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Abstract By the standard theory, the stable Qx41.x — Ok k+1/ Qi"/ divergence-free
element converges with the optimal order of approximation for the Stokes equations,
but only order k for the velocity in H'-norm and the pressure in L?-norm. This is
due to one polynomial degree less in y direction for the first component of veloc-
ity, which is a Q41 x polynomial of x and y. In this manuscript, we will show by
supercloseness of the divergence free element that the order of convergence is truly
k + 1, for both velocity and pressure. For special solutions (if the interpolation is also
divergence-free), a two-order supercloseness is shown to exist. Numerical tests are
provided confirming the accuracy of the theory.
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1 Introduction

The divergence-free finite element method is mainly for solving incompressible flow
problems, such as Stokes or Navier—Stokes equations, where the finite element space
for the pressure is exactly the divergence of the finite element space for the velocity.
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144 Y. Huang, S. Zhang

In such a method, the finite element velocity is divergence-free pointwise, i.e., the
incompressibility condition is enforced strongly. Traditional finite elements enforce
the incompressibility weakly, cf. [10, 21]. That is, in order to satisfy the inf-sup sta-
bility condition, the incompressibility condition is weakened by either enlarging the
velocity space or decreasing the pressure space. This often leads to some sub-optimal
methods, or a waste of computation, due to the imperfect matching of two spaces. It
may also lead to an inaccurate mass conservation, which is critical in certain compu-
tational problems. For example, for a high pressure flow problem, the Taylor—Hood
finite element method produces a solution of large error of order O (Re) where Re is
the Reynolds number [11].

A fundamental study on the divergence-free element method was done by Scott
and Vogelius [22, 23], which shows that the PkJrl/PkdC method is stable (except on
grids with nearly-singular vertexes) and consequently of the optimal order on 2D
triangular grids, for k > 3. Here the finite element space for velocity is the space of
continuous piecewise-polynomials of degree (k + 1) or less; The space approximating
pressure is the space of discontinuous piecewise-polynomials of degree k or less, or
the divergence of the discrete velocity space, to be precise. There are several other
such divergence-free finite elements, cf. [2, 14, 16, 17, 19, 20, 29-31, 33].

Starting from the most popular element, the Q1/Py element [6, 7], there is a series
of works on Q4 mixed finite elements on rectangular grids in 2D and 3D. Brezzi and
Falk showed that the Qk41/ QZC element is unstable in [9], for any & > 0. Here QZC
denotes the space of discontinuous piecewise-polynomials. In [27], Stenberg and Suri
showed the stability, but a sub-optimal order of approximation, for the Qj41/ QZi]
element for all k > 1 in 2D. Bernardi and Maday proved the stability and the optimal
order of convergence for the Qf41/ P,f" element, cf. [4]. Ainsworth and Coggins es-
tablished [1] the stability and the optimal order of convergence for the Taylor—Hood
Qk+1/ 0y element, where the pressure space is continuous too. The Bernardi—Raugel
element [5] optimizes the Qy41/ Q‘,fil element, when k = 1, by reducing the ve-
locity space to Q12 — (2,1 polynomials. Here the first component of velocity in
the Bernardi—Raugel element is a polynomial of degree 1 in x direction, but of de-
gree 2 in y direction. To be precise, the Bernardi—Raugel element enriches the QO
velocity space by face-bubble functions. Similar to the Bernardi—Raugel element, a
divergence-free finite element, Qx41.x — Ok k+1/ Q(,fc/ (k > 2), was proposed in [31],
which further optimizes the Bernardi—-Raugel element by increasing the polynomial
degree of pressure from (k — 1) to k. The nodal degrees of freedom of this divergence-
free element and the Bernardi—Raugel element are plotted in Fig. 1. This divergence-
free element was extended to its lowest-order form, k = 1, i.e., Q2.1 — Q1.2/ Q‘fc,,

in [17]. Here the space QZ‘J for the pressure is the space of discontinuous Qj poly-
nomials with all spurious modes removed, i.e., eliminating one degree of freedom
at each vertex, cf. (2.7). In the construction, the pressure space is exactly the diver-
gence of the velocity. Thus, the resulting finite element is divergence-free pointwise.
In such a case, the discrete pressure space can be omitted in the computation. By an
iterated penalty method, we obtain the pressure solution as a byproduct, cf. [30] and
Sect. 4 below. However, by the standard finite element theory developed in [17, 31],
this divergence-free element converges at order k only, due to a degree k polynomial
in y for the first component of u;,. This cannot be improved by the standard theory,
where the optimal order of convergences is derived from the inf-sup stability.
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Fig. 1 Nodes of uy/py, for 5 o
divergence-free (top) and
Bernardi—Raugel elements e .
h Q2.1 Q1,2 bn Q1
o o
up:
Ph: o
Q1,2 Q21 Qo

In this manuscript, we further study this Q1 x — Ok k+1 divergence-free element
and show its supercloseness that the element does converge at order k + 1. Further the
velocity solution of the Qx+1 x — Qk k+1 divergence-free element may be ultraclose,
i.e., two orders higher than the standard approximation, provided the interpolation is
divergence-free. The extension of this divergence-free element to 3D is straightfor-
ward, so is its supercloseness property. By the supercloseness of the finite element
solution, traditionally we interpolate the finite element solution by either a (Qx42)>
or a (Qa)? polynomial piecewise on two by two sub-grids, to obtain a supercon-
vergent solution. It may not be meaningful to do so here as such an interpolation is
no longer divergence free. We do get a higher-order solution though, but we lose its
mass conservation property. To keep its divergence-free property, we need to post-
process this higher-order interpolation. It may cost even more to post-process this
interpolated high-order polynomial solution to get a divergence-free solution than to
compute directly a higher order divergence-free solution from the family of finite
elements.

The divergence-free element is connected to the cl — QO element [18, 32].
A mathematical interest of this work is its application to the superconvergence anal-
ysis of the whole family of C! — Qy elements. We intend to do so in a forthcoming
work. Only the superconvergence of the degree-three C! — Q; element, the Bogner—
Fox—Schmit element, is established at the moment [18, 26]. We note that such a Q-
type divergence-free element exists only on rectangular grids, not on general quadri-
lateral grids. Correspondingly, a construction of C! — Qy elements is not possible
yet, on quadrilateral grids.

The rest of the paper is organized as follows. In Sect. 2, we define the finite el-
ement for the stationary Stokes equations. In Sect. 3, we establish supercloseness
for the divergence-free element. In Sect. 4, we provide some test results confirming
the analysis. In particular, we show the order of convergence of the divergence-free
element is one higher than that of the rotated Bernardi—Raugel element.

2 The Qiy1,k — Ok, k+1 Divergence-Free Element
In this section, we shall define the divergence-free finite element for the stationary
Stokes equations on rectangular grids. The resulting finite element solutions for the

velocity are divergence-free point wise.
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Fig. 2 Three levels of grids, and a macro-element grid (for k = 1 only)

We consider a model stationary Stokes problem: Find the velocity u and the pres-
sure p on a 2D polygonal domain §2, which can be subdivided into rectangles, such
that

—Au+Vp=f in 2,
divu=0 in $2, 2.1)
u=0 onads.

The weak form for (2.1) is: Find u € H} (£2)> and p € L3(22) := L*(2)/C ={p €
L?| [, p =0} such that

a(u,v) +b(v, p) =, v) Vve Hj(2)?
(2.2)
b(u,q)=0 Vg e Li().

Here HO1 (§2)2 is the subspace of the Sobolev space H L(§2)2 (cf. [13]) with zero
boundary trace, and

a(u,v):/ Vu- Vvdx,

Q

b(v, p):—/ divv pdx,
Q

f,v)= / fvdx.
2
The finite element grids are defined by, cf. Fig. 2,

Ty ={K |UK =2, K =[x, xp] X [ye, ya] with size

hx =max{xp — Xq, ya — yc} < h}.

We further assume, only for the lowest-order element k = 1 in (2.3), that the rectan-
gles in grid 75, can be combined into groups of four to form a macro-element grid:

4
My =M M= JKi=[xi—1,xip] x [yj-1,yj01], Ki € T, | JKi =92 1.

i=1
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Supercloseness of the Divergence-Free Finite Element Solutions 147

See the fourth diagram in Fig. 2. The polynomial spaces are defined by
Ok = { > Cijxiyj}, Ok = Ok k-
i<k,j<l
The Qk+1.k — Ok k+1 (k> 1) element spaces are

V= {Vh € C(2)? | vilk € Qi+1k X Qrk+1 YK €Ty, and uy |y =0}, (2.3)
P, ={divuy, |u, € Vp,}. 2.4

Since [, pn = [ diva, = [, 5w, =0 for any pj, € Py, we conclude that
Vi CHy (22, Py CL}(S2),

i.e., the mixed-finite element pair is conforming. The resulting system of finite ele-
ment equations for (2.2) is: Find uj, € Vj, and p;, € Py, such that

a(uy,v)+b(v,pp)==E&v) VvevVy,
b(up,q)=0 Vqe€ Py

2.5)

Traditional mixed-finite elements require the inf-sup condition to guarantee the
existence of discrete solutions. As (2.4) provides a compatibility between the discrete
velocity and the discrete pressure spaces, the linear system of equations (2.5) always
has a unique solution, cf. [30]. Furthermore, such a solution u, is divergence-free: by
the second equation in (2.5) and the definition of Py in (2.4),

b(w, q) = b(uy, —divw,) = | divuy |75 ). =0. (2.6)

£2)
In this case, i.e., V;, C Z:={divv | v € H}(£2)*}, we call the mixed finite ele-
ment a divergence-free element. It is apparent that the discrete velocity solution is
divergence-free if and only if the discrete pressure finite element space is the diver-
gence of the discrete velocity finite element space, i.e., (2.4).

As singular vertices are present (see [17, 22, 23, 31]), by the definition (2.4), P},
is a subspace of the discontinuous, piecewise Q polynomials:

4
Py=1pn € L§(82) lunlk € Qx VK €T, Y (=Dfpulx, (0 ¥x € Thp,  (2.7)

i=1

where K; are four squares numbered counterclockwise around a vertex X in the grid
Ty. It is possible, but very difficult to find a local basis for Pj,. But on the other
side, it is the special interest of the divergence-free finite element method that the
space Pj, can be omitted in computation and the discrete solutions approximating the
pressure function in the Stokes equations can be obtained as byproducts, if an iterated
penalty method is adopted to solve the system (2.5), cf. [8, 10, 15, 25, 30] for more
information.
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o u(af)=u(af")

o Jurpads = [upads

o [urpids = [upids

fK urga,1dx = fK ugo,1dx
Jrurqedx = [ uqodx

®
®
®
C
<&

Qa3 Q3,4

Fig. 3 Three types of interpolation nodes, k =3

3 Supercloseness

As usual, the supercloseness is obtained by the method of integration by parts, cf.
[12, 28]. But we have a long series of lemmas dealing with each term in the bilinear
forms a(-, -) and b(-, -).

For a convenience in referring components of the vector velocity, we define the
two inhomogeneous polynomial spaces:

Vi ={¢ € Hy(2) | 9|k € Q1.6 VK € T}, 3.1
Vio={¢ € Hy(2) | $|x € Qris1 YK € T}, 3.2)
k > 1. That is,
Vi=Vh1xVho, k=1
The interpolation operator I, is defined for the two components of u:

I, Hy (2> NH*(2)* = Vi1 x Vi,

3.3)
wen(0)-(2)

We define u; by its values at the Lagrange nodes. For the nodes at vertexes, we could
use the Scott—Zhang [24] interpolation, i.e., the nodal value of u; is an average on an
edge, against a dual basis function at the vertex. When u is a Py polynomial locally,
uy (aiK )= u(aiK ). But for convenience, also because the function u to be interpolated
is very smooth in the analysis, we use the nodal value interpolation at vertexes. The
nodal values inside an edge, and inside a square, are defined by proper L>-projections,
i.e., by solving the following equations sequentially (see Fig. 3):

(u — ul)(aiK) =0 at four vertices of K, VK € 7Tj, 3.4
/ (u —ujy)pr—1(x)dx =0 on the top and bottom edges of K, 3.5)
y=Yj
/ (u —up)pr—2(y)dy =0 on the left and right edges of K, 3.6)
X=X;
/ (u —ur)qi—1k—2dx=0 on the square K, 3.7
K
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Supercloseness of the Divergence-Free Finite Element Solutions 149

where pi € P, the space of 1D polynomials of degree k or less, and gx ; € Ok ;. By
rotating x and y, v; is defined similarly/symmetrically to u;.

Lemma 3.1 (two-order supercloseness) For any Qi1 x function W € Vj, 1, defined
in (3.1), for any u € H**3(2) N H} (22), and for all k > 1,

< CH 2 ull s 191l 1. (3.8)

‘/ (u —up)x Yy dx
2

Proof We first consider the estimation on the reference element K= [—1, 1]%. Since
¥ € Qk+1.k» we have an exact Taylor expansion:

k—l

U (x, ¥) = Pa (x, 0) + yray (x,0) + - - +(k o

oyt (%, 0) + 2 wxyk(x 0).
3.9)

where 1, (x,0) and all ny i (x,0) are Py polynomials in x only. We will perform
the integration by parts repeatedly. First, for the lower order terms in (3.9), we notice
that, by the definition of u; in (3.5) and (3.7),

/;{(” - Ml)xijxy,- (x,0)dx

x=1
dy — / (u— Ml)y]wxzyj (x,0)dx
x=—1 K

1 .
:/I(M _ul)ijxyj(xvo)

=0, whenj=0,1,....,k—2. (3.10)

Please be aware that y/,» 2y (x,0) € Pr—1(x) above. Hence, we need to deal with only
the last two terms in (3.9).
For the last two terms in (3.9), in order to do integration by parts, we express the

polynomials y*~! and y* by derivatives of another polynomial:
(y2 _ 1)k+l y2k+2 (k + 1)y2k y2k+2 _
KO = T T ka2 @kror T akgay TR0
(3.11)
s =0, j=0,1,...,k (3.12)
1
s¢ 0= )k P2 ). (3.13)

Here pox(y) and pr_»(y) denote a polynomial of degree 2k and (k — 2), respectively.
We note that, as in (3.10), the integral of (u — uj), against px_>(y) is zero. Thus, by
(3.10), dropping the first k — 1 terms, we have

/Ie(” —upx¥x(x,y)dxdy
= f = u D) (585 Oy (0, 0) + 55 )Wyt (6, 0)) dix dy
p :
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150 Y. Huang, S. Zhang

1
/1[(14 — ) (52 ()i (x, 0)+s("+“(y)wxyk(x,0))]§i]dx

- / U = Uy (500, DYyt (1,0) + 58TV Y (6, 0)) dxdy. (3.14)
K

Let us consider the first boundary integral in (3.14), on the top edge of the square K.
By (3.4) and (3.5),

/ = up)x (@, Dsg? (DY (x, 0)dx
= —up)(x, l)sk 1(1)1/fxyk 1(x, 0)])6_71
—s,§k>1(1)/l(u—u,)(x, D21 (x, 0) dx

=0, (3.15)

noting again that ¥,2x-1(x, 0) is a Py polynomial in x only. The other boundary
integral in (3.14) is also 0 as wxzyk (x,0) € Pr_1 too:

1
/ = up)x (e, DsE P (D (x, 0) dx
-1

= [ = up) e, D Dy (x, 0]

x=—1
1

S,§k+l)(1)/ ( —up)(x, D2y (x, 0) dx
~1

=0. (3.16)

That is, the boundary integrals in (3.14) are all zero. We repeat the integration by parts
in this direction, while the boundary terms would be zero by (3.12) and (3.5). Note
that in the last case, in (3.15) and (3.16), the boundary terms vanish because of (3.4):
(u —uy)(£1,£1) = 0, while they vanish below because of (3.12): s(]) ((ED =0

and s,iﬁl)(:lzl) =0 for j < k. By k times more integration by parts, (3.14) would
be

/A(u —up)xYxdxdy

K
—/Ie(u —ul)xy(slgli)llpxyk_l(x,O)+s,£k+l)1ﬁxyk(x,0))dxdy
/(u ul)xV s,ﬁk ll)wxyk 1(x, 0)+sk)1ﬂx}k(x O))dxdy

f = )y O, D) (587 gt (0, 0) + 5809 v, 0))‘__1
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- / = up) 2 (557 Wpp1 (1, 0) 4 5094 (x, 0)) dx dy
K

:(_1)k+1/k(u_u,)xykﬂ(sk,lwxykfl(x,O)+s,;wxyk(x,0))dxdy. (3.17)

We will perform the integration by parts one last time. But this time, we will treat the
two terms in the last integral differently:

/‘A (u — “I)kaﬂskflwxyk*l (x,0)dxdy
7 )
_ /A (u — u1)x2yk+1sk,1 l[fyk—l (x,0)dxdy
K
! x=1
+ / 1[(u —up) et Sk 1Yo (1, 0 0 dy,

/A (= up) 18Py (x, 0) dx dy = — / (= up) k25K Pk (x, 0) dx dy.
4 R

For the second integral, the boundary term disappears by the condition (3.12). For
the first integral, the boundary integrals will be canceled due to the opposite line in-
tegrals (one is from the top limit x = 1 and one from the bottom limit x = —1 of the
integral on the neighboring square) on two sides of a vertical edge x = x; or due to
the boundary condition on ¥:

Vit
/ (=) gyt (67 )sk-1 () Yy (x77, 0) dy
y

J

Y+l
—/ (u—u1)xyk+1( )Sk 1(y)1ﬂ k— '( )dy 0,

yj

Yj+1

/ (M—MI)xka(x )sk—1 (V) Vi H(x5,0)dy =0, if {x;} x [y}, yj+1] C 982.
Vi

We also note that the (k + 1)st and (k 4+ 2)nd partial derivatives on u; above are all
zero. Hence, we get (3.8) by summing over the estimation on all rectangles K € 7j,
plus a scaling and the Schwarz inequality,

‘/ (u—up)cyxdx
2

= Z/(u—uz)xwxdx
x 'K

> [ = unsvax
K K

= Z(—])k+2/Ie(uxzykﬂskfﬁ/fykfl +Mxyk+2sklﬂxyk)dx
K

<D Clitl s iy W gy = € DR Ll s gy |19/ g
K K
k+2
= Ch " ulgrvs 2y [V g2
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We note that the semi H !-norm is needed above to bound Vyk-1, when there is no

boundary condition on one element K . But higher order norms are equivalent to semi-
1 . .

H' norm on one element, (K ”L2(1€) < CkW'Hl(I%)' Thus k > 1 is required. O

In the proof, we can see that the decrease of one degree polynomial in y does not
change the super-approximation of Q41 in x direction. After (3.17), if we skip the
last step of integration by parts, we would get the following corollary. That is, we
avoid [[{yk-1 ;2 when k = 1 which cannot be bounded by || 1.

Corollary 3.2 (one-order supercloseness) For any Q1. function € Vy, 1, defined
in (3.1), for any u € H**2(2), and for all k > 1,

< CH M ull s (191l . (3.18)

‘/ (u —up)xyxdx
2

Symmetrically, switching x and y in Lemma 3.1, we prove the following lemma.

Lemma 3.3 (two-order supercloseness) For any Qk ix+1 function W € Vj, 2, defined
in (3.2), and for any v € H*3(Q), ifk > 1,

< CH* P2l grss 19 1l 1. (3.19)

‘/ (v —v)yPydx
2

For the same reasons in Corollary 3.2, we get the following corollary from
Lemma 3.3.

Corollary 3.4 (one-order supercloseness) For any Qy k+1 function r € Vy, 2, defined
in (3.2), for any v € H**2(2) N H} (2), and for all k > 1,

< CHM ol s W 1l 1. (3.20)

‘/ (v —vp)y¥ydx
2

Though the interpolation order is (k +2) in the above two lemmas, only the (k+ 1)
order in two corollaries can be achieved in computation, due to the coupling of terms
in mixed formulation. We prove the approximation properties in the lower polynomial
direction next, i.e., the y-derivative convergence of the first component of velocity.
Now, even for k = 1, we have a two-order supercloseness.

Lemma 3.5 (two-order supercloseness) For any Qi1 x function W € Vj, 1, defined
in (3.1), for any u € H*3(2) N H} (2), and for all k > 1,

< CH*P2||ull i 19 |l 1. (3.21)

‘/ (u —up)yyydx
2

Proof Again, we first consider the estimation on the reference element K=[-1,17
Since the polynomial degree in y is too low, we do Taylor expansion in x direction,
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Supercloseness of the Divergence-Free Finite Element Solutions 153

different from the last lemma:

xk xk+1

Uy(x, y) =1y(0,y) + x5y (0, y) + -+ 4+ kav( y)+(k 1)‘1ﬂxk+1}(0 ).

Again, similar to (3.9), the integral of (v —u;), against x/ terms are zero if j <k—1,
[ =y, 0. 5)dxdy
K
1 .
/ [w—unxy,0. WL dx - /K (= up)x/ Y, 20, y) dx dy

=0,

noting that x/ V.iy2(0,y) € Qk—1,k—2. Using the polynomial function si(x) defined

in (3.11) we have, cf. (3.14),
[ =, dxay
K
/K = )y (s P, (0, ) + 585D ()P, 0. ) dx dy
1
- / [ — )y (58 00, 0, 3) + 5552 00, 0, )= d

f W = D)y (580 Wk, 0, 9) + 5587 )Wk, (0, 3)) dx dy.
Here, for the first time integration by parts, the boundary integral disappeared by
(3.4), (u —uy)(£1,£1) = 0. In the next (k + 1) times of integration by parts, the

boundary integrals on x = +1 would be zero, directly by the boundary condition
(3.12) of si(x):

/A (w—up)ypydxdy = (—1)k+2 / (u — u;)xk+2y(sk1/kay(0, y)
K K

+ S,thprly(O, y)) dxdy.

Thus,
‘/‘A (u - ul)yllfy dx dy = C||l/lx1<+2y ||L2([€) ||W) ”LZ([%)
K
= C|M|Hk+3(1€) ||1/f ”Hl(k)
The rest of the proof repeats that of Lemma 3.1. g

As for above lemmas and corollaries, we can get the following corollary from
Lemma 3.5.
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154 Y. Huang, S. Zhang

Corollary 3.6 For any Q41 function € Vy 1, defined in (3.1), for any u €
H"2(2) N HY (2), and for all k > 1,

< CR M ull g (19 1l 1. (3.22)

‘/ (u —up)yyydx
2

Corollary 3.7 For any Qp i+1 function € Vy 2, defined in (3.2), and for any u €
H*3(Q2)N H} (22), and for all k > 1,

< CH* 2 ull s W1l o s (3.23)

’/ (u —up)xyxdx
2

< CH M ull grsa 191l 1. (3.24)

V (U — p)s e dx
2

Now we study the supercloseness in both bilinear forms.

Lemma 3.8 For any (v, qn) € Vi, X Py, defined in (2.3) and (2.4), and for any
ue H3(2)NH} (2),

la(u—Tpu, vy)| < CH* P2 lull s e Vil gy, k>1, (3.25)
|la(u =T, vp)| < CH* N ull ez Vil @2 k=1, (326)
b —Tpu, gp)| < CH Ml @y llanll o). k=1, (3.27)

where Ipu is the interpolation of u defined by (3.3).

Proof (3.25) is a combination of (3.8), (3.21), (3.23), and (3.19). (3.26) is a combi-
nation of (3.18), (3.22), (3.24), and (3.20).

For (3.27), we will lose one order of convergence. Let g, = div wy, for some wj, =
(¢, ¥) € V. We have, denoting u = (u, v),

bu—Tu g =3 /K (=) + (0 = v)y) x + ) dx
K

Here we have two old integrals, fK (u —uj)xdyx dx and fK (v —vy)y ¥y dx, and two
new integrals, f/( (u —uj)xyydx and f{( (v — v1)y@y dx. The approximation order
can be one order higher for the two old integrals. For the two new integrals, by sym-
metry, we consider || x( — up)y ¥y dx. We use the following Taylor expansion on
the reference element K in the y direction. We note that the Taylor expansion in x
direction would lead to a too high order polynomial in y direction each term in (3.28)
below:
k—1 k

Y y
(k — 1)!%*()" 0) + 27 ¥yent (1, 0).

(3.28)

’ﬁy(x»)’):¢y(xso)+y1ﬁy2(x,0)+"'+
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Here all ¥,;(x,0) are polynomials of degree k in x. That is, a generic term
yi ¥y+1(x,0) € Qg ;. This is the same as the generic term ¥/ ¥,y (x,0) in the early
Taylor expansion (3.9). Thus repeating the proof of Lemma 3.1, we get

/ (= up)pydx = / @ = (58 W (e, 0) + 58P e (x, 0)) dx dy
K K
= (—1)k+1 /A Uyyhtl (Sk_11//yk (x,0) + S]/Cl/fykJrl (x, 0)) dxdy.
K

For the second integral, we can do an integration by parts to raise one more order.
But we are limited by the first integral above to get only

= ||u||Hk+2(12)”w”H1([€)

‘/A (u —up)yyydx
K

Similarly, we have the same bound for |f,3(u — uy)y¥xdx|. (3.27) follows by the
Schwarz inequality and the scaling of referencing mappings. U

Finally, we estimate the approximation to p.

Lemma 3.9 For any function v;, € Vy,, defined in (2.3), and for any p € H**1(£2) N
L(£2)
O ’

‘ / divvy(p — pr)dx| < CH* Vil g1 | p 1l i (3.29)
2

where pj is a special nodal interpolation of p in Py, defined in (3.30) below.

Proof We note that Pj, are discontinuous Qy functions, P, = divV;. We define an
interpolation operator for Py, via that I, for V;, defined in (3.3). Fora p € H 2N
L(z)(.Q), Arnold, Scott and Vogelius have shown in [3] that there is a w € H3(£2)? N
Hj (£2)?, such that

divw=p and Wl < Cllpll .
For simplicity, we assume the above lifting exists up to order k + 1. We define

pPI =diVW1, (3.30)

for w; = I,w defined by (3.3). In order to use (3.27), we use the notations
_(u _fug (9
() =) =)
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Repeating the proof in Lemma 3.8, we get

= ‘f divvy, div(w — wy) dx
2

V divv(p — pr) dx
2

= ‘/Q((” —up)x+ - UI)y)(¢x + ¥y dx

el

k+1
< CH N pl et [Vl 1. [

< Chk-‘rl

Hk+2

We derive the main theorem.

Theorem 3.10 The finite element solution (wy, pp) of (2.5) has the following super-
closeness property, one order higher than the optimal order,

lwp —Tpull i + lpn — prll2 < CH ([l sz + I pll et ), (3.31)

where the interpolations (Inu, py) are defined in (3.3) and (3.30).

Proof By the inf-sup condition shown in [17, 31], it follows that, cf. [21], for all
(Wn,rn) € Vi X Py,
a(wp, Vi) + bV, rn) + b(Wn, qn)

sup > C(Iwallgr + Irall2). (3.32)
eV Py VAl g1 + llgnll 2 (Il )

By Corollary 3.7 and Lemma 3.9, we have

lap —Tpall g + | pn — prll g2

a(uy —Ipu, vi) + b (v, pp — pp) + b(u, — Iy, qp)

<C sup
(Vi,qn) €V X Py ||Vh||H1 + ||Clh||L2
a—Tyu,vy) +b(Vp, p— pr) +bu—Tu, gp)
=C sup
Vi .qn)EVi X Py Vel gt + llgnll 2

< CHM (J[ull sz + 1Pl esn).
Note that, due to the pointwise divergence free property, above we have
b(uy —Ipu, gn) = b(—Ipu, gp) = b(u — Ipu, gp). O

Here, to be precise, we do not have a supercloseness for p in Theorem 3.10. As
Py, are degree-k polynomials, the best order approximation to p in L?-norm would
be (k + 1). However, due to the mixed formulation, the convergence of pj to p is
limited to the optimal order convergence of uy, which is (k — 1) in H I_norm as uy
has polynomial degree k only in y direction for its first component. In this sense,
the supercloseness result (3.31) does lift the order of approximation of p; by one.
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For k > 1, we may have a two-order supercloseness for the velocity. Such numerical
examples are shown in [31] and in next section. That is, for some special functions u,
I,u might be also in the divergence-free subspace of Vj,. If so, we have a two-order
supercloseness result.

Theorem 3.11 (two-order supercloseness) For some solution u of (2.1), if
Ihll € Zh = {Zh € Vh | diVZh = 0},
where Iy, is defined in (3.3), and if k > 1, then

lup, — Tyl g1 < CH*2|Ju)] s, (3.33)

Proof By (3.25), limited to the divergence-free subspace,

a(uy, —Ipu, wy)
lup, — |y < sup —————
wpeZy ”VVh”H1

a(a—I,u, wy)

= sup < Cl’lk+2||ll||Hk+3.

wpEZy ”W/’l”Hl

4 Numerical Tests

In this section, we report some results of numerical experiments on the Q41x —
Qi k+1 element for the stationary Stokes equations (2.1) on the unit square 2 =
[0, 1]?. The grids 7j, are depicted in Fig. 2, i.e., each squares are refined into four
sub-squares each level. The initial grid, level one grid, is simply the unit square.

We choose an exact solution for the Stokes equations (2.1):

u=curlg, p=Ag. 4.1)
Here
g= 28(x3 _ x4)2(y3 _ y4)2.
So we can compute the right hand side function f for (2.1) as
f=—Acurlg + VAg. 4.2)

We note that, unlike [17, 31], we intentionally choose a non-symmetric solution so
that no ultraconvergence would happen, which does not exist in general. The solution
p is plotted in Fig. 4.

We compute the Stokes solution on refined grids, cf. Fig. 2, by the divergence
Qk+1.k — Ok k+1 element (2.3) and by the rotated Bernardi—Raugel element [5, 10,
21]:

Vit = {vi € C(2)° N Hy(2)* | Valk € Qis1k X Qir1 YK € T},

“4.3)
PER = {qn € L3(2) | qnlx € Qi)
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(0.0,0.0, 17.578)

(0.0, 1.0

(1.0,1.0, -13.046)

Fig. 4 The solution p (the errors are shown in Fig. 5)

Table 1 The errors e, =I,u —uy and €, = p; — pj, (one-order supercloseness) for (4.1) with k = 1

lenl 2 W lenl 1 h" lenll 2 h"
Qk+1,k — Ok, k+1 div-free element (2.3), k =1 #it
2 0.264345 1.341770 5.965379 4
3 0.102329 1.4 0.795594 0.8 1.896372 1.7 4
4 0.026839 1.9 0.219469 1.9 0.481076 2.0 3
5 0.006773 2.0 0.055901 2.0 0.120363 2.0 3
6 0.001697 2.0 0.014035 2.0 0.030083 2.0 3
7 0.000424 2.0 0.003512 2.0 0.007520 2.0 3
rotated Bernardi-Raugel element (4.3), k = 1 #Uz
2 0.570990 3.531380 7.497615 29
3 0.244967 1.2 3.028368 0.2 6.943183 0.1 65
4 0.074335 1.7 1.797533 0.8 3.300598 1.1 136
5 0.019849 1.9 0.946426 0.9 1.575390 1.1 297
6 0.005080 2.0 0.481087 1.0 0.762341 1.0 330
7 0.001281 2.0 0.241916 1.0 0.373990 1.0 204

Following the analysis in [17], the stability of the rotated Bernardi—-Raugel element
would be proved. For the rotated Bernardi—Raugel element, the system of finite el-
ement equations is solved by the Uzawa iterative method, cf. [10, 15, 21]. The stop
criterion is the difference | p}(l") - p}(l"_l)| < 107°. We list the number of Uzawa itera-
tions in the data tables by #Uz. Here the interpolation operators are standard Lagrange
nodal interpolations [13].

For the Qk+1.k — Ok k+1 divergence-free element, the pressure does not enter
into computation, but is obtained as a byproduct, because P;, = div V. The resulting
linear system of Q11 — Qk.k+1 divergence-free element equations can be formu-
lated as symmetric positive definite. Then the iterated penalty method [15, 31] can
be applied to obtain the divergence-free finite element solution for the velocity, and a
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Table 2 The errors e, =I,u —uy, and €, = p;j — pj, (one-order supercloseness) for (4.1) with k =2

lenl;2 h" lenl g1 h" el 2 h"
Qk+1,k — Ok, k+1 div-free element (2.3), k =2 #it
1 0.322530 0.0 1.580066 0.0 3.546405 0.0 3
2 0.071851 2.2 0.699614 1.2 1.010498 1.8 4
3 0.005510 3.7 0.089611 3.0 0.131816 2.9 3
4 0.000355 4.0 0.010471 3.1 0.015587 3.1 3
5 0.000022 4.0 0.001280 3.0 0.001904 3.0 3
6 0.000001 4.0 0.000159 3.0 0.000236 3.0 3
7 0.000000 4.0 0.000020 3.0 0.000029 3.0 3
rotated Bernardi—Raugel element (4.3), k =2 #Uz
1 0.645475 0.0 4.250791 0.0 1.143688 0.0 27
2 0.191342 1.8 2.518701 0.8 5.499136 — 67
3 0.025892 2.9 0.673622 1.9 1.621194 1.8 100
4 0.003307 3.0 0.172036 2.0 0.441596 1.9 156
5 0.000419 3.0 0.043543 2.0 0.113029 2.0 266
6 0.000053 3.0 0.010954 2.0 0.028424 2.0 130
7 0.000007 3.0 0.002747 2.0 0.007117 2.0 101

Table 3 The errors e, =I,u—uy and €, = p; — pj, (one-order supercloseness) for (4.1) with k =3

|eh|L2 h" |eh|H1 h" llen ”LZ K"
Qk+1,k — Ok k+1 div-free element (2.3), k =3 #it
1 0.123142 0.0 1.128619 0.0 1.642992 0.0 4
2 0.004515 4.8 0.065512 4.1 0.128938 3.7 3
3 0.000147 49 0.003911 4.1 0.008007 4.0 3
4 0.000004 5.0 0.000234 4.1 0.000494 4.0 3
5 0.000000 5.0 0.000014 4.0 0.000031 4.0 3
rotated Bernardi—-Raugel element (4.3), k =3 #Uz
1 0.374364 0.0 3.512050 0.0 6.061521 0.0 57
2 0.021063 4.2 0.375407 32 0.736746 3.0 76
3 0.001597 3.7 0.058926 2.7 0.117000 2.7 123
4 0.000111 3.8 0.008169 2.9 0.013672 3.1 177
5 0.000007 39 0.001065 2.9 0.001666 3.0 102

byproduct p; = divwj, for the pressure. In our computation, the iterated penalty pa-
rameter is 2000. The stop criterion is the divergence || div u,(l") llo < 10~°. The number
of iterated penalty iterations is also listed as #it in the data tables.
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(0.0,0.0, 0.203)

(0.0, 1.0)

(1.0,1.0, -0.109)

(0.0,0.0, 1.677)

(0.0, 1.0)

(1.0,1.0, -0.627)

Fig. 5 The errors of pj, for the divergence-free (fop) and BR elements

In Table 1, we list the errors in various norms for the Q41 x — Ok x+1 divergence-
free element and for the rotated Bernardi—-Raugel element, for k = 1. It is clear that
the order of convergence is 2, one order higher than that of latter. We note that the
convergence order is only 2 for Q2 1 — Q1,2 divergence-free elements in L?-norm,
i.e., there is no L?-supercloseness. But we do see L>-supercloseness for k > 1 next.

In Table 2, we list the computation results for k = 2 elements. Again, the
divergence-free element is one order higher than the rotated Bernardi—Raugel ele-
ment. To show the difference in the two elements, we plot the errors by two elements
on level 4 grid in Fig. 5. One can see the advantage of the divergence-free element,
which fully utilizes the approximation power of uy, by lifting the pressure polynomial
degree. Of course, another advantage is the divergence-free solution after such a lift.
We next report the results for k = 3 in Table 3. All numerical results confirm the
theory, and also show the accuracy of the supercloseness analysis.

Finally, we test the two-order supercloseness in Theorem 3.11. We choose a sym-
metric function as the exact solution of the Stokes equations (2.1):

u=curlg, g=28(x— xz)z(y - y2)2. 4.4)

Comparing to the data in Table 3, we can see, in Table 4, that the velocity does con-
verge with another order higher than the optimal order. This is predicted in (3.33).
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Table 4 The errors e, =Iju—uy, and €, = p; — pj, (two-order supercloseness) for (4.4) with k =3

lenl;2 h" lenl 1 h" llenl 2 h"

Qk+1,k — Ok, k+1 div-free element (2.3), k = 3(!) #it
2 0.001196745 0.024927233 0.1147364 3.8 4
3 0.000045519 4.7 0.001383336 42 0.0069166 4.1 4
4 0.000000937 5.6 0.000051730 4.7 0.0004383 4.0 4
5 0.000000016 5.8 0.000001826 49 0.0000276 4.0 4
6 0.000000000 5.9 0.000000060 49 0.0000017 4.0 4

Here the order of convergence for the pressure is the same as that in Table 3. It
indicates that the analysis in Theorem 3.10 is sharp. Here we have a two-order super-
closeness in L2-norm too, for the velocity. But the supercloseness in L?-norm is not
studied in this manuscript.
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