lemma 1.3. ��
We mention that the positive condition of h used in the theorem is to keep(

q̃(x), q̃(x, dy)
)

to be a q-pair. This is certainly not necessary in a general context:
considering general integral kernel instead of the non-negative one.

The inverse of the last theorem goes as follows.

Theorem 2.2 Given a totally stable and conservative q-pair
(
q̃(x), q̃(x, dy)

)
and a

positive E -measurable function h such that h−1 is q̃(x, ·)-integrable for each x ∈ E,
the operator

(
�̃,D

(
�̃
))

on L2(E, μ̃) corresponding to the q-pair
(
q̃(x), q̃(x, dy)

)
is

L2-isospectral to the following operator � on L2(E, μ) (μ := h−2μ̃):

� f (x) =
∫

E

q(x, dy)[ f (y)− f (x)] + c(x) f (x),

D(�) = { f ∈ E : f/h ∈ D
(
�̃
)} ⊂ L2(E, μ),

where

q(x, dy) = h(x)
q̃(x, dy)

h(y)
,

c(x) =
∫

E

q̃(x, dy)

[
h(x)

h(y)
− 1

]
, x ∈ E .
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24 M.-F. Chen, X. Zhang

Proof It is simply a use of the duality� = H�̃H−1, noting the property that�h = 0
is now automatic since �̃1 = 0. The remainder of the proof is mainly a careful
computation. ��

It is the place to discuss the existence of a positive �-harmonic function. Let
c(x) < q(x), x ∈ E . Choose and fix a reference point θ ∈ E . By [1, Theorem 2.2],
there exists uniquely the minimal solution (h∗(x) : x ∈ E) with h∗(θ) = 1 to the
following non-negative equation:

h(x) =
∫

E\{θ}

q(x, dy)

q(x)− c(x)
h(y)+ q(x, {θ})

q(x)− c(x)
, x �= θ. (2)

Moreover, the solution can be obtained in the following way: let

h(1)(x) = q(x, {θ})
q(x)− c(x)

, x �= θ,

h(n+1)(x) =
∫

E\{θ}

q(x, dy)

q(x)− c(x)
h(n)(y)+ q(x, {θ})

q(x)− c(x)
, x �= θ, n � 1.

Then, for each x �= θ , h(n)(x) ↑ h∗(x) ∈ [0,∞] as n → ∞.

Proposition 2.3 Let c(x) < q(x) for every x ∈ E and assume that q(x, {θ}) > 0
for some x �= θ . Then, the equation �h = 0 has a non-trivial (finite) solution iff
the minimal solution (h∗(x) : x ∈ E) to (2) is finite. Equivalently, there is a finite f
satisfying the inequality

f (x) �
∫

E\{θ}

q(x, dy)

q(x)− c(x)
f (y)+ q(x, {θ})

q(x)− c(x)
, x �= θ.

Then, we actually have f (x) � h∗(x) for every x ∈ E.

Proof For a given finite non-trivial �-harmonic function h, choosing h(θ) = 1, one
may write down immediately Eq. (2).

Conversely, a finite solution h∗ to (2) is clearly a �-harmonic function. From the
construction given above, it is also clear that h∗(x) > 0 once q(x, {θ}) > 0. The last
assertion of the proposition is essentially a comparison theorem [1, Theorem 2.6]. ��

It is clear from the proof above, to obtain a positive harmonic h, some irreducible
condition is necessary. Noting that it is often practical to find an explicit comparison
function f , and h(n) for each n is already explicit, we have explicit estimates of h∗
which may not be easy to obtain explicitly.

Before moving further, we discuss an alternative way to describe the �-harmonic
function. Suppose that supx c(x) < ∞. Then by a shift if necessary, we may and will
assume for a moment that supx c(x) � 0. Define
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Isospectral Operators 25

z(0)(x) = 1, x ∈ E,

z(n+1)(x) =
∫

E

q(x, dy)

q(x)− c(x)
z(n)(y), x ∈ E, n � 1.

Then, z(n)(x) ↓ z̄(x) as n → ∞ for each x ∈ E . This is an analog of the maximal exit
solution in the study of q-processes, cf. [1, Lemma 2.39]. The proof for the conclusion
is easy, simply use the property

q(x, E)

q(x)− c(x)
� 1, x ∈ E .

Remark 2.4 Let supx c(x) � 0. Then, a bounded�-harmonic function is non-zero iff
so is the maximal solution z̄ constructed above.

To apply the previous results, Theorem 2.1 for instance, to finite state spaces, say
E = {0, 1, . . . , N } for some N � 3, one meets a problem about the existence of
positive �-harmonic h. For which, there N + 1 homogeneous equations with N + 1
variables h0, h1, . . . , hN . Because of the homogeneous property in h, one may assume
that h0 = 1 once a non-trivial solution h exists with h0 �= 0 for instance. Thus, we
have only N free variables in N +1 equations. Then, a finite non-trivial solution often
does not exist (or equivalently, the minimal solution given in Proposition 2.3 may be
infinite). To overcome this difficulty, one has to decrease the number of equations.
This is the reason we will adopt a local harmonic condition below. Then, one needs
non-trivial c̃i in the corresponding operator �̃.

Theorem 2.5 Let E = {0, 1, . . . , N } for some N � 3 and let Q = (qi j ) be a
conservative Q-matrix on E. For given (ci : i = 0, 1, . . . , N ) with ci � qi := −qii

for i = 0, 1, . . . , N − 1, set � = Q + diag(ci ). Next, let h > 0 be �-harmonic on
{0, 1, . . . , N − 1}, i.e.,

� h = 0 on {0, 1, . . . , N − 1}.

Define q̃i j (i, j ∈ E) as in Theorem 2.1:

q̃i j = h−1
i qi j h j , i, j ∈ E .

Next, define c̃i = 0 on {0, 1, . . . , N − 1} and

c̃N = cN +
∑

j�N

qN j

(
h j

hN
− 1

)
.

Denote by �̃ the operator corresponding to the matrix
(
q̃i j
)+ diag(c̃i ). Then, � and

�̃ are L2-isospectral.
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26 M.-F. Chen, X. Zhang

Proof Following the proof of Theorem 2.1, restricted to {0, 1, . . . , N −1}, we see that

�̃ f̃ (i) = 1

hi
�
(

f̃ h
)
(i) on {0, 1, . . . , N − 1}.

We now show that this equality also holds for i = N .

�̃ f (N ) =
∑

j�N

q̃N j ( f j − fN )+ c̃N fN

= 1

hN

∑

j�N

qN j

[
( f h) j − ( f h)N

]− fN

hN

∑

j�N

qN j (h j − hN )+ c̃N fN

= 1

hN
Q( f h)(N )− 1

hN
cN hN fN − fN

hN

∑

j�N

qN j (h j − hN )+ c̃N fN

= 1

hN
�( f h)(N ).

From Remark 1.4, it follows that ci = 0 on {0, 1, . . . , N − 1}. The required assertion
now follows from Lemma 1.3. ��

A typical application of Theorem 2.1 to the single-birth processes is presented
in [12]. In this case, the �-harmonic function has a very simple expression (cf. [5,
Theorem 1.1]). In particular, for the killing case, the function is not only positive but
also non-decreasing. It is interesting to note that for single-birth processes, the function
h-dual is again the same type, but the measure μ-dual

q̄i j = μ j q ji

μi
, i, j ∈ E

maps the single birth type to the single death type. Next, for birth–death processes
with birth and death rates bi and ai , respectively, and with killing rates −ci � 0, we
have

ãi = ai
hi−1

hi
(� ai ), i � 1, h0 = 1, b̃i = bi

hi+1

hi
(� bi ), i � 0.

Then,

μ̃i = b̃0 . . . b̃i−1

ã1 . . . ãi
= b0 . . . bi−1

a1 . . . ai
h2

i = h2
i μi , ˆ̃νi = 1

μ̃i b̃i
= 1

hi hi+1
ν̂i , i � 0.

For finite state space, we have

c̃N = cN + aN

(
hN−1

hN
− 1

)
.
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Isospectral Operators 27

Clearly, c̃N � 0 since so does cN . However, the story is still meaningful for general
ci ∈ R satisfying ci � ai + bi for all i � 0.

To conclude this section, we answer an open question for birth–death processes
with state space {0, 1, 2, . . .}. For this, we need some notation. Given birth rates bi >

0 (i � 0), death rates ai > 0 (i � 1), and killing rates −ci � 0 (i � 0), define

q̃(k)n =
{−cn, 0 � k � n − 2

an − cn, k = n − 1,

F̃ (i)i = 1, F̃ (i)n = 1

bn

n−1∑

k=0

q̃(k)n F̃ (i)k , n > i � 0,

hn = 1 −
∑

0�k�n−1

∑

0� j�k

F̃ ( j)
k

c j

b j
, n � 0.

Next, define the principal eigenvalue λ0 as follows:

λ0 = inf

{∑

k�0

[
bk( fk+1 − fk)

2 − ck f 2
k

] :
∑

k�0

μk f 2
k = 1, f has finite support

}
.

Here is a solution to the Open Problem 9.13 in [2].

Theorem 2.6 For birth–death processes as above, we have δ̃ � λ−1
0 � 4δ̃, where

δ̃ = sup
n�0

n∑

j=0

μ̃ j

∑

k�n

ˆ̃νk = sup
n�0

n∑

j=0

μ j h
2
j

∑

k�n

1

hkhk+1μkbk
.

In particular, λ0 > 0 iff δ̃ < ∞.

Proof The harmonic function h we need for applying Theorem 2.1 is given by [5,
Theorem 1.1]. Then, the result follows by applying [2, Theorem 3.1] to the process
with rates (b̃i , ãi ) and using μ̃i and ˆ̃νk just computed above. ��

3 Differential Operators

We now turn to study the second-order differential operators.

Theorem 3.1 Consider the elliptic operator

L =
∑

i, j

ai j (x)∂
2
i j +
∑

i

bi (x)∂i + c(x)

with a domain D(L), and let h �= 0 a.e. (with respect to Lebesgue measure) be
L-harmonic. Here,

∂i = d/dxi , ∂2
i j = ∂i∂ j .
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Define

L̃ =
∑

i, j

ãi j (x)∂
2
i j +
∑

i

b̃i (x)∂i ,

with domain D
(
L̃
)

defined in Lemma 1.3, where

ãi j (x) = ai j (x), b̃i (x) = bi (x)+ 2

h(x)

∑

j

ai j (x)∂ j h(x)

for all i, j , and a.e.-x. Then, L and L̃ are L2-isospectral.

Proof Noting that by the symmetry of the matrix (ai j ), we have

L( f h) =
∑

i, j

ai j∂
2
i j ( f h)+

∑

i

bi∂i ( f h)+ c f h

=
∑

i, j

ai j
[(
∂2

i j f
)
h + 2∂i f ∂ j h + f

(
∂2

i j h
)]

+
∑

i

bi
[(
∂i f
)
h + f ∂i h

]+ f (ch)

= hL f + f Lh − c f h + 2
∑

i, j

ai j∂ j h∂i f a.e.

Because h is L-harmonic, we obtain

1

h
L( f h) = (L f − c f )+ 2

h

∑

i

(∑

j

ai j∂ j h

)
∂i f, a.e.

From which, one reads out the coefficients ãi j (x) and b̃i (x) of L̃ . ��
For short, if we set L0 = L − c, then we have

L̃ = L0 + 2

h
〈a∇h,∇〉

= L0 + 2〈a∇ log h,∇〉 if h > 0.

Remark 3.2 In one-dimensional case, denoting by (a(x), b(x), and c(x)) the coeffi-
cients of L , we can represent L as

L = d

dμ

d

dν̂
+ c(x),

where

dμ(x) = eC(x)

a(x)
dx, dν̂(x) = e−C(x)dx, C(x) =

x∫

θ

b

a
(z)dz,
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and θ is a reference point. Then, the (dual) operator L̃ can be written as

L̃ = d

dμ̃

d

d ˆ̃ν = d

d(h2μ)

d

d
(
h−2ν̂

) .

Here are simple examples of L-harmonic functions.

Example 3.3 Let E = R or (0,∞).

(1) The function h(x) = x is L-harmonic (a.e.) on E for

L = γ (x)
(
∂2

xx + V (x)∂x − V (x)/x
)
,

where the functions V and γ are arbitrary.
(2) The function h(x) = x2 is L-harmonic (a.e.) on E for

L = γ (x)
(
x∂2

xx + ∂x − 4/x
)
,

where the function γ is again arbitrary.

In dimension one, the existence and uniqueness of L-harmonic function, as well as
an approximating (constructing) procedure, can be found from [11, Theorems 1.2.1
and 2.2.1]. To see the positivity of h in general dimensions, suppose that L is self-
adjoint and supx c(x) � 0. Then, the spectrum of −L should be non-negative. If the
principal eigenvalue λ0 of L (i.e., the minimal eigenvalue of −L) is zero, then the L-
harmonic function is just a non-trivial eigenfunction corresponding to the eigenvalue
λ0 = 0 and hence should be non-negative. The function h should be positive inside
the domain based on the maximum principal. Next, if λ0 > 0, then replacing L by
a shift L + λ0, its principal eigenvalue becomes zero, we can continue the study as
above, and finally shifting back to the original operator.

In higher-dimensional case, the harmonic function may not be unique. We remark
that the positive solution of L-harmonic functions for Schrödinger operator L = ddz+
c(x) was examined in [7] in detail, and for elliptic operators in [8] with probabilistic
representation.

Example 3.4 ([7, (1.2)]) The L-harmonic function h for L = ddz − 1 can be repre-
sented as

h(x) =
∫

Sn−1

ex ·ωdμ(ω),

where μ is a non-negative measure on the unique sphere Sn−1.

The next example is a particular case of Corollary 1.2. Its duality relation was
mentioned in [6, §6. Example of O.U.-process and harmonic oscillator], without men-
tioning the L-harmonic property of h.
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Example 3.5 On R, the function h(x) = exp[−x2/2] is L-harmonic:

L = 1

2

(
d2

dx2 + 1 − x2
)
.

Its dual is the O.U.-operator:

L̃ = 1

2

d2

dx2 − x
d

dx
.

Furthermore, L has L2-eigenvalues λn = n (n � 0) with eigenfunctions

gn(x) = (−1)nex2/2 dn

dxn

(
e−x2)

, n � 0,

respectively.

We have just seen an example of the application of known results having c̃(x) = 0
to the one having c(x) �= 0. This indicates a general result as follows.

Theorem 3.6 Given an elliptic operator

L̃ =
∑

i, j

ãi j (x)∂
2
i j +
∑

i

b̃i (x)∂i , D
(
L̃
) ⊂ L2(μ̃

)
,

for each h ∈ C 2, h �= 0 a.e., L̃ is L2-isospectral to L:

L =
∑

i, j

ai j (x)∂
2
i j +
∑

i

bi (x)∂i + c(x), D(L) = { f ∈ E : f/h ∈ D
(
L̃
)}
,

where

ai j (x) = ãi j (x),

bi (x) = b̃i (x)− 2

h(x)

∑

j

ãi j (x)∂ j h(x) on [h �= 0],

c(x) = 2

h(x)2
∑

i, j

ãi j (x)∂i h(x)∂ j h(x)− 1

h(x)
L̃h(x) on [h �= 0].

Briefly,

L = L̃ − 2

h

〈
ã∇h,∇〉+

[
2

h2

〈
ã∇h,∇h

〉− 1

h
L̃h

]

= L̃ − 2
〈
ã∇ log h,∇〉+

{
2
〈
ã∇ log h,∇ log h

〉− h−1〈ã∇,∇h
〉

+〈b̃,∇ log h
〉}

if h > 0.
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Proof In parallel to the pure jump case, this is simply a use of the duality L = H L̃ H−1,
noting the property that Lh = 0 is now automatic since L̃1 = 0. The remainder of the
proof is mainly a careful computation. Actually,

L̃

(
f

h

)
= 1

h
L̃ f + f L̃

(
1

h

)
+ 2

〈
ã∇
(

1

h

)
,∇ f

〉
.

Hence,

hL̃

(
f

h

)
= L̃ f + 2h

〈
ã∇
(

1

h

)
,∇ f

〉
+ f h L̃

(
1

h

)
.

From this, it is ready to write down the coefficients of L . ��
Corollary 3.7 For given L̃ and h = expψ , the dual operator L takes the following
form:

L = L̃ − 2
〈
ã∇ψ,∇〉+

{〈
ã∇ψ,∇ψ 〉− L̃ψ

}
.

We remark that Corollary 3.7 provides us an alternative way to construct the isospec-
tral operator in dimension one. Suppose that we are given an operator

L = ā(x)
d2

dx2 + b̄(x)
d

dx
+ c̄(x).

We want to construct L̃ in terms of the operator L given in Corollary 3.7. First, instead
of solving the second-order harmonic equation Lh = 0, we need to solve the first-order
Riccati equation for φ:

āφ′ + āφ2 + b̄φ + c̄ = 0

to which there is a standard iterative procedure in ODE. Next, let ψ satisfy ψ ′ = φ

and define b̃ = 2āφ + b̄. Then, we have L = L . With this b̃ and ã := ā, we obtain
the operator L̃ as required.

As an application of the last theorem, one can obtain a lot of examples from [3,4].
We remark that each L̃ corresponds to a large class of L since h is quite arbitrary.

The natural higher-dimensional extension of Example 3.5 is as follows.

Example 3.8 The dual of L = 1
2

∑
i

(
∂2

i i + 1 − x2
i

)
is L̃ = 1

2

∑
i

(
∂2

i i − 2xi∂i
)
. The

function h takes the form h(x) = exp[−|x |2/2] rather than
∑

i exp
[ − x2

i /2
]
. The

operator L has eigenvalue n (n � 0) with multiplicity #{(k1, k2, . . . , kd) : k1 + k2 +
· · · + kd = n}, here # means the cardinality of the set following.

Proof For the higher-dimensional O.U.-operator L̃ , we have eigenvalues {∑d
i=1 ki :

ki = 0, 1, . . .}. Corresponding to each
∑d

i=1 ki , the eigenfunction is g(x) :=∏d
i=1 g(i)ki

(xi ) (where each g(i)n is the function gn given in the proof of Corollary 1.2):
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32 M.-F. Chen, X. Zhang

L̃g(x) = −
d∑

i=1

ki g
(i)
ki
(xi )
∏

j �=i

g( j)
k j
(x j ) = −

( d∑

i=1

ki

)
g(x).

Therefore, L̃ has eigenvalue n (n � 0) with multiplicity #{(k1, k2, . . . , kd) : k1 +
k2 + · · · + kd = n}. From here, it is easy to write down the eigenvalues of L and their
corresponding eigenfunctions. ��
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