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Abstract By the standard theory, the stable Qk+1,k − Qk,k+1/Qdc′
k divergence-free

element converges with the optimal order of approximation for the Stokes equations,
but only order k for the velocity in H 1-norm and the pressure in L2-norm. This is
due to one polynomial degree less in y direction for the first component of veloc-
ity, which is a Qk+1,k polynomial of x and y. In this manuscript, we will show by
supercloseness of the divergence free element that the order of convergence is truly
k + 1, for both velocity and pressure. For special solutions (if the interpolation is also
divergence-free), a two-order supercloseness is shown to exist. Numerical tests are
provided confirming the accuracy of the theory.
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1 Introduction

The divergence-free finite element method is mainly for solving incompressible flow
problems, such as Stokes or Navier–Stokes equations, where the finite element space
for the pressure is exactly the divergence of the finite element space for the velocity.
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In such a method, the finite element velocity is divergence-free pointwise, i.e., the
incompressibility condition is enforced strongly. Traditional finite elements enforce
the incompressibility weakly, cf. [10, 21]. That is, in order to satisfy the inf-sup sta-
bility condition, the incompressibility condition is weakened by either enlarging the
velocity space or decreasing the pressure space. This often leads to some sub-optimal
methods, or a waste of computation, due to the imperfect matching of two spaces. It
may also lead to an inaccurate mass conservation, which is critical in certain compu-
tational problems. For example, for a high pressure flow problem, the Taylor–Hood
finite element method produces a solution of large error of order O(Re) where Re is
the Reynolds number [11].

A fundamental study on the divergence-free element method was done by Scott
and Vogelius [22, 23], which shows that the Pk+1/P dc

k method is stable (except on
grids with nearly-singular vertexes) and consequently of the optimal order on 2D
triangular grids, for k ≥ 3. Here the finite element space for velocity is the space of
continuous piecewise-polynomials of degree (k+1) or less; The space approximating
pressure is the space of discontinuous piecewise-polynomials of degree k or less, or
the divergence of the discrete velocity space, to be precise. There are several other
such divergence-free finite elements, cf. [2, 14, 16, 17, 19, 20, 29–31, 33].

Starting from the most popular element, the Q1/P0 element [6, 7], there is a series
of works on Qk mixed finite elements on rectangular grids in 2D and 3D. Brezzi and
Falk showed that the Qk+1/Qdc

k element is unstable in [9], for any k ≥ 0. Here Qdc
k

denotes the space of discontinuous piecewise-polynomials. In [27], Stenberg and Suri
showed the stability, but a sub-optimal order of approximation, for the Qk+1/Qdc

k−1
element for all k ≥ 1 in 2D. Bernardi and Maday proved the stability and the optimal
order of convergence for the Qk+1/P dc

k element, cf. [4]. Ainsworth and Coggins es-
tablished [1] the stability and the optimal order of convergence for the Taylor–Hood
Qk+1/Qk element, where the pressure space is continuous too. The Bernardi–Raugel
element [5] optimizes the Qk+1/Qdc

k−1 element, when k = 1, by reducing the ve-
locity space to Q1,2 − Q2,1 polynomials. Here the first component of velocity in
the Bernardi–Raugel element is a polynomial of degree 1 in x direction, but of de-
gree 2 in y direction. To be precise, the Bernardi–Raugel element enriches the Q1
velocity space by face-bubble functions. Similar to the Bernardi–Raugel element, a
divergence-free finite element, Qk+1,k − Qk,k+1/Qdc′

k (k ≥ 2), was proposed in [31],
which further optimizes the Bernardi–Raugel element by increasing the polynomial
degree of pressure from (k−1) to k. The nodal degrees of freedom of this divergence-
free element and the Bernardi–Raugel element are plotted in Fig. 1. This divergence-
free element was extended to its lowest-order form, k = 1, i.e., Q2,1 − Q1,2/Qdc′

1 ,

in [17]. Here the space Qdc′
k for the pressure is the space of discontinuous Qk poly-

nomials with all spurious modes removed, i.e., eliminating one degree of freedom
at each vertex, cf. (2.7). In the construction, the pressure space is exactly the diver-
gence of the velocity. Thus, the resulting finite element is divergence-free pointwise.
In such a case, the discrete pressure space can be omitted in the computation. By an
iterated penalty method, we obtain the pressure solution as a byproduct, cf. [30] and
Sect. 4 below. However, by the standard finite element theory developed in [17, 31],
this divergence-free element converges at order k only, due to a degree k polynomial
in y for the first component of uh. This cannot be improved by the standard theory,
where the optimal order of convergences is derived from the inf-sup stability.
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Fig. 1 Nodes of uh/ph for
divergence-free (top) and
Bernardi–Raugel elements

In this manuscript, we further study this Qk+1,k −Qk,k+1 divergence-free element
and show its supercloseness that the element does converge at order k +1. Further the
velocity solution of the Qk+1,k − Qk,k+1 divergence-free element may be ultraclose,
i.e., two orders higher than the standard approximation, provided the interpolation is
divergence-free. The extension of this divergence-free element to 3D is straightfor-
ward, so is its supercloseness property. By the supercloseness of the finite element
solution, traditionally we interpolate the finite element solution by either a (Qk+2)

2

or a (Q2k)
2 polynomial piecewise on two by two sub-grids, to obtain a supercon-

vergent solution. It may not be meaningful to do so here as such an interpolation is
no longer divergence free. We do get a higher-order solution though, but we lose its
mass conservation property. To keep its divergence-free property, we need to post-
process this higher-order interpolation. It may cost even more to post-process this
interpolated high-order polynomial solution to get a divergence-free solution than to
compute directly a higher order divergence-free solution from the family of finite
elements.

The divergence-free element is connected to the C1 − Qk element [18, 32].
A mathematical interest of this work is its application to the superconvergence anal-
ysis of the whole family of C1 − Qk elements. We intend to do so in a forthcoming
work. Only the superconvergence of the degree-three C1 − Qk element, the Bogner–
Fox–Schmit element, is established at the moment [18, 26]. We note that such a Qk-
type divergence-free element exists only on rectangular grids, not on general quadri-
lateral grids. Correspondingly, a construction of C1 − Qk elements is not possible
yet, on quadrilateral grids.

The rest of the paper is organized as follows. In Sect. 2, we define the finite el-
ement for the stationary Stokes equations. In Sect. 3, we establish supercloseness
for the divergence-free element. In Sect. 4, we provide some test results confirming
the analysis. In particular, we show the order of convergence of the divergence-free
element is one higher than that of the rotated Bernardi–Raugel element.

2 The Qk+1,k − Qk,k+1 Divergence-Free Element

In this section, we shall define the divergence-free finite element for the stationary
Stokes equations on rectangular grids. The resulting finite element solutions for the
velocity are divergence-free point wise.
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Fig. 2 Three levels of grids, and a macro-element grid (for k = 1 only)

We consider a model stationary Stokes problem: Find the velocity u and the pres-
sure p on a 2D polygonal domain Ω , which can be subdivided into rectangles, such
that

−�u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(2.1)

The weak form for (2.1) is: Find u ∈ H 1
0 (Ω)2 and p ∈ L2

0(Ω) := L2(Ω)/C = {p ∈
L2 | ∫

Ω
p = 0} such that

a(u,v) + b(v,p) = (f,v) ∀v ∈ H 1
0 (Ω)2,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(2.2)

Here H 1
0 (Ω)2 is the subspace of the Sobolev space H 1(Ω)2 (cf. [13]) with zero

boundary trace, and

a(u,v) =
∫

Ω

∇u · ∇vdx,

b(v,p) = −
∫

Ω

div vp dx,

(f,v) =
∫

Ω

fvdx.

The finite element grids are defined by, cf. Fig. 2,

Th = {
K | ∪K = Ω,K = [xa, xb] × [yc, yd ] with size

hK = max{xb − xa, yd − yc} ≤ h
}
.

We further assume, only for the lowest-order element k = 1 in (2.3), that the rectan-
gles in grid Th can be combined into groups of four to form a macro-element grid:

Mh =
{

M | M =
4⋃

i=1

Ki = [xi−1, xi+1] × [yj−1, yj+1],Ki ∈ Th,
⋃

Ki = Ω

}

.
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See the fourth diagram in Fig. 2. The polynomial spaces are defined by

Qk,l =
{ ∑

i≤k,j≤l

cij x
iyj

}

, Qk = Qk,k.

The Qk+1,k − Qk,k+1 (k ≥ 1) element spaces are

Vh = {
vh ∈ C(Ω)2 | vh|K ∈ Qk+1,k × Qk,k+1 ∀K ∈ Th, and uh|∂Ω = 0

}
, (2.3)

Ph = {div uh | uh ∈ Vh}. (2.4)

Since
∫
Ω

ph = ∫
Ω

div uh = ∫
∂Ω

uh = 0 for any ph ∈ Ph, we conclude that

Vh ⊂ H 1
0 (Ω)2, Ph ⊂ L2

0(Ω),

i.e., the mixed-finite element pair is conforming. The resulting system of finite ele-
ment equations for (2.2) is: Find uh ∈ Vh and ph ∈ Ph such that

a(uh,v) + b(v,ph) = (f,v) ∀v ∈ Vh,

b(uh, q) = 0 ∀q ∈ Ph.
(2.5)

Traditional mixed-finite elements require the inf-sup condition to guarantee the
existence of discrete solutions. As (2.4) provides a compatibility between the discrete
velocity and the discrete pressure spaces, the linear system of equations (2.5) always
has a unique solution, cf. [30]. Furthermore, such a solution uh is divergence-free: by
the second equation in (2.5) and the definition of Ph in (2.4),

b(uh, q) = b(uh,−div uh) = ‖div uh‖2
L2(Ω)2 = 0. (2.6)

In this case, i.e., Vh ⊂ Z := {div v | v ∈ H 1
0 (Ω)2}, we call the mixed finite ele-

ment a divergence-free element. It is apparent that the discrete velocity solution is
divergence-free if and only if the discrete pressure finite element space is the diver-
gence of the discrete velocity finite element space, i.e., (2.4).

As singular vertices are present (see [17, 22, 23, 31]), by the definition (2.4), Ph

is a subspace of the discontinuous, piecewise Qk polynomials:

Ph =
{

ph ∈ L2
0(Ω) |vh|K ∈ Qk ∀K ∈ Th,

4∑

i=1

(−1)kph|Ki
(x) ∀x ∈ Th

}

, (2.7)

where Ki are four squares numbered counterclockwise around a vertex x in the grid
Th. It is possible, but very difficult to find a local basis for Ph. But on the other
side, it is the special interest of the divergence-free finite element method that the
space Ph can be omitted in computation and the discrete solutions approximating the
pressure function in the Stokes equations can be obtained as byproducts, if an iterated
penalty method is adopted to solve the system (2.5), cf. [8, 10, 15, 25, 30] for more
information.
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Fig. 3 Three types of interpolation nodes, k = 3

3 Supercloseness

As usual, the supercloseness is obtained by the method of integration by parts, cf.
[12, 28]. But we have a long series of lemmas dealing with each term in the bilinear
forms a(·, ·) and b(·, ·).

For a convenience in referring components of the vector velocity, we define the
two inhomogeneous polynomial spaces:

Vh,1 = {
φ ∈ H 1

0 (Ω) | φ|K ∈ Qk+1,k ∀K ∈ Th

}
, (3.1)

Vh,2 = {
φ ∈ H 1

0 (Ω) | φ|K ∈ Qk,k+1 ∀K ∈ Th

}
, (3.2)

k ≥ 1. That is,

Vh = Vh,1 × Vh,2, k ≥ 1.

The interpolation operator Ih is defined for the two components of u:

Ih : H 1
0 (Ω)2 ∩ H 2(Ω)2 → Vh,1 × Vh,2,

Ihu = Ih

(
u

v

)

=
(

uI

vI

)

.
(3.3)

We define uI by its values at the Lagrange nodes. For the nodes at vertexes, we could
use the Scott–Zhang [24] interpolation, i.e., the nodal value of uI is an average on an
edge, against a dual basis function at the vertex. When u is a Pk polynomial locally,
uI (a

K
i ) = u(aK

i ). But for convenience, also because the function u to be interpolated
is very smooth in the analysis, we use the nodal value interpolation at vertexes. The
nodal values inside an edge, and inside a square, are defined by proper L2-projections,
i.e., by solving the following equations sequentially (see Fig. 3):

(u − uI )
(
aK
i

) = 0 at four vertices of K, ∀K ∈ Th, (3.4)
∫

y=yj

(u − uI )pk−1(x) dx = 0 on the top and bottom edges of K, (3.5)

∫

x=xi

(u − uI )pk−2(y) dy = 0 on the left and right edges of K, (3.6)

∫

K

(u − uI )qk−1,k−2 dx = 0 on the square K, (3.7)
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where pk ∈ Pk , the space of 1D polynomials of degree k or less, and qk,l ∈ Qk,l . By
rotating x and y, vI is defined similarly/symmetrically to uI .

Lemma 3.1 (two-order supercloseness) For any Qk+1,k function ψ ∈ Vh,1, defined
in (3.1), for any u ∈ Hk+3(Ω) ∩ H 1

0 (Ω), and for all k > 1,
∣
∣
∣
∣

∫

Ω

(u − uI )xψx dx

∣
∣
∣
∣ ≤ Chk+2‖u‖Hk+3‖ψ‖H 1 . (3.8)

Proof We first consider the estimation on the reference element K̂ = [−1,1]2. Since
ψ ∈ Qk+1,k , we have an exact Taylor expansion:

ψx(x, y) = ψx(x,0) + yψxy(x,0) + · · · + yk−1

(k − 1)!ψxyk−1(x,0) + yk

k! ψxyk (x,0),

(3.9)

where ψx(x,0) and all ψxyj (x,0) are Pk polynomials in x only. We will perform
the integration by parts repeatedly. First, for the lower order terms in (3.9), we notice
that, by the definition of uI in (3.5) and (3.7),

∫

K̂

(u − uI )xy
jψxyj (x,0) dx

=
∫ 1

−1
(u − uI )y

jψxyj (x,0)

∣
∣
∣
∣

x=1

x=−1
dy −

∫

K̂

(u − uI )y
jψx2yj (x,0) dx

= 0, when j = 0,1, . . . , k − 2. (3.10)

Please be aware that ψx2yj (x,0) ∈ Pk−1(x) above. Hence, we need to deal with only
the last two terms in (3.9).

For the last two terms in (3.9), in order to do integration by parts, we express the
polynomials yk−1 and yk by derivatives of another polynomial:

sk(y) = (y2 − 1)k+1

(2k + 2)! = y2k+2

(2k + 2)! − (k + 1)y2k

(2k + 2)! + · · · = y2k+2

(2k + 2)! + p̃2k(y),

(3.11)

s
(j)
k (±1) = 0, j = 0,1, . . . , k, (3.12)

s
(k+2)
k (y) = 1

k!y
k + pk−2(y). (3.13)

Here p̃2k(y) and pk−2(y) denote a polynomial of degree 2k and (k −2), respectively.
We note that, as in (3.10), the integral of (u − uI )x against pk−2(y) is zero. Thus, by
(3.10), dropping the first k − 1 terms, we have

∫

K̂

(u − uI )xψx(x, y) dx dy

=
∫

K̂

(u − uI )x
(
s
(k+1)
k−1 (y)ψxyk−1(x,0) + s

(k+2)
k (y)ψxyk (x,0)

)
dx dy
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=
∫ 1

−1

[
(u − uI )x

(
s
(k)
k−1(y)ψxyk−1(x,0) + s

(k+1)
k (y)ψxyk (x,0)

)]y=1
y=−1 dx

−
∫

K̂

(u − uI )xy

(
s
(k)
k−1(y)ψxyk−1(x,0) + s

(k+1)
k (y)ψxyk (x,0)

)
dx dy. (3.14)

Let us consider the first boundary integral in (3.14), on the top edge of the square K̂ .
By (3.4) and (3.5),

∫ 1

−1
(u − uI )x(x,1)s

(k)
k−1(1)ψxyk−1(x,0) dx

= [
(u − uI )(x,1)s

(k)
k−1(1)ψxyk−1(x,0)

]1
x=−1

− s
(k)
k−1(1)

∫ 1

−1
(u − uI )(x,1)ψx2yk−1(x,0) dx

= 0, (3.15)

noting again that ψx2yk−1(x,0) is a Pk−1 polynomial in x only. The other boundary
integral in (3.14) is also 0 as ψx2yk (x,0) ∈ Pk−1 too:

∫ 1

−1
(u − uI )x(x,1)s

(k+1)
k (1)ψxyk (x,0) dx

= [
(u − uI )(x,1)s

(k+1)
k (1)ψxyk (x,0)

]1
x=−1

− s
(k+1)
k (1)

∫ 1

−1
(u − uI )(x,1)ψx2yk (x,0) dx

= 0. (3.16)

That is, the boundary integrals in (3.14) are all zero. We repeat the integration by parts
in this direction, while the boundary terms would be zero by (3.12) and (3.5). Note
that in the last case, in (3.15) and (3.16), the boundary terms vanish because of (3.4):
(u − uI )(±1,±1) = 0, while they vanish below because of (3.12): s

(j)

k−1(±1) = 0

and s
(j+1)
k (±1) = 0 for j < k. By k times more integration by parts, (3.14) would

be
∫

K̂

(u − uI )xψx dx dy

= −
∫

K̂

(u − uI )xy

(
s
(k)
k−1ψxyk−1(x,0) + s

(k+1)
k ψxyk (x,0)

)
dx dy

=
∫

K̂

(u − uI )xy2

(
s
(k−1)
k−1 ψxyk−1(x,0) + s

(k)
k ψxyk (x,0)

)
dx dy

−
∫ 1

−1
(u − uI )xy(x,1)

(
s
(k−1)
k−1 ψxyk−1(x,0) + s

(k)
k ψxyk (x,0)

)y=1
y=−1 dx
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=
∫

K̂

(u − uI )xy2

(
s
(k−1)
k−1 ψxyk−1(x,0) + s

(k)
k ψxyk (x,0)

)
dx dy

= (−1)k+1
∫

K̂

(u − uI )xyk+1

(
sk−1ψxyk−1(x,0) + s′

kψxyk (x,0)
)
dx dy. (3.17)

We will perform the integration by parts one last time. But this time, we will treat the
two terms in the last integral differently:

∫

K̂

(u − uI )xyk+1sk−1ψxyk−1(x,0) dx dy

= −
∫

K̂

(u − uI )x2yk+1sk−1ψyk−1(x,0) dx dy

+
∫ 1

−1

[
(u − uI )xyk+1sk−1ψyk−1(x,0)

]x=1
x=−1 dy,

∫

K̂

(u − uI )xyk+1s
′
kψxyk (x,0) dx dy = −

∫

K̂

(u − uI )xyk+2skψxyk (x,0) dx dy.

For the second integral, the boundary term disappears by the condition (3.12). For
the first integral, the boundary integrals will be canceled due to the opposite line in-
tegrals (one is from the top limit x = 1 and one from the bottom limit x = −1 of the
integral on the neighboring square) on two sides of a vertical edge x = xi or due to
the boundary condition on ψ :
∫ yj+1

yj

(u − uI )xyk+1

(
x−
i

)
sk−1(y)ψyk−1

(
x−
i ,0

)
dy

−
∫ yj+1

yj

(u − uI )xyk+1

(
x+
i

)
sk−1(y)ψyk−1

(
x+
i ,0

)
dy = 0,

∫ yj+1

yj

(u − uI )xyk+1

(
x±
i

)
sk−1(y)ψyk−1

(
x±
i ,0

)
dy = 0, if {xi} × [yj , yj+1] ⊂ ∂Ω.

We also note that the (k + 1)st and (k + 2)nd partial derivatives on uI above are all
zero. Hence, we get (3.8) by summing over the estimation on all rectangles K ∈ Th,
plus a scaling and the Schwarz inequality,

∣
∣
∣
∣

∫

Ω

(u − uI )xψx dx

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

K

∫

K

(u − uI )xψx dx

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

K

∫

K̂

(u − uI )xψx dx

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

K

(−1)k+2
∫

K̂

(ux2yk+1sk−1ψyk−1 + uxyk+2skψxyk ) dx

∣
∣
∣
∣

≤
∑

K

C|u|
Hk+3(K̂)

|ψ |
H 1(K̂)

= C
∑

K

hk+2|u|Hk+3(K)|ψ |H 1(K)

≤ Chk+2|u|Hk+3(Ω)|ψ |H 1(Ω).
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We note that the semi H 1-norm is needed above to bound ψyk−1 , when there is no
boundary condition on one element K . But higher order norms are equivalent to semi-
H 1 norm on one element, ‖ψxyk‖L2(K̂)

≤ Ck|ψ |
H 1(K̂)

. Thus k > 1 is required. �

In the proof, we can see that the decrease of one degree polynomial in y does not
change the super-approximation of Qk+1,k in x direction. After (3.17), if we skip the
last step of integration by parts, we would get the following corollary. That is, we
avoid ‖ψyk−1‖L2 when k = 1 which cannot be bounded by |ψ |H 1 .

Corollary 3.2 (one-order supercloseness) For any Qk+1,k function ψ ∈ Vh,1, defined
in (3.1), for any u ∈ Hk+2(Ω), and for all k ≥ 1,

∣
∣
∣
∣

∫

Ω

(u − uI )xψx dx

∣
∣
∣
∣ ≤ Chk+1‖u‖Hk+2‖ψ‖H 1 . (3.18)

Symmetrically, switching x and y in Lemma 3.1, we prove the following lemma.

Lemma 3.3 (two-order supercloseness) For any Qk,k+1 function ψ ∈ Vh,2, defined
in (3.2), and for any v ∈ Hk+3(Ω), if k > 1,

∣
∣
∣
∣

∫

Ω

(v − vI )yψy dx

∣
∣
∣
∣ ≤ Chk+2‖v‖Hk+3‖ψ‖H 1 . (3.19)

For the same reasons in Corollary 3.2, we get the following corollary from
Lemma 3.3.

Corollary 3.4 (one-order supercloseness) For any Qk,k+1 function ψ ∈ Vh,2, defined
in (3.2), for any v ∈ Hk+2(Ω) ∩ H 1

0 (Ω), and for all k ≥ 1,

∣
∣
∣
∣

∫

Ω

(v − vI )yψy dx

∣
∣
∣
∣ ≤ Chk+1‖v‖Hk+2‖ψ‖H 1 . (3.20)

Though the interpolation order is (k+2) in the above two lemmas, only the (k+1)

order in two corollaries can be achieved in computation, due to the coupling of terms
in mixed formulation. We prove the approximation properties in the lower polynomial
direction next, i.e., the y-derivative convergence of the first component of velocity.
Now, even for k = 1, we have a two-order supercloseness.

Lemma 3.5 (two-order supercloseness) For any Qk+1,k function ψ ∈ Vh,1, defined
in (3.1), for any u ∈ Hk+3(Ω) ∩ H 1

0 (Ω), and for all k ≥ 1,

∣
∣
∣
∣

∫

Ω

(u − uI )yψy dx

∣
∣
∣
∣ ≤ Chk+2‖u‖Hk+3‖ψ‖H 1 . (3.21)

Proof Again, we first consider the estimation on the reference element K̂ = [−1,1]2.
Since the polynomial degree in y is too low, we do Taylor expansion in x direction,



Supercloseness of the Divergence-Free Finite Element Solutions 153

different from the last lemma:

ψy(x, y) = ψy(0, y) + xψxy(0, y) + · · · + xk

k! ψxky(0, y) + xk+1

(k + 1)!ψxk+1y(0, y).

Again, similar to (3.9), the integral of (u−uI )y against xj terms are zero if j ≤ k−1,

∫

K̂

(u − uI )yx
jψxj y(0, y) dx dy

=
∫ 1

−1

[
(u − uI )x

jψxj y(0, y)
]y=1
y=−1 dx −

∫

K̂

(u − uI )x
jψxj y2(0, y) dx dy

= 0,

noting that xjψxj y2(0, y) ∈ Qk−1,k−2. Using the polynomial function sk(x) defined
in (3.11) we have, cf. (3.14),

∫

K̂

(u − uI )yψy dx dy

=
∫

K̂

(u − uI )y
(
s
(k+2)
k (x)ψxky(0, y) + s

(k+3)
k+1 (x)ψxk+1y(0, y)

)
dx dy

=
∫ 1

−1

[
(u − uI )y

(
s
(k+1)
k (x)ψxky(0, y) + s

(k+2)
k+1 (x)ψxk+1y(0, y)

)]x=1
x=−1 dy

−
∫

K̂

(u − uI )xy

(
s
(k+1)
k (x)ψxky(0, y) + s

(k+2)
k+1 (x)ψxk+1y(0, y)

)
dx dy.

Here, for the first time integration by parts, the boundary integral disappeared by
(3.4), (u − uI )(±1,±1) = 0. In the next (k + 1) times of integration by parts, the
boundary integrals on x = ±1 would be zero, directly by the boundary condition
(3.12) of sk(x):

∫

K̂

(u − uI )yψy dx dy = (−1)k+2
∫

K̂

(u − uI )xk+2y

(
skψxky(0, y)

+ s′
k+1ψxk+1y(0, y)

)
dx dy.

Thus,
∣
∣
∣
∣

∫

K̂

(u − uI )yψy dx dy

∣
∣
∣
∣ ≤ C‖uxk+2y‖L2(K̂)

‖ψy‖L2(K̂)

≤ C|u|
Hk+3(K̂)

‖ψ‖
H 1(K̂)

.

The rest of the proof repeats that of Lemma 3.1. �

As for above lemmas and corollaries, we can get the following corollary from
Lemma 3.5.
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Corollary 3.6 For any Qk+1,k function ψ ∈ Vh,1, defined in (3.1), for any u ∈
Hk+2(Ω) ∩ H 1

0 (Ω), and for all k ≥ 1,

∣
∣
∣
∣

∫

Ω

(u − uI )yψy dx

∣
∣
∣
∣ ≤ Chk+1‖u‖Hk+2‖ψ‖H 1 . (3.22)

Corollary 3.7 For any Qk,k+1 function ψ ∈ Vh,2, defined in (3.2), and for any u ∈
Hk+3(Ω) ∩ H 1

0 (Ω), and for all k ≥ 1,

∣
∣
∣
∣

∫

Ω

(u − uI )xψx dx

∣
∣
∣
∣ ≤ Chk+2‖u‖Hk+3‖ψ‖H 1, (3.23)

∣
∣
∣
∣

∫

Ω

(u − uI )xψx dx

∣
∣
∣
∣ ≤ Chk+1‖u‖Hk+2‖ψ‖H 1 . (3.24)

Now we study the supercloseness in both bilinear forms.

Lemma 3.8 For any (vh, qh) ∈ Vh × Ph, defined in (2.3) and (2.4), and for any
u ∈ H 3(Ω) ∩ H 1

0 (Ω),

∣
∣a(u − Ihu,vh)

∣
∣ ≤ Chk+2‖u‖Hk+3(Ω)2‖vh‖H 1(Ω)2, k > 1, (3.25)

∣
∣a(u − Ihu,vh)

∣
∣ ≤ Chk+1‖u‖Hk+2(Ω)2‖vh‖H 1(Ω)2, k ≥ 1, (3.26)

∣
∣b(u − Ihu, qh)

∣
∣ ≤ Chk+1‖u‖Hk+2(Ω)2‖qh‖L2(Ω), k ≥ 1, (3.27)

where Ihu is the interpolation of u defined by (3.3).

Proof (3.25) is a combination of (3.8), (3.21), (3.23), and (3.19). (3.26) is a combi-
nation of (3.18), (3.22), (3.24), and (3.20).

For (3.27), we will lose one order of convergence. Let qh = div wh for some wh =
(φ,ψ) ∈ Vh. We have, denoting u = (u, v),

b(u − Ihu, qh) =
∑

K

∫

K

(
(u − uI )x + (v − vI )y

)
(φx + ψy)dx.

Here we have two old integrals,
∫
K

(u − uI )xφx dx and
∫
K

(v − vI )yψy dx, and two
new integrals,

∫
K

(u − uI )xψy dx and
∫
K

(v − vI )yφx dx. The approximation order
can be one order higher for the two old integrals. For the two new integrals, by sym-
metry, we consider

∫
K

(u − uI )xψy dx. We use the following Taylor expansion on

the reference element K̂ in the y direction. We note that the Taylor expansion in x

direction would lead to a too high order polynomial in y direction each term in (3.28)
below:

ψy(x, y) = ψy(x,0) + yψy2(x,0) + · · · + yk−1

(k − 1)!ψyk (x,0) + yk

k! ψyk+1(x,0).

(3.28)
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Here all ψyj (x,0) are polynomials of degree k in x. That is, a generic term
yjψyj+1(x,0) ∈ Qk,j . This is the same as the generic term yjψxyj (x,0) in the early
Taylor expansion (3.9). Thus repeating the proof of Lemma 3.1, we get

∫

K̂

(u − uI )xψy dx =
∫

K̂

(u − uI )x
(
s
(k+1)
k−1 ψyk (x,0) + s

(k+2)
k ψyk+1(x,0)

)
dx dy

= (−1)k+1
∫

K̂

uxyk+1

(
sk−1ψyk (x,0) + s′

kψyk+1(x,0)
)
dx dy.

For the second integral, we can do an integration by parts to raise one more order.
But we are limited by the first integral above to get only

∣
∣
∣
∣

∫

K̂

(u − uI )xψy dx

∣
∣
∣
∣ ≤ ‖u‖

Hk+2(K̂)
‖ψ‖

H 1(K̂)
.

Similarly, we have the same bound for | ∫
K̂

(u − uI )yψx dx|. (3.27) follows by the
Schwarz inequality and the scaling of referencing mappings. �

Finally, we estimate the approximation to p.

Lemma 3.9 For any function vh ∈ Vh, defined in (2.3), and for any p ∈ Hk+1(Ω) ∩
L2

0(Ω),
∣
∣
∣
∣

∫

Ω

div vh(p − pI ) dx

∣
∣
∣
∣ ≤ Chk+1‖vh‖H 1‖p‖Hk+1, (3.29)

where pI is a special nodal interpolation of p in Ph, defined in (3.30) below.

Proof We note that Ph are discontinuous Qk functions, Ph = div Vh. We define an
interpolation operator for Ph via that Ih for Vh defined in (3.3). For a p ∈ H 2(Ω) ∩
L2

0(Ω), Arnold, Scott and Vogelius have shown in [3] that there is a w ∈ H 3(Ω)2 ∩
H 1

0 (Ω)2, such that

div w = p and ‖w‖H 3 ≤ C‖p‖H 2 .

For simplicity, we assume the above lifting exists up to order k + 1. We define

pI = div wI , (3.30)

for wI = Ihw defined by (3.3). In order to use (3.27), we use the notations

w =
(

u

v

)

, wI =
(

uI

vI

)

, vh =
(

φ

ψ

)

.
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Repeating the proof in Lemma 3.8, we get
∣
∣
∣
∣

∫

Ω

div vh(p − pI ) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

div vh div(w − wI ) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

(
(u − uI )x + (v − vI )y

)
(φx + ψy)dx

∣
∣
∣
∣

≤ Chk+1
∣
∣
∣
∣

(
u

v

)∣
∣
∣
∣
Hk+2

∣
∣
∣
∣

(
φ

ψ

)∣
∣
∣
∣
H 1

≤ Chk+1‖p‖Hk+1‖vh‖H 1 . �

We derive the main theorem.

Theorem 3.10 The finite element solution (uh,ph) of (2.5) has the following super-
closeness property, one order higher than the optimal order,

‖uh − Ihu‖H 1 + ‖ph − pI‖L2 ≤ Chk+1(‖u‖Hk+2 + ‖p‖Hk+1

)
, (3.31)

where the interpolations (Ihu,pI ) are defined in (3.3) and (3.30).

Proof By the inf-sup condition shown in [17, 31], it follows that, cf. [21], for all
(wh, rh) ∈ Vh × Ph,

sup
(vh,qh)∈Vh×Ph

a(wh,vh) + b(vh, rh) + b(wh, qh)

‖vh‖H 1 + ‖qh‖L2
≥ C

(‖wh‖H 1 + ‖rh‖L2

)
. (3.32)

By Corollary 3.7 and Lemma 3.9, we have

‖uh − Ihu‖H 1 + ‖ph − pI‖L2

≤ C sup
(vh,qh)∈Vh×Ph

a(uh − Ihu,vh) + b(vh,ph − pI ) + b(uh − Ihu, qh)

‖vh‖H 1 + ‖qh‖L2

= C sup
(vh,qh)∈Vh×Ph

a(u − Ihu,vh) + b(vh,p − pI ) + b(u − Ihu, qh)

‖vh‖H 1 + ‖qh‖L2

≤ Chk+1(‖u‖Hk+2 + ‖p‖Hk+1

)
.

Note that, due to the pointwise divergence free property, above we have

b(uh − Ihu, qh) = b(−Ihu, qh) = b(u − Ihu, qh). �

Here, to be precise, we do not have a supercloseness for p in Theorem 3.10. As
Ph are degree-k polynomials, the best order approximation to p in L2-norm would
be (k + 1). However, due to the mixed formulation, the convergence of ph to p is
limited to the optimal order convergence of uh, which is (k − 1) in H 1-norm as uh

has polynomial degree k only in y direction for its first component. In this sense,
the supercloseness result (3.31) does lift the order of approximation of ph by one.
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For k > 1, we may have a two-order supercloseness for the velocity. Such numerical
examples are shown in [31] and in next section. That is, for some special functions u,
Ihu might be also in the divergence-free subspace of Vh. If so, we have a two-order
supercloseness result.

Theorem 3.11 (two-order supercloseness) For some solution u of (2.1), if

Ihu ∈ Zh := {zh ∈ Vh | div zh = 0},
where Ih is defined in (3.3), and if k > 1, then

‖uh − Ihu‖H 1 ≤ Chk+2‖u‖Hk+3 . (3.33)

Proof By (3.25), limited to the divergence-free subspace,

‖uh − Ihu‖H 1 ≤ sup
wh∈Zh

a(uh − Ihu,wh)

‖wh‖H 1

= sup
wh∈Zh

a(u − Ihu,wh)

‖wh‖H 1
≤ Chk+2‖u‖Hk+3 . �

4 Numerical Tests

In this section, we report some results of numerical experiments on the Qk+1,k −
Qk,k+1 element for the stationary Stokes equations (2.1) on the unit square Ω =
[0,1]2. The grids Th are depicted in Fig. 2, i.e., each squares are refined into four
sub-squares each level. The initial grid, level one grid, is simply the unit square.

We choose an exact solution for the Stokes equations (2.1):

u = curlg, p = �g. (4.1)

Here

g = 28(x3 − x4)2(
y3 − y4)2

.

So we can compute the right hand side function f for (2.1) as

f = −� curlg + ∇�g. (4.2)

We note that, unlike [17, 31], we intentionally choose a non-symmetric solution so
that no ultraconvergence would happen, which does not exist in general. The solution
p is plotted in Fig. 4.

We compute the Stokes solution on refined grids, cf. Fig. 2, by the divergence
Qk+1,k − Qk,k+1 element (2.3) and by the rotated Bernardi–Raugel element [5, 10,
21]:

VBR
h = {

vh ∈ C(Ω)2 ∩ H 1
0 (Ω)2 | vh|K ∈ Qk+1,k × Qk,k+1 ∀K ∈ Th

}
,

P BR
h = {

qh ∈ L2
0(Ω) | qh|K ∈ Qk−1

}
.

(4.3)
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Fig. 4 The solution p (the errors are shown in Fig. 5)

Table 1 The errors eh = Ihu − uh and εh = pI − ph (one-order supercloseness) for (4.1) with k = 1

|eh|
L2 hn |eh|

H1 hn ‖εh‖
L2 hn

Qk+1,k − Qk,k+1 div-free element (2.3), k = 1 #it

2 0.264345 1.341770 5.965379 4

3 0.102329 1.4 0.795594 0.8 1.896372 1.7 4

4 0.026839 1.9 0.219469 1.9 0.481076 2.0 3

5 0.006773 2.0 0.055901 2.0 0.120363 2.0 3

6 0.001697 2.0 0.014035 2.0 0.030083 2.0 3

7 0.000424 2.0 0.003512 2.0 0.007520 2.0 3

rotated Bernardi–Raugel element (4.3), k = 1 #Uz

2 0.570990 3.531380 7.497615 29

3 0.244967 1.2 3.028368 0.2 6.943183 0.1 65

4 0.074335 1.7 1.797533 0.8 3.300598 1.1 136

5 0.019849 1.9 0.946426 0.9 1.575390 1.1 297

6 0.005080 2.0 0.481087 1.0 0.762341 1.0 330

7 0.001281 2.0 0.241916 1.0 0.373990 1.0 204

Following the analysis in [17], the stability of the rotated Bernardi–Raugel element
would be proved. For the rotated Bernardi–Raugel element, the system of finite el-
ement equations is solved by the Uzawa iterative method, cf. [10, 15, 21]. The stop
criterion is the difference |p(n)

h −p
(n−1)
h | ≤ 10−6. We list the number of Uzawa itera-

tions in the data tables by #Uz. Here the interpolation operators are standard Lagrange
nodal interpolations [13].

For the Qk+1,k − Qk,k+1 divergence-free element, the pressure does not enter
into computation, but is obtained as a byproduct, because Ph = div Vh. The resulting
linear system of Qk+1,k − Qk,k+1 divergence-free element equations can be formu-
lated as symmetric positive definite. Then the iterated penalty method [15, 31] can
be applied to obtain the divergence-free finite element solution for the velocity, and a
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Table 2 The errors eh = Ihu − uh and εh = pI − ph (one-order supercloseness) for (4.1) with k = 2

|eh|
L2 hn |eh|

H1 hn ‖εh‖
L2 hn

Qk+1,k − Qk,k+1 div-free element (2.3), k = 2 #it

1 0.322530 0.0 1.580066 0.0 3.546405 0.0 3

2 0.071851 2.2 0.699614 1.2 1.010498 1.8 4

3 0.005510 3.7 0.089611 3.0 0.131816 2.9 3

4 0.000355 4.0 0.010471 3.1 0.015587 3.1 3

5 0.000022 4.0 0.001280 3.0 0.001904 3.0 3

6 0.000001 4.0 0.000159 3.0 0.000236 3.0 3

7 0.000000 4.0 0.000020 3.0 0.000029 3.0 3

rotated Bernardi–Raugel element (4.3), k = 2 #Uz

1 0.645475 0.0 4.250791 0.0 1.143688 0.0 27

2 0.191342 1.8 2.518701 0.8 5.499136 — 67

3 0.025892 2.9 0.673622 1.9 1.621194 1.8 100

4 0.003307 3.0 0.172036 2.0 0.441596 1.9 156

5 0.000419 3.0 0.043543 2.0 0.113029 2.0 266

6 0.000053 3.0 0.010954 2.0 0.028424 2.0 130

7 0.000007 3.0 0.002747 2.0 0.007117 2.0 101

Table 3 The errors eh = Ihu − uh and εh = pI − ph (one-order supercloseness) for (4.1) with k = 3

|eh|
L2 hn |eh|

H1 hn ‖εh‖
L2 hn

Qk+1,k − Qk,k+1 div-free element (2.3), k = 3 #it

1 0.123142 0.0 1.128619 0.0 1.642992 0.0 4

2 0.004515 4.8 0.065512 4.1 0.128938 3.7 3

3 0.000147 4.9 0.003911 4.1 0.008007 4.0 3

4 0.000004 5.0 0.000234 4.1 0.000494 4.0 3

5 0.000000 5.0 0.000014 4.0 0.000031 4.0 3

rotated Bernardi–Raugel element (4.3), k = 3 #Uz

1 0.374364 0.0 3.512050 0.0 6.061521 0.0 57

2 0.021063 4.2 0.375407 3.2 0.736746 3.0 76

3 0.001597 3.7 0.058926 2.7 0.117000 2.7 123

4 0.000111 3.8 0.008169 2.9 0.013672 3.1 177

5 0.000007 3.9 0.001065 2.9 0.001666 3.0 102

byproduct ph = div wh for the pressure. In our computation, the iterated penalty pa-
rameter is 2000. The stop criterion is the divergence ‖div u(n)

h ‖0 ≤ 10−9. The number
of iterated penalty iterations is also listed as #it in the data tables.
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Fig. 5 The errors of ph for the divergence-free (top) and BR elements

In Table 1, we list the errors in various norms for the Qk+1,k −Qk,k+1 divergence-
free element and for the rotated Bernardi–Raugel element, for k = 1. It is clear that
the order of convergence is 2, one order higher than that of latter. We note that the
convergence order is only 2 for Q2,1 − Q1,2 divergence-free elements in L2-norm,
i.e., there is no L2-supercloseness. But we do see L2-supercloseness for k > 1 next.

In Table 2, we list the computation results for k = 2 elements. Again, the
divergence-free element is one order higher than the rotated Bernardi–Raugel ele-
ment. To show the difference in the two elements, we plot the errors by two elements
on level 4 grid in Fig. 5. One can see the advantage of the divergence-free element,
which fully utilizes the approximation power of uh by lifting the pressure polynomial
degree. Of course, another advantage is the divergence-free solution after such a lift.
We next report the results for k = 3 in Table 3. All numerical results confirm the
theory, and also show the accuracy of the supercloseness analysis.

Finally, we test the two-order supercloseness in Theorem 3.11. We choose a sym-
metric function as the exact solution of the Stokes equations (2.1):

u = curlg, g = 28(x − x2)2(
y − y2)2

. (4.4)

Comparing to the data in Table 3, we can see, in Table 4, that the velocity does con-
verge with another order higher than the optimal order. This is predicted in (3.33).



Supercloseness of the Divergence-Free Finite Element Solutions 161

Table 4 The errors eh = Ihu − uh and εh = pI − ph (two-order supercloseness) for (4.4) with k = 3

|eh|
L2 hn |eh|

H1 hn ‖εh‖
L2 hn

Qk+1,k − Qk,k+1 div-free element (2.3), k = 3(!) #it

2 0.001196745 0.024927233 0.1147364 3.8 4

3 0.000045519 4.7 0.001383336 4.2 0.0069166 4.1 4

4 0.000000937 5.6 0.000051730 4.7 0.0004383 4.0 4

5 0.000000016 5.8 0.000001826 4.9 0.0000276 4.0 4

6 0.000000000 5.9 0.000000060 4.9 0.0000017 4.0 4

Here the order of convergence for the pressure is the same as that in Table 3. It
indicates that the analysis in Theorem 3.10 is sharp. Here we have a two-order super-
closeness in L2-norm too, for the velocity. But the supercloseness in L2-norm is not
studied in this manuscript.
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