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Abstract This paper studies singular optimal control problems for systems described
by nonlinear-controlled stochastic differential equations of mean-field type (MFSDEs
in short), in which the coefficients depend on the state of the solution process as well
as of its expected value. Moreover, the cost functional is also of mean-field type. The
control variable has two components, the first being absolutely continuous and the
second singular. We establish necessary as well as sufficient conditions for optimal
singular stochastic control where the system evolves according to MFSDEs. These
conditions of optimality differs from the classical one in the sense that here the adjoint
equation turns out to be a linear mean-field backward stochastic differential equation.
The proof of our result is based on convex perturbation method of a given optimal
control. The control domain is assumed to be convex. A linear quadratic stochastic
optimal control problem of mean-field type is discussed as an illustrated example.

Keywords Stochastic optimal singular control · Mean-field stochastic maximum
principle · Mean-field necessary and sufficient conditions of optimality · McKean–
Vlasov SDEs · Convex perturbation
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1 Introduction

In this paper, we study optimal stochastic singular control for systems driven by
nonlinear-controlled stochastic differential equations of mean-field type, which is also
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418 M. Hafayed

called McKean–Vlasov equations

⎧
⎨

⎩

dxu,η(t) = f (t, xu,η(t), E(xu,η(t)), u(t)) dt + σ (t, xu,η(t),
× E(xu,η(t)), u(t)) dW (t) + G(t)dη(t),

xu,η(s) = ζ,

(1.1)

for some functions f, σ , and G. Noting that mean-field dynamics (1.1) are obtained
as the mean-square limit, when n → +∞ of a system of interacting particles of the
form

dxk,u,η
n (t) = f

(

t, xk,u,η
n (t),

1

n

n∑

i=1

xi,u,η
n (t), u(t)

)

dt

+ σ

(

t, xk,u,η
n (t),

1

n

n∑

i=1

xi,u,η
n (t), u(t)

)

dW k(t)

+ G(t)dη(t),

where
(
W k(·) : k ≥ 1

)
is a collection of independent Brownian motions. The expected

cost to be minimized over the class of admissible controls is also of mean-field type,
which has the form

J s,ζ (u(·), η(·)) =E

⎡

⎣h(xu,η(T ), E(xu,η(T ))) +
T∫

s

�(t, xu,η(t),

× E
(
xu,η(t)

)
, u(t))dt +

∫

[s,T ]

K (t)dη(t)

⎤

⎥
⎦ , (1.2)

where the initial time s and the initial state ζ of the system are fixed. Any admissible
control (u∗(·), η∗(·)) satisfying

J
s,ζ (

u∗(·), η∗(·)) = min
(u(·),η(·))∈U1×U2

J
s,ζ

(u(·), η(·)) , (1.3)

is called an optimal control. The corresponding state process, solution of MFSDE-
(1.1), is denoted by x∗(·) = xu∗,η∗

(·).
The stochastic maximum principle for singular control was considered by many

authors, see for instance [2–4,9–11,13,14,16]. The first version of maximum principle
for singular stochastic control problems was obtained by Cadenillas et al. [9]. The
first-order weak stochastic maximum principle has been studied in [4]. In [11], the
authors derived stochastic maximum principle where the singular part has a linear
form. Sufficient conditions for the existence of optimal singular control have been
studied in Dufour et al. [10]. The necessary and sufficient conditions for near-optimal
singular control were obtained by Hafayed et al. [13]. For this type of problem, the
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reader may consult the papers by Haussmann et al. [14] and the list of references
therein.

Many authors made contributions on SDEs of mean-field type and applications,
see for instance [1,6–8,12,15,17,18,20,21]. Mean-field stochastic maximum princi-
ple of optimality was considered by many authors, see for instance [7,17,18,21]. In
Buckdahn et al. [8], the authors obtained mean-field backward stochastic differential
equations. In Buckdahn et al. [7], the general maximum principle was introduced for a
class of stochastic control problems involving MFSDEs, where the authors obtained a
stochastic maximum principle differs from the classical one in the sense that the first-
order adjoint equation turns out to be a linear mean-field backward SDE, while the
second-order adjoint equation remains the same as in Peng’s [19] stochastic maximum
principle. In Mayer-Brandis et al. [18], a stochastic maximum principle of optimality
for systems governed by controlled Itô-Levy process of mean-field type is proved by
using Malliavin calculus. The local maximum principle of optimality for mean-field
stochastic control problem has been derived by Li [17]. The linear quadratic optimal
control problem for MFSDEs has been studied by Yong [21]. The maximum principle
for mean-field jump diffusion processes has been studied in Hafayed et al. [12].

Our main goal in this paper is to derive a set of necessary as well as sufficient
conditions for the optimal singular stochastic control of mean-field problem (1.1)–
(1.2). Following the standard idea of deriving necessary and sufficient conditions for
optimal control processes, due to the fact that the control domain is assumed to be
convex, one needs to use convex perturbations for both continuous and singular parts
of our control process. The problem under consideration where the coefficients depend
on the marginal probability law of the solution is not only simple extensions from the
mathematical point of view, but also provides interesting models in applications. To
streamline the presentation, we only study the one-dimensional case.

The rest of the paper is organized as follows. Section 2 begins with a general
formulation of a mean-field singular control problem and gives the notations and
assumptions used throughout the paper. In Sects. 3 and 4 we establish our necessary
and sufficient conditions of optimality, respectively. In the last section an example is
given to illustrate the theoretical results.

2 Assumptions and Statement of the Control Problem

We consider mean-field stochastic singular control problem of the following kind.
Let T be a fixed strictly positive real number and (�,F , {Ft }t∈[s,T ] , P) be a fixed
filtered probability space satisfying the usual conditions in which one-dimensional
Brownian motion W (t) = {W (t) : s ≤ t ≤ T } and W (s) = 0 is defined. Let A1 be
a closed convex subset of R and A2 := [0,∞) . Let U1 be the class of measurable,
Ft−adapted processes u(·) : [s, T ] × � → A1, and U2 is the class of measurable,
Ft−adapted processes η(·) : [s, T ] × � → A2.

Since the objective of this paper is to study optimal singular stochastic control, we
give here the precise definition of the singular part of an admissible control.

Definition 2.1 An admissible control is a pair (u(·), η(·)) of measurable A1 × A2-
valued, Ft− adapted processes, such that
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420 M. Hafayed

1. η(·) is of bounded variation, nondecreasing continuous on the left with right limits
and η(s) = 0.

2. E
[
supt∈[s,T ] |u(t)|2 + |η(T )|2] < ∞.

We denote U1 ×U2, the set of all admissible controls. We note that since dη(t) may
be singular with respect to Lebesgue measure dt, we call η(·) the singular part of the
control and the process u(·) its absolutely continuous part.

We denote by L
2
F ([s, T ] ; R) =

{
�(·) := �(t, w) is an Ft -adapted R-valued

measurable process on [s, T ] such that E

(∫ T
s |�(t)|2 dt

)
< ∞

}
. We denote by χR

the indicator function of R. In what follows, C represents a generic constants, which
can be different from line to line.

Conditions: Throughout this paper we assume the following.

(H1) The functions f, σ, � : [s, T ] × R × R × A1→ R, and h : R × R → R are
continuously differentiable with respect to (x, x̃, u). Moreover, f, σ, h, and �

and all their derivatives with respect to (x, x̃, u) are continuous and bounded.
(H2) The function G : [s, T ] → R, K : [s, T ] → [0,∞), for each t ∈ [s, T ] : G is

continuous and bounded, also K is continuous.

Under the above assumptions, the MFSDE-(1.1) has a unique strong solution xu,η(t)
which is given by

xu,η(t) = ζ +
t∫

s

f
(
r, xu,η(r), E(xu,η(r)), u(r)

)
dr

+
t∫

s

σ
(
r, xu,η(r), E(xu,η(r)), u(r)

)
dW (r)

+
∫

[s,t]

G(r)dη(r).

Moreover, by standard arguments it is easy to show that for any p > 0, it holds that

E

[

sup
t∈[s,T ]

∣
∣xu,η(t)

∣
∣p

]

< C p, (2.1)

where C p is a constant depending only on p and the functional J s,ζ is well defined.
We define the usual Hamiltonian associated with the mean-field stochastic control

problem (1.1)–(1.2) as follows

H (t, x, x̃, u, 	(t), Q(t)) =	(t) f (t, x, x̃, u) + Q(t)σ (t, x, x̃, u) + � (t, x, x̃, u) ,

(2.2)
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where (t, x, x̃, u) ∈ [s, T ] × R × R × A1, x is a random variable such that x ∈
L

1 (�,F , R) and (	(·), Q(·)) ∈ R × R given by equation mean-field BSDE-(2.3).
We introduce the adjoint equations involved in the stochastic maximum principle

for our singular mean-field control problem. The adjoint equation turns out to be a
linear mean-field BSDE. So for any (u(·), η(·)) ∈ U1 ×U2 and the corresponding state
trajectory x(t) = xu,η(t), we consider the following adjoint equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−d	(t) = { fx (t, x(t), E(x(t)), u(t)) 	(t)+E [ fx̃ (t, x(t), E(x(t)), u(t)) 	(t)]
+σx (t, x(t), E(x(t)), u(t)) Q(t)+E [σx̃ (t, x(t), E(x(t)), u(t)) Q(t)]
+ �x (t, x(t), E(x(t)), u(t)) +E [�x̃ (t, x(t), E(x(t)), u(t))]} dt
−Q(t)dW (t),

	(T ) = hx (x(T ), E(x(T ))+E [hx̃ (x(T ), E(x(T ))] .

(2.3)

If we denote by

H (t) := H (t, x(t), x̃(t), u(t),	(t), Q(t)) ,

then the adjoint Eq. (2.3) can be rewritten as follows

{−d	(t) = {Hx (t) + E [Hx̃ (t)]} dt − Q(t)dW (t),
	(T ) = hx (x(T ), E(x(T )) + E [hx̃ (x(T )), E(x(T ))] .

(2.4)

As it is well known that under conditions (H1) and (H2), the adjoint Eq. (2.3)
admits one and only one Ft− adapted solution pair (	(·), Q(·)) ∈ L

2
F ([s, T ] ; R) ×

L
2
F ([s, T ] ; R). This equation reduces to the standard one as in [5], when the coef-

ficients do not explicitly depend on the expected value (or the marginal law) of the
underlying diffusion process.

We note that since the derivatives fx , fx̃ , σx , σx̃ , �x , �x̃ , hx , and hx̃ are bounded,
by assumptions (H1), we have the following estimate

E

⎡

⎣ sup
s≤t≤T

|	(t)|2 +
T∫

s

|Q(t)|2 dt

⎤

⎦ ≤ C. (2.5)

3 Mean-Field Maximum Principle for Optimal Singular Control

Our purpose in this section is to establish a stochastic maximum principle for optimal
singular stochastic control for systems driven by nonlinear-controlled MFSDEs. Since
the control domain is assumed to be convex, the proof of our result based on convex
perturbation for both continuous and singular parts of the control process.

The main result of this paper is stated in the following theorem.

Theorem 3.1 (Mean-field maximum principle for optimal singular control in integral
form). Let Conditions (H1) and (H2) hold. Then there exists a unique pair of Ft−
adapted processes (	∗(·), Q∗(·)) such that for all (u, η) ∈ A1 × A2 :
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422 M. Hafayed

E

T∫

s

Hu(t, x∗(t), E(x∗(t)), u∗(t),	∗(t), Q∗(t))(u(t) − u∗(t))dt

+ E

⎡

⎢
⎣

∫

[s,T ]

(K (t) + G(t)	∗(t))d
(
η − η∗) (t)

⎤

⎥
⎦ ≥ 0, (3.1)

where (	∗(·), Q∗(·)) be the solution of adjoint equation (2.3) corresponding to
(u∗(·), η∗(·), x∗(·)).

Corollary 3.2 (Mean-field maximum principle for optimal singular control). Under
Conditions of Theorem 3.1 Then there exists a unique pair of Ft−adapted processes
(	∗(·), Q∗(·)) solution of mean-field FBSDE-(2.3)such that for all (u, η) ∈ A1 ×A2 :

Hu(t, x∗(t), E(x∗(t)), u∗(t),	∗(t), Q∗(t))(u(t) − u∗(t))dt

+ E

⎡

⎢
⎣

∫

[s,T ]

(K (t) + G(t)	∗(t))d
(
η − η∗) (t)

⎤

⎥
⎦ ≥ 0, (3.2)

P−a.s., a.e. t ∈ [s, T ] .

To prove Theorem 3.1 and Corollary 3.2 we need the following results which we have
to translate to our mean-field singular problem.

Let (u∗(·), η∗(·), x∗(·)) be the optimal solution of the control problem (1.1)–
(1.2).We derive the variational inequality (3.1) in several steps, from the fact that

J
s,ζ (

uε(·), ηε(·)) − J
s,ζ (

u∗(·), η∗(·)) ≥ 0, (3.3)

where (uε(·), ηε(·)) is the so-called convex perturbation of (u∗(·), η∗(·)) defined as
follows: t ∈ [s, T ],

(uε(t), ηε(t)) = (
u∗(t), η∗(t)

) + ε
[
(u(t), η(t)) − (

u∗(t), η∗(t)
)]

, (3.4)

where ε > 0 is sufficiently small and (u(·), η(·)) is an arbitrary element of U1 × U1.
We emphasize that the convexity of A1 ×A1 has the consequence that (uε(t), ηε(t)) ∈
U1 × U1.

Let xε(·) = x (uε,ηε)(·) be the solutions of MFSDE-(1.1) corresponding to admissi-
ble control (uε(t), ηε(t)).

Lemma 3.3 Let Conditions (H1) and (H2) hold. Then we have

lim
ε→0

E

(

sup
s≤t≤T

∣
∣xε(t) − x∗(t)

∣
∣2

)

= 0.
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Proof From standard estimates and the Burkholder–Davis–Gundy inequality we
obtain

E

(

sup
s≤r≤t

∣
∣xε(r) − x∗(r)

∣
∣2
)

≤ E

t∫

s

∣
∣ f

(
r, xε(r), E(xε(r)), uε(r)

) − f
(
r, x∗(r), E(x∗(r)), u∗(r)

)∣
∣2 dr

+ E

t∫

s

∣
∣σ

(
r, xε(r), E(xε(r)), uε(r)

) − σ
(
r, x∗(r), E(x∗(r)), x∗(r)

)∣
∣2 dr

+ E

∣
∣
∣
∣
∣
∣
∣

∫

[s,t]

G(r)d
(
ηε − η∗) (r)

∣
∣
∣
∣
∣
∣
∣

2

,

by applying assumption (H2) and the Lipschitz conditions on the coefficients f, σ
with respect to x, x̃, u we get

E

(

sup
s≤t≤T

∣
∣xε(t) − x∗(t)

∣
∣2

)

≤ CT E

t∫

s

∣
∣xε(r) − x∗(r)

∣
∣2 dr + CT ε2

E

t∫

s

∣
∣uε(r) − u∗(r)

∣
∣2 dr

+ CT ε2
E
∣
∣ηε(T ) + η∗(T )

∣
∣2 ,

from Definition 2.1 and Gronwall’s inequality, the desired result follows. �	
Lemma 3.4 Let Z(t) be the solution of the following linear MFSDE

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dZ(t) = { fx (t, x∗(t), E(x∗(t)), u∗(t))Z(t) + fx̃ (t, x∗(t), E(x∗(t)),
u∗(t)) E(Z(t)) + fu(t, x∗(t), E(x∗(t)), u∗(t))(u(t) − u∗(t))} dt
+{σx (t, x∗(t), E(x∗(t), u∗(t))Z(t) + σx̃ (t, x∗(t), E(x∗(t)),
u∗(t)) E(Z(t)) + σu (t, x∗(t), E(x∗(t)), u∗(t)) (u(t)−u∗(t))} dW (t)
+G(t)d (η − η∗) (t),

Z(s) = 0,

(3.5)

then the following estimation holds

lim
ε→0

E

[

sup
s≤t≤T

∣
∣
∣
∣
xε(t) − x∗(t)

ε
− Z(t)

∣
∣
∣
∣

2
]

= 0. (3.6)
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424 M. Hafayed

Proof Noting that since under conditions (H1) and (H2) then linear MFSDE-(3.5) has
a unique solution. We put

γ ε(t) = xε(t) − x∗(t)
ε

− Z(t), t ∈ [s, T ] , (3.7)

by a simple computations we show that

xε(t) − x∗(t)

ε

=
t∫

s

1∫

0

fx
(
r, x∗(r) + με(γ ε(r) + Z(r)), E(x∗(r)), uε(r)

) (
γ ε(r) + Z(r)

)
dμdr

+
t∫

s

1∫

0

{
fx̃

(
r, xε(r), E(x∗(r)) + μεE(γ ε(r) + Z(r)), uε(r)

)
E
(
γ ε(r) + Z(r)

)}
dμdr

+
t∫

s

1∫

0

σx
(
r, x∗(r) + με(γ ε(r) + Z(r)), E(x∗(r)), uε(r)

) (
γ ε(r) + Z(r)

)
dμdr

+
t∫

s

1∫

0

{
σx̃

(
r, xε(r), E(x∗(r)) + μεE(γ ε(r) + Z(r)), uε(r)

)
E
(
γ ε(r) + Z(r)

)}
dμdr

+
t∫

s

1∫

0

fu
(
r, x∗(r), E(x∗(r)), u∗(r) + με

(
u(r) − u∗(r)

)) (
u(r) − u∗(r)

)
dμdr

+
t∫

s

1∫

0

σu
(
r, x∗(r), E(x∗(r)), u∗(r) + με

(
u(r) − u∗(r)

)) (
u(r) − u∗(r)

)
dμdr

+
∫

[s,t]

G(r)d
(
η − η∗) (r),

then from the above equation and (3.7) we conclude that if γ ε(t) is independent of
singular part, then we can use similar method developed in Li [17] for the rest of
proof. �	

Lemma 3.5 For any (u(·), η(·)) ∈ U1 × U1 we have

0 ≤ E
{[

hx
(
x∗(T ), E(x∗(T )

) + E
(
hx̃

(
x∗(T ), E(x∗(T )

))]Z(T )

+
T∫

s

[�x
(
t, x∗(t), E(x∗(t)), u∗(t)

)Z(t) + E
(
�x̃

(
t, x∗(t), E(x∗(t)), u∗(t)

))Z(t)

+ (
u(t) − u∗(t)

)
�u

(
t, x∗(t), E(x∗(t)), u∗(t)

)]dt
}

123
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+ E

∫

[s,T ]

K (t)d
(
η − η∗) (t).

Proof From (1.2) and (3.3), we have

0 ≤ J
s,ζ (

uε(·), ηε(·)) − J
s,ζ (

u∗(·), η∗(·))
= E

[
h(xε(T ), E

(
xε(T )

)
) − h(x∗(T ), E

(
x∗(T )

)
)
]

+ E

T∫

s

[
�(t, xε(t), E

(
xε(t)

)
, uε(t)) − �(t, x∗(t), E

(
x∗(t)

)
, uε(t))

]
dt

+ E

T∫

s

[
�(t, x∗(t), E

(
x∗(t)

)
, uε(t)) − �(t, x∗(t), E

(
x∗(t)

)
, u∗(t))

]
dt

+ E

∫

[s,T ]

K (t)d
(
ηε − η∗) (t)

= I1 + I2+I3+I4.

By applying similar arguments developed in [17] for I1, I2, and I3. Let us turn to
estimate I4. From (3.4), we get for any η(·) ∈ U2

ηε(t)) − η∗(t) = ε
(
η(t) − η∗(t)

)
,

then we can easily prove that

I4 = E

∫

[s,T ]

K (t)d
(
ηε − η∗) (t)

= εE

∫

[s,T ]

K (t)d(η − η∗)(t).

Finally, we conclude that limε→0 I4 = 0, which completes the proof of Lemma 3.5.
�	

Proof of Theorem 3.1 By applying Itô’s formula to 	∗(t)Z(t) and take expectation,
where Z(s) = 0, then a simple computations show that

E(	∗(T )Z(T )) = E

T∫

s

	∗(t)dZ(t) + E

T∫

s

Z(t)d	∗(t)

+ E

T∫

s

Q∗(t) [σx (t)Z(t) + σx̃ (t) E(Z(t)) (3.8)

+ σu (t) (u(t) − u∗(t))
]

dt
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= J1+J2+J3,

where

J1 = E

T∫

s

	∗(t)dZ(t)

= E

T∫

s

	∗(t)
[

fx (t)Z(t) + fx̃ (t) E(Z(t)) + fu(t)(u(t) − u∗(t))
]

dt

+ E

T∫

s

	∗(t)G(t)d(η − η∗)(t) (3.9)

= E

T∫

s

	∗(t) fx (t)Z(t)dt + E

T∫

s

	∗(t) fx̃ (t) E(Z(t))dt

+ E

T∫

s

	∗(t) fu(t)(u(t) − u∗(t))dt + E

∫

[s,T ]

	∗(t)G(t)d(η − η∗)(t),

J2 = E

T∫

s

Z(t)d	∗(t)

= −E

T∫

s

Z(t)
{

fx (t)	∗(t) + E ( fx̃ (t)	(t)) + σx (t) Q∗(t)

+ E
(
σx̃ (t) Q∗(t)

) + �x (t) + E (�x̃ (t))
}

dt

= − E

T∫

s

Z(t) fx (t)	∗(t)dt − E

T∫

s

Z(t)E
(

fx̃ (t)	∗(t)
)

dt (3.10)

− E

T∫

s

Z(t)σx (t) Q∗(t)dt − E

T∫

s

Z(t)E
(
σx̃ (t) Q∗(t)

)
dt

−E

T∫

s

Z(t)�x (t) dt − E

T∫

s

Z(t)E (�x̃ (t)) dt,

and

J3 = E

∫ T

s
Q∗(t)

[
σx (t)Z(t) + σx̃ (t) E(Z(t)) + σu (t) (u(t) − u∗(t))

]
dt
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= E

T∫

s

Q∗(t)σx (t)Z(t)dt + E

T∫

s

Q∗(t)σx̃ (t) E(Z(t))dt

+ E

T∫

s

Q∗(t)σu (t) (u(t) − u∗(t))dt, (3.11)

where bρ(t) = ∂b

∂ρ
(t, x∗(t), E(x∗(t)), u∗(t)) for b = f, σ, � and ρ = x, x̃, u.

Combining (3.8)–(3.11) and the fact that 	∗(T ) = hx (x∗(T ), E(x∗(T )) +
E
[
hx̃ (x∗(T ), E(x∗(T ))

]
we get

E
{[

hx
(
x∗(T ), E(x∗(T )) + E

(
hx̃

(
x∗(T ), E(x∗(T ))

)]Z(T )
}

= E

T∫

s

	∗(t) fu(t)(u(t) − u∗(t))dt + E

T∫

s

Q∗(t)σu (t) (u(t) − u∗(t))dt

− E

T∫

s

Z(t)�x (t) dt − E

T∫

s

Z(t)E (�x̃ (t)) dt + E

∫

[s,T ]

	∗(t)G(t)d(η − η∗)(t).

Finally, applying Lemma 3.5 we get

0 ≤ E

T∫

s

	∗(t) fu(t)(u(t) − u∗(t))dt + E

T∫

s

Q∗(t)σu (t) (u(t) − u∗(t))dt

+ E

T∫

s

�u (t)
(
u(t) − u∗(t)

)
dt,

+ E

∫

[s,T ]

K (t)d
(
η − η∗) (t) + E

∫

[s,T ]

	∗(t)G(t)d(η − η∗)(t)

= E

T∫

s

Hu(t, x∗(t), E(x∗(t)), u∗(t),	∗(t), Q∗(t))
(
u(t) − u∗(t)

)
dt

+ E

∫

[s,T ]

(
K (t) + 	∗(t)G(t)

)
d
(
η − η∗) (t).

This completes the proof of Theorem 3.1. �	
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4 Mean-Field Sufficient Conditions for Optimal Singular Control

The specific purpose of this section is to derive sufficient conditions for optimal sto-
chastic singular control for systems governed by MFSDE. We prove that under certain
convexity conditions on the Hamiltonian and on the function h, the necessary condi-
tions also become sufficient for optimality. We assume

Conditions (H3): The functions h(·, ·) : R × R → R, and H(t, ·, ·, ·, 	, Q) :
R × R × A1 → R satisfy

h(·, ·) is convex with respect to (x, x̃) , (4.1)

H(t, ·, ·, ·, 	, Q) is convex with respected to (x, x̃, u) . (4.2)

Let (v(·), ξ(·)) ∈ U1 ×U2 be an admissible control, and xv,ξ (·), (	v(·), Qv(·)) be the
solution of (1.1), (2.4), respectively, corresponding to (v(·), ξ(·)).

Theorem 4.1 (Mean-field sufficient conditions for optimal singular control). Let con-
ditions (H1)–(H3) hold. Suppose that the singular control (v(·), ξ(·)) satisfies: for any
(u(·), η(·)) ∈ U1 × U2 :

E

T∫

s

Hu(t, xv,ξ (t), E(xv,ξ (t)), v(t),	v(t), Qv(t))(u(t) − v(t))dt

+ E

⎡

⎢
⎣

∫

[s,T ]

(K (t) + G(t)	v(t))d (η − ξ) (t)

⎤

⎥
⎦ ≥ 0, (4.3)

then (v(·), ξ(·)) is an optimal control, i.e.,

J s,ζ (v(·), ξ(·)) = min
(u(·),η(·))∈U1×U2

J s,ζ (u(·), η(·)) . (4.4)

Proof For any (u(·), η(·)) ∈ U1 × U2, and from (1.2) we get

J s,ζ (u(·), η(·)) − J s,ζ (v(·), ξ(·))
= E

[
h(xu,η(T ), E

(
xu,η(T )

) − h(xv,ξ (T ), E
(
xv,ξ (T )

)]

+ E

T∫

s

[
�(t, xu,η(t), E

(
xu,η(t)

)
, u(t) − �(t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t)

]
dt

+ E

∫

[s,T ]

K (t)d(η − ξ)(t).
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Using (4.1) then we get

J s,ζ (u(·), η(·)) − J s,ζ (v(·), ξ(·))
≥ E

[(
hx (xv,ξ (T ), E

(
xv,ξ (T )

) + hx̃ (xv,ξ (T ), E
(
xv,ξ (T )

)) (
xu,η(T ) − xv,ξ (T )

)]

+ E

T∫

s

[
�(t, xu,η(t), E

(
xu,η(t)

)
, u(t) − �(t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t)

]
dt

+ E

∫

[s,T ]

K (t)d(η − ξ)(t). (4.5)

Now, by noting that

xu,η(t) − xv,ξ (t)

=
t∫

s

[
f
(
r, xu,η(r), E(xu,η(r)), u(r)

) − f
(
r, xv,ξ (r), E(xv,ξ (r)), v(r)

)]
dr

+
t∫

s

[
σ
(
r, xu,η(r), E(xu,η(r)), u(r)

) − σ
(
r, xv,ξ (r), E(xv,ξ (r)), v(r)

)]
dW (r)

+
∫

[s,t]

G(r)d (η − ξ) (r),

and by using integration by parts formula to 	v(t)(xu,η(t) − xv,ξ (t)) we get

E(	v(T )(xu,η(T ) − xv,ξ (T )))

= E

T∫

s

	v(t)d(xu,η(t) − xv,ξ (t))

+ E

T∫

s

(xu,η(t) − xv,ξ (t))d	v(t)

+ E

T∫

s

Qv(t)
[
σ
(
t, xu,η(t), E(xu,η(t)), u(t)

)−σ
(
t, xv,ξ (t), E(xv,ξ (t)), v(t)

)
)
]

dt

= I1 + I2 + I3, (4.6)

where

I1 = E

T∫

s

	v(t)d(xu,η(t) − xv,ξ (t))
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= E

T∫

s

	v(t)
[

f
(
t, xu,η(t), E(xu,η(t)), u(t)

)

− f
(
t, xv,ξ (t), E(xv,ξ (t)), v(t)

)]
dt (4.7)

+E

∫

[s,T ]

	v(t)G(t)d (η − ξ) (t),

from (2.4) we get

I2 = E

T∫

s

(xu,η(t) − xv,ξ (t))d	v(t)

= −E

T∫

s

(xu,η(t) − xv,ξ (t))
[
Hx

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)

+ E
(
Hx̃

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

))]
dt (4.8)

and

I3 = E

T∫

s

Qv(t)σ
(
r, xu,η(r), E(xu,η(r)), u(r)

)
dt

−E

T∫

s

Qv(t)σ
(
r, xv,ξ (r), E(xv,ξ (r)), v(r)

)
)dt, (4.9)

combining (4.6)–(4.9) we get

E(	v(T )(xu,η(T ) − xv,ξ (T )))

= E

T∫

s

(H
(
t, xu,η(t), E(xu,η(t)), u(t),	v(t), Qv(t)

)

− H
(
t, xv,ξ (t), E(xv,ξ (t)), v(t),	v(t), Qv(t)

)
)dt

− E

T∫

s

(xu,η(t) − xv,ξ (t))
[
Hx

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)

+ E
(
Hx̃

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

))]
dt,

− E

T∫

s

�
(
t, xu,η(t), E(xu,η(t)), u(t))

) + E

T∫

s

�
(
t, xv,ξ (t), E(xv,ξ (t)), v(t)

)

+ E

∫

[s,T ]

	v(t)G(t)d (η − ξ) (t), (4.10)
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from (4.5)–(4.10) we get

J s,ζ (u(·), η(·)) − J s,ζ (v(·), ξ(·))

≥ E

T∫

s

(H
(
t, xu,η(t), E(xu,η(t)), u(t),	v(t), Qv(t)

)

− H
(
t, xv,ξ (t), E(xv,ξ (t)), v(t),	v(t), Qv(t)

)
)dt

− E

T∫

s

(xu,η(t) − xv,ξ (t))
[
Hx

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)

+ E
(
Hx̃

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

))]
dt,

+ E

∫

[s,T ]

(K (t) + 	v(t)G(t))d (η − ξ) (t). (4.11)

By applying (4.2) it holds that

H
(
t, xu,η(t), E(xu,η(t)), u(t),	v(t), Qv(t)

)

− H
(
t, xv,ξ (t), E(xv,ξ (t)), v(t),	v(t), Qv(t)

)

≥ Hx
(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)
(xu,η(t) − xv,ξ (t))

+ E
(
Hx̃

(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

))
(E(xu,η(t)) − E(xv,ξ (t)))

+ Hu
(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)
(u(t) − v(t)),

from (4.11) we obtain

J s,ζ (u(·), η(·)) − J s,ζ (v(·), ξ(·))

≥ E

T∫

s

Hu
(
t, xv,ξ (t), E

(
xv,ξ (t)

)
, v(t),	v(t), Qv(t)

)
(u(t) − v(t))dt

+ E

∫

[s,T ]

(K (t) + 	v(t)G(t))d (η − ξ) (t). (4.12)

Finally, since (u(·), η(·)) is an arbitrary element of U1 × U2 the desired result (4.4)
follows immediately by combining (4.3) and (4.12). This completes the proof of
Theorem 4.1. �	

5 Application: Singular Mean-Field Linear Quadratic Control Problem

In this section, optimal singular stochastic control problem for linear MFSDEs is
considered. The optimal control is represented by a state feedback form involving
both x(·) and E(x(·)) , via the solutions of Riccati ordinary differential equations.
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We assume T = 1, s = 0, A1 = [0, 1] , A2 = [0, 1],

f (t, x(t), E (x(t)) , u(t)) = x(t) + E (x(t)) + u(t),

σ (t, x(t), E (x(t)) , u(t)) = x(t) + E (x(t)) + u(t),

� (t, x(t), E (x(t)) , u(t)) = x(t)2 + u(t)2,

h (x(t), E (x(t))) = 1

2
x(t)2,

G(t) = 1,

η(0) = 0.

We consider the following mean-field singular stochastic control problem:
Minimize

J (u(·), η(·)) = 1

2
E

1∫

0

[
x(t)2 + u(t)2

]
dt (5.1)

+ 1

2
E

(
x(1)2

)
+

∫

[0,1]

K (t)dη(t),

subject to

{
dx(t) = [x(t)+E (x(t))+u(t)] dt + [x(t) + E (x(t))+u(t)] dW (t) + dη(t),
x(0) = ζ.

(5.2)

For a given optimal control (u∗(·), η∗(·)), then due to (2.3) the corresponding adjoint
equation gets the form

⎧
⎨

⎩

d	∗(t) = − [
	∗(t) + E(	∗(t)) + Q∗(t) + E(Q∗(t)) + x∗(t)

]
dt

+Q∗(t)dW (t),
	∗(1) = x∗(1).

(5.3)

The Hamiltonian function corresponding to control problem (5.1)–(5.2) gets the
form

H (t, x(t), E (x(t)) , u(t),	(t), Q(t))

= (x(t) + E (x(t)) + u(t))	(t) + (x(t) + E (x(t)) + u(t)) Q(t)

+ 1

2
(x(t)2 + u(t)2). (5.4)

By applying Theorem 4.1, and the fact that

Hu
(
t, x∗(t), E

(
x∗(t)

)
, u∗(t),	∗(t), Q∗(t)

) = 	∗(t) + Q∗(t) + u∗(t),
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we deduce that the optimal control is given by

(u∗(·), η∗(·)) = (−	∗(t) − Q∗(t), η∗(t)
)
, t ∈ [0, 1] . (5.5)

In order to solve explicitly the above equation, we try the adjoint process 	∗(·) as
follows

	∗(t) = �1 (t) x∗(t) + �2 (t) E
(
x∗(t)

)
. (5.6)

Applying (5.3) and by comparing the coefficient of x∗(t) and E (x∗(t)) we can show
that �1(t) and �2(t) are given by the following Riccati equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 (t) = −3�1 (t) + 4(1 + �1(t))−1�2
1(t) − 1,

�1(1) = 1,

�2 (t) = −4�2 (t) − 5�1 (t) + (1 + �1(t))−1 [5�1(t) + �2 (t)]
× [�1 (t) + �2 (t)] ,

�2(1) = 0,

(5.7)

then we get

u∗(t) = − 2�1(t)

(1 + �1(t))
x∗(t) − (�1(t) + �2(t))

(1 + �1(t))
E
(
x∗(t)

)
. (5.8)

However, from Theorem 4.1, the singular part η∗(·) satisfying: for any η(·) ∈ U2,

E

∫

[0,1]

(K (t) + 	∗(t))d
(
η − η∗) (t) ≥ 0. (5.9)

Noting that Eqs. (5.7) are Riccati ordinary differential equations admit one and only
one solution (see also Yong [21] and Li [17]). In particular case, if we define

R = {
(w, t) ∈ � × [0, 1] : K (t) + 	∗(t) ≥ 0

}
,

and let η(·) ∈ U2 such that

dη(t) =
{

0 if K (t) + 	∗(t) ≥ 0,

dη∗(t) otherwise,
(5.10)

then by a simple computations it is easy to see that

0 ≤ E

∫

[0,1]

(K (t) + 	∗(t))d
(
η − η∗) (t)

= E

∫

[0,1]

(K (t) + 	∗(t))χRd
(−η∗) (t),
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which implies that η∗(t) satisfies for any t ∈ [0, 1]

E

∫

[0,1]

(K (t) + 	∗(t))χRdη∗(t) = 0. (5.11)

5.1 Some Discussions

In Sects. 3 and 4 we established mean-field type necessary and sufficient conditions,
respectively, for optimal singular control for dynamics evolves according to nonlinear-
controlled MFSDE. Moreover, the cost functional is also of mean-field type. In Sect. 5
a linear quadratic singular control problem of mean-field type was solved explicitly,
where the optimal control was given in feedback form by means of Riccati differential
equations.

Case 1: If the coefficients f, σ , and � of the underlying diffusion process and the
cost functional do not explicitly depend on the expected value, Theorem 3.1
reduces to Theorem 8 proved in [4].

Case 2: If we assume G(·) ≡ K (·) ≡ 0, our necessary and sufficient conditions
(Theorem 3.1, Theorem 4.1) reduce to (Theorem 3.1 and Theorem 3.3),
respectively, proved in Li [17].

Case 3: Let Case 1 and Case 2 hold, then our necessary conditions of optimality
(Theorem 3.1) reduce to Theorem 2.1 proved in Bensoussan [5].
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