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Abstract
The paper provides a Bayes analysis, based on free-knot spline technique, of the popular
autoregressive model having functional-coefficients. The model was initially proposed by
Chen and Tsay (1993). The technique of polynomial splines of different orders is used to
approximate the functional-coefficients. A sample based approach using the Gibbs sampler
algorithm with intermediate Metropolis steps is adopted to draw the posterior estimates for
the parameters involved. Additionally, the technique of reversible jumpMarkov chain Monte
Carlo is incorporated to update the location and number of knots in the polynomial spline.
The paper then proceeds with the motive of obtaining both retrospective and prospective
predictions based on the selected model. The complete procedure is illustrated by both sim-
ulated and a real dataset representing the exchange rate of Indian rupees relative to the US
dollars.

Keywords Autoregressive model · Exchange rate · Functional-coefficients · Gibbs
sampler · Markov chain Monte Carlo · Metropolis algorithm · Polynomial spline ·
Retrospective and prospective predictions · Reversible jump

1 Introduction

In the last few decades, the development of non-linear models has been a milestone for
researchers in the time series. The non-linear models enjoy the properties where the linear
models fail to explain the nature of a time series.Oneof the pioneerworks is doneby [5]. In this
paper, the authors have suggested the functional-coefficients for an autoregressive (AR)model
instead of the unknownARconstants. They allow the coefficients as a function of themodelled
variable at some lag apart. For a sequence of time series observations {yt ; t = 1, 2, . . . , T },
the general form of an autoregressive model having functional-coefficients (FCAR) can be
written as
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yt = θ0 +
p∑

i=1

gi (yt−d)yt−i + εt , (1)

where θ0 is the intercept, gi (.)’s are unknown univariate measurable functions, d and p are
suitably chosen positive integers known as the delay parameter and theARorder, respectively,
and ε’s are independently and identically distributed (i.i.d.) normal variates with mean zero
and a constant variance. We shall refer to the model by FCAR(p, d) throughout the paper.

Some of the pioneering works on non-linear time series models include the threshold
autoregressive (TAR) model by [20, 21] and exponential autoregressive (EXPAR) model
by Haggan and Ozaki [14], etc. Besides, the FCAR model is also quite popular due to its
non-linear and non-parametric aspects. The model is non-parametric due to the fact that
its functional-coefficients are left unspecified. The popularity of the FCAR model can be
seen because of its numerous applications and considerable number of uses in the literature
over the last few decades (see, for example, Chen and Tsay [5], Cai et al. [4] and Fan and
Yao [11], among others). Truly speaking, the model is quite flexible and rich to cover some
of the commonly used linear as well as non-linear models. For example, if gi (x) = ai , a
constant, for each i = 1, 2, . . . , p, the model (1) reduces to the linear AR model. Similarly,
if gi (x) = ai I (x ≤ c) + bi I (x > c) where I (.) is the usual indicator function, the model
(1) changes into TAR model (see Tong [21]) and if gi (x) = ai + bi exp(−ci x2i ), it reduces
to the EXPAR model proposed by Haggan and Ozaki [14]. The FCAR(p, d) model has been
further extended by taking the distribution of error terms other than the normal with varying
variance (see, for example, Chib and Greenberg [6] and [19]).

The functional-coefficients involved in the FCAR(p, d) model can be estimated in numer-
ous ways. Some of the non-parametric methods discussed in the literature include local linear
smoothing and spline smoothing, etc. (see, for example, Fan and Gijbels [10], DiMatteo et
al. [9], Grégoire and Hamrouni [13] and Lindstrom [15]). A Bayesian approach based on
free-knot spline has been discussed by [9] that requires a few well-placed knots to connect
the polynomials of the spline where the number of knots and their locations can be estimated
from the data. Free-knot spline technique reduces a non-parametric model into an ordinary
linear form once the number and location of knots are determined. After achieving the linear
form of the model, posterior summaries can be easily drawn for the parameters involved in
the model just by supposing the conjugate normal priors for the spline coefficients. Normally,
one can start with a combination of the preassigned number and location of knots at random
and can achieve the level of smoothness comfortably (see, for example, Denison et al. [7] and
Wang and Wu [28]). In the true sense, the procedure should be followed for the efficiency of
the algorithm and to avoid the consideration of numerous knots.

The present work proposes to consider a complete Bayesian approach to analyze the
FCAR(p, d) model with the help of free-knot spline technique. Bayesian analysis of time
series models with functional-coefficients is frequently exercised by researchers in time
series literature. Some of the recent works include [1, 16, 19, 27, 28], among others. We,
however, follow the spline technique proposed by [28], where the authors have considered
the integrated form of a time series model. The uniqueness of the proposed work lies in
the fact that it allows the functional-coefficients of FCAR(p, d) model to be approximated
by the polynomial splines of different orders. Consequently, the different orders provide the
different levels of smoothness (seeWang andWu [28]). The randomness involved in the knots
allocation, with respect to their dimension and location, could be handled by the reversible
jump Markov chain Monte Carlo (MCMC) method proposed by Green [12]. The complete
analysis is performed by using the Gibbs sampler algorithm with intermediate Metropolis
steps to estimate the rest of the parameters of FCAR(p, d) model (see [25]).
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The proposed methodology is illustrated on a simulated and real datasets of the monthly
exchange rate of Indian rupees relative to theUSdollars fromJanuary2011 toDecember 2020.
Also, the short term retrospective and prospective predictions, for the exchange rate data, are
given to see the predictive performance of the model under consideration. It may, however,
be noted that to forecast smoothly the stationarity of a time series model is an essential
requirement. In the present case of FCAR(p, d) model, such a requirement can be fulfilled
by geometric ergodicity (see, for example, [5]). Following the Theorem 1.1 and 1.2 from [5],
for the constants ni ; i = 1, 2, . . . , p, if the function gi (.) is bounded such that |gi (.)| ≤ ni
and if all the roots of the characteristic polynomial (γ p − n1γ p−1 − · · · − n p = 0) of (1) lie
inside the unit circle, the FCAR(p, d) model is said to have the geometrical ergodicity, where
γ refers the eigenvalue. It is important to mention, here, that the characteristic polynomial of
(1) could possibly be written by considering the functional coefficients gi (.)’s as the constant
coefficients of the general linear ARmodel or could be replaced by the utmost constant values
taken by the functional coefficients (see [5]). This, however, provides a sufficient condition of
ergodicity but for some of the special cases of model (1) (as discussed above), this condition
becomes both necessary and sufficient.

The paper is organized as follows. Section2, divided into several subsections, provides
the complete Bayesian model formulation of the FCAR(p, d) model starting from the chosen
priors to the posterior distributions. Separate subsections are provided to describe the consid-
ered MCMC sampling strategy and its complete implementation. An algorithm to update the
functional-coefficients is provided separately. Since the specification of parameters p and d
is a significant step in the analysis of FCAR(p, d) model, it is suggested to use the Bayesian
information criterion (BIC) as the guiding principle. The BIC is briefly reviewed in Sect.
2.3 for completeness of the work. The section finally ends with a discussion on obtaining
predictive samples for the intended retrospective and prospective predictions. Section3 illus-
trates the proposed methodology for a simulated as well as a real dataset on the exchange
rate of Indian rupees relative to the US dollars. The compatibility of the selected model is
graphically shown and the predictive ability of the model is examined by the short term ret-
rospective prediction of the exchange rates. At the end of this section, short-term prospective
predictions are also provided using the selected model. A brief conclusion is given in the last
section.

2 Bayesianmodel formulation

Consider a time series y : y1, y2, . . . , yT from the non-linear FCAR(p, d) model (1) at
equally spaced time periods t = 1, 2, . . . , T . It is our supposition that the negative values of
y’s and ε’s have not much effect on the conclusion drawn on the basis of model (1). Since
the model (1) has a dependent characteristic on its own previous values up to the lag p, we
assume that yt = εt = 0 for t ≤ 0, which results in the conditional distribution of yt given
yt−1, . . . , yt−p in the form

f (yt |yt−1, . . . , yt−p; θ0, σ
2) ∝ 1

σ
× exp

(
− 1

2σ 2 (yt − θ0 −
p∑

i=1

gi (yt−d)yt−i )
2

)
. (2)

The corresponding likelihood function for the model (1) from its conditional density (2) can
be approximated by
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f (y|θ0, σ 2) ∝
(

1

σ 2

) T−p∗
2 × exp

⎛

⎝− 1

2σ 2

T∑

t=p∗+1

(yt − θ0 −
p∑

i=1

gi (yt−d)yt−i )
2

⎞

⎠ , (3)

where p∗ = max(p, d). This kind of approximation is very common in time series literature
(see, for example, Box and Jenkins [3] and Wang and Wu [28], among others).

Next, we approximate, for each i = 1, 2, . . . , p, the functional-coefficient gi (.) by an
mi -order polynomial spline with ki ordered interior knots ξi = (ξi1, ξi2, . . . , ξiki )

′, such that
A′ shows the transpose of any arbitrary vector A. Thus,

gi (x) ≈
Ki∑

j=1

Bi j (x)βi j = B ′
i (x)βi , x ∈ [a, b], (4)

where Ki = mi + ki , Bi (x) = (Bi1(x), Bi2(x), . . . , BiKi (x))
′ is Ki × 1 vector of B-spline

bases, βi = (βi1, βi2, . . . , βi Ki )
′ is a Ki × 1 vector of spline coefficients and the boundary

knots are given by

a = min
1≤t≤T

{yt } and b = max
1≤t≤T

{yt }.
For each functional coefficient gi (.), the B-spline bases may be recursively obtained by the
general formula

B0
l (x) = I (zl ≤ x < zl+1), (5)

and

Bq
l (x) = x − zl

zl+q − zl
Bq−1
l (x) + zl+q+1 − x

zl+q+1 − zl+1
Bq−1
l+1 (x), q ≥ 1 (6)

where q denotes the degree of spline and zl represents the lth knot in a spline. We allow
splines of different order and, hence, with different numbers and locations of knots in the
equation (4). As stated earlier, this provides flexibility when the functional-coefficients have
different levels of smoothness. Using (4), (3) can be further approximated as

f (y|θ0, β, k, ξ, σ 2) ∝
(

1

σ 2

) T−p∗
2 ×exp

⎛

⎝− 1

2σ 2

T∑

t=p∗+1

(yt − θ0−
p∑

i=1

B ′
i (yt−d)βi yt−i )

2

⎞

⎠,

(7)

where β = (β ′
1, β

′
2, . . . , β

′
p)

′, k = (k1, k2, . . . , kp)′ and ξ = (ξ ′
1, ξ

′
2, . . . , ξ

′
p)

′ are the vectors
of spline coefficients, knots and locations, respectively.

2.1 Prior and posterior distributions

To perform a Bayesian analysis, it is essential to choose suitable prior distributions for
the parameters. Such prior distributions can be informative or non-informative based on
the available a priori information. It may be noted that prior elicitation is not the main
objective of the paper and, therefore, we consider some standard priors for the parameters
under consideration. To begin with, let us consider for each i = 1, 2, . . . , p, the following
conjugate priors for the spline coefficients β, numbers k and locations ξ of the knots (see
also Wang and Wu [28]).

π1(ki ) = λ
ki
i

ki ! e
−λi ; λi ≥ 1, (8)
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π2(ξi |ki ) = ki !
(b − a)ki

I {a = ξi0 < ξi1 < · · · < ξiki < ξiki+1 = b}, (9)

and

βi |ki , ξi , σ 2, τβ ∼ NKi (0, τβσ 2 IKi ), (10)

where I {.} denotes the indicator function that takes value either zero or one, τβ is a hyperpa-
rameter and IKi is the Ki × Ki identity matrix. We specify the inverse-gamma hyper-prior
for τβ with the two pre-specified hyperparameters r and s2τ given by,

π3(τβ) ∝ τ
− r

2−1
β exp

(−s2τ
2τβ

)
. (11)

We have also considered the non-informative priors for the parameters θ0 and σ 2 similar to
[23] and the same are given by,

π4(θ0) ∝ U [−M, M]; M > 0, (12)

and

π5(σ
2) ∝ 1

σ 2 . (13)

The set of hyperparameters, for each i , is (λi , r , s2τ , M). The prior distribution can be jointly
represented as

π(θ0, β, ξ, k, τβ, σ 2) ∝
{ p∏

i=1

π6(βi |ki , ξi , σ 2, τβ)π2(ξi |ki )π1(ki )

}
π3(τβ)π4(θ0)π5(σ

2),

(14)

where π6(βi |ki , ξi , σ 2, τβ) is used to denote the prior in (10). Now, the Bayes’ theorem
enables us to write the posterior distribution, up to proportionality, by multiplying the like-
lihood function (7) and the prior distributions (8) to (13) as

p(�|y) ∝ f (y|�) × π(�), (15)

where � = (θ0, β, ξ, k, τβ, σ 2). Obviously, this posterior distribution forms the basis for
drawing the desired Bayesian inferences.

2.2 MCMC based sampling scheme

It can be seen that the posterior distribution (15) is not analytically tractable and, therefore,
we shall propose to consider a MCMC based sampling scheme to draw the samples from the
joint posterior density (15). For this purpose, we shall first calculate the conditional posterior
density from (15) and then discuss the corresponding sampling scheme one by one. It may
be noted that the scheme is actually the Gibbs sampler but some of the full conditionals are
generated using the Metropolis algorithm or even using the updating steps offered by the
reversible jump MCMC strategy. As such, the scheme can also be referred to as the hybrid
Gibbs sampler with hybridization being introduced by the use of the Metropolis algorithm.
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2.2.1 Sampling from the full conditionals of (ˇi, ki, �i )

Combining the likelihood function (7) and the prior distributions from (8) to (10), the joint
posterior of (βi , ki , ξi ), i = 1, 2, . . . , p, for the given remaining parameters, can be written
as

p1(βi , ki , ξi |y, θ0, β−i , k−i , ξ−i , τβ, σ 2) ∝
(

τ
−1/2
β λi

b − a

)ki

× (σ 2)−ki /2 exp

(−Si
2σ 2

)

× exp

{ −1

2σ 2 (βi − β̂i )
′�−1

i (βi − β̂i )

}
,

(16)
where β−i , k−i and ξ−i are obtained after removing βi , ki and ξi from the vectors β, k and
ξ , respectively. We took Zi as a (T − p∗) × 1 vector with its t th component yp∗+t − θ0 and
Xi as a (T − p∗) × Ki matrix with its t th row B ′

i (yp∗+t−d)yp∗+t−i such that,

�i = (τ−1
β IKi + X ′

i Xi )
−1,

β̂i = �i X
′
i Zi ,

and Si = Z ′
i Zi − β̂ ′

i�
−1
i β̂i .

(17)

Appendix A provides details regarding the derivation of (16). Hence, the full conditional
distribution of βi can be easily obtained from the joint posterior (16) as

p2(βi |y, θ0, β−i , k, ξ, τβ, σ 2) ∝ (σ 2)−Ki /2|�i |−1/2exp

{ −1

2σ 2 (βi −β̂i )
′�−1

i (βi −β̂i )

}
.

(18)

Now, the posterior samples for βi can be easily obtained from (18) as it follows a multi-
variate normal density with mean vector β̂i and covariance matrix σ 2�i . Similarly, the full
conditional of (ki , ξi ) can be jointly obtained as,

p3(ki , ξi |y, θ0, βi , k−i , ξ−i , τβ, σ 2) ∝
(

τ
−1/2
β λi

b − a

)ki

× |�i |1/2 exp
(−Si
2σ 2

)
. (19)

Here, the numbers ki and ξi can be updated using a sample based reversible jump MCMC
approach. This approach is very popular among researchers working in the Bayesian curve
fitting and free-knot splines technique (see, for example, Denison et al. [7], Biller [2], DiMat-
teo et al. [9] andWang andWu [28]). Themethod efficiently works on the basis of a three-step
procedure, which are birth step (addition), death step (deletion) and move step (relocation)
(see, for example, Green [12] and Denison et al. [7]). Movements of variables under the three
steps are independent of each other and can be chosen randomly with probabilities bki , dki
and ηki , respectively, where

bki =C .min

{
1,

p(ki + 1)

p(ki )

}
, dki = C .min

{
1,

p(ki −1)

p(ki )

}
, ηki = 1 − bki − dki

(20)

and the constant C is a tuning parameter that controls the rate at which the variables move
within the three different move-steps. The recommended range for C is generally [0, 0.5].
For the present case, we choose it as 0.4. This value ofC , also suggested in the literature (see,
for example, [7]), is seen to provide a good acceptance probability. One should ensure that the
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probabilities given in (20)must satisfy the following relationships: bki p(ki ) = dki+1 p(ki+1)
and in case of no change of knots, that is ki = 0, we have b0 = 1 and d0 = 0 = η0 (see, for
example, [28]). Below, we provide the necessary details of three move-types one by one.
Birth step: In this move-type, we add a newly generated candidate knot from a randomly
chosen sub-interval (ξi j , ξi, j+1). The key idea is to divide the interval (a, b) into (ki + 1)
sub-intervals by means of the quantity ki and to choose one of them at random. Next, we
draw candidate value, say φ, uniformly from (ξi j , ξi, j+1) as the location of newly added knot
with a jump probability

bki
ki + 1

ki∑

j=0

1

ξi, j+1 − ξi j
I {ξi j < φ < ξi, j+1}.

Death step: In this move-type, a candidate knot is randomly chosen from the set of existing
knots and then deleted with a jump probability,

dki
ki

.

Move step: In the move step, a candidate knot ξi j is selected uniformly from the set of
existing ki knots and a candidate location ξ∗

i j is generated from a distribution with mean ξi j

and variance σ 2
m . A truncated normal distribution on the interval (ξi, j−1, ξi, j+1) seems to be

a good choice for the proposal distribution (see, for example, Wang and Wu [28]). Since,
for the large value of σ 2

m , the proposal density will tend to a uniform distribution over the
interval (ξi, j−1, ξi, j+1) and, therefore, the algorithm will be similar to a standard Metropolis
algorithm. Hence, the jump probability is given by

ηki

ki

1

ξi, j+1 − ξi, j−1
.

Following Green [12], the acceptance probability in each of the three steps can be defined as

min(1, posterior ratio × proposal ratio),

where the posterior and the proposal ratios can be obtained by the method proposed by
Denison et al. [7] and DiMatteo et al. [9]. In our case, this acceptance probability can be
written as

min

{
1, A

( |�∗
i |

|�i |
)1/2

exp

(
Si − S∗

i

2σ 2

)}
, (21)

where �i and Si can be obtained from (17) and the components of A are given as under

A =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ki+1

τ
1/2
β

ξi, j+1−ξi j
b−a , k∗

i = ki + 1 (Birth step),

τ
1/2
β

ki
b−a

ξi, j+1−ξi, j−1
, k∗

i = ki − 1 (Death step),

1, k∗
i = ki (Move step).

(22)

In the above expression, k∗
i represents the number of knots in the candidate posterior

distribution. It is important to mention that in the move step above, the posterior and the
proposal ratios are both unity because by moving one knot to another knot any collection
of the same number of knots has similar posterior probabilities and proposal distributions.

123



P. K.Tripathi

A detailed derivation of the jump probabilities as well as acceptance probabilities, in each
move-type, is provided in Appendix 2. The values of hyperparameters λi , in Poisson priors
(8), and the order of splines mi are so chosen that the rates of acceptance for the above
reversible jump MCMC sampler would be enough to avoid too many rejections and thereby
to increase the efficiency of the sampler.

2.2.2 Sampling from the full conditional of �ˇ

Combining the prior distribution in (10) with the distribution of hyperparameter τβ in (11),
the full conditional of τβ can be written up to proportionality as

p4(τβ |y, θ0, β, k, ξ, σ 2) ∝ τ
− r+∑p

i=1 Ki
2 −1

β exp

[
− 1

2τβ

(
s2τ + β ′β

σ 2

)]
. (23)

Obviously, the full conditional (23) represents the well known density of inverse-gamma
distribution from which the sampling can be done routinely using any inverse-gamma gen-
erating routine (see, for example, [8]).

2.2.3 Sampling from the full conditional of �2

The full conditional of σ 2 can be obtained by considering the likelihood in (7) and the prior
in (13). The same can be written as

p5(σ
2|y, θ0, β, k, ξ, τβ) ∝

(
1

σ 2

)

(
T−p∗−

p∑

i=1
Ki+2

)

2

× exp

⎛

⎝− 1

2σ 2

⎡

⎣β ′β
τβ

+
T∑

t=p∗+1

(yt − θ0 −
∑p

i=1
B ′
i (yt−d)βi yt−i )

2

⎤

⎦

⎞

⎠ . (24)

Using a simple transformation λ = 1
σ 2 , it can be seen that (24) represents the probability

density function of a gamma distribution with the shape parameter
(
T−p∗−∑p

i=1 Ki
)

2 and the

scale parameter

(
β′β
τβ

+∑T
t=p∗+1(yt−θ0−∑p

i=1 B
′
i (yt−d )βi yt−i )

2
)

2 . Thus, samples of σ 2 can be easily
obtained by using a gamma generating routine.

2.2.4 Sampling from the full conditional of �0

Next, considering the likelihood function in (7) and the prior in (12), the full conditional of
θ0 can be obtained as

p6(θ0|y, β, k, ξ, τβ, σ 2) ∝ exp

⎛

⎝− 1

2σ 2

T∑

t=p∗+1

(yt − θ0 −
p∑

i=1

B ′
i (yt−d)βi yt−i )

2

⎞

⎠

×I[−M,M](θ0), (25)

where I (.) is the indicator function that takes value unity if θ0 lies in the interval [−M, M]
and zero otherwise. It is to be noted that the full conditional (25) is not available in a nice
closed form from the viewpoint of sample generation and, therefore, we propose the use of
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Metropolis algorithm to obtain the required samples of θ0 from (25). For this purpose, one can
consider, among other choices, a univariate normal kernel as a proposal density with mean
as the maximum likelihood (ML) estimate of θ0 (say) and the standard deviation as c times
the Hessian based approximation at ML estimate of θ0. Both mean and standard deviation
of normal kernel can be successively changed by using the current realization of θ0. This is
expected to improve the acceptance rate of the Metropolis chain. Here, c is a scaling constant
and its value is recommended between 0.5 and 1.0 (see also [22, 26]).

Once the full conditionals are made available from the viewpoint of sample generation,
one can implement the proposed MCMC based hybrid algorithm on the posterior (15) by
proceeding with a single long run of the chain, among many other possibilities. Results
are available which ensure that after a sufficiently large number of iterations, the generated
sequence converges in distribution to a random sample from the corresponding posterior
distribution and the ergodic means converge almost surely to the corresponding posterior
expectations. Once the convergence is monitored, the generated values can be picked up
at a fixed gap to form a random sample of the desired size. It may be noted that the gaps
so chosen make the serial correlation among the generating variates negligibly small and
thereby giving independent samples. The selected samples can then be used to estimate any
posterior characteristics of interest. For further details of the algorithm, one may refer to [25,
26], among others.

2.2.5 Algorithm to update the functional-coefficients

For each i = 1, 2, . . . , p, the functional-coefficient gi (.) can be updated as follows:

Step 1: Choose mi and λi , to initialize the configuration, uniformly along the range [a, b]
at least (mi + 1) points away from each other.

Step 2: Set ki equal to the number of interior knots.
Step 3: Generate random variable u fromU [0, 1], and choose themove type in the following

manner.

(i) if u ≤ bki , go to the birth step;
(ii) if bki < u ≤ bki + dki , go to the death step;
(iii) otherwise go to the move step.

Step 4: Sample βi from the full conditional (18).
Step 5: Simulate τβ from the full conditional (23).

2.3 Specification of the parameters p and d

Specification of the parameters p and d is an important step to exactly specify the proposed
FCAR(p, d) model before implementing theMCMC algorithm. This is obviously equivalent
to the model selection task that can be achieved by BIC, among others. The BIC is a Bayesian
criterion of model selection that penalizes the model for its inherent complexity. Based on
the likelihood function of an estimated model, the BIC can be defined as

BIC = −2log (MLd) + nlog(T − p∗), (26)

where n is the number of estimated parameters in the entertained model and MLd is the
maximized likelihood. The above criterion, proposed by [18], is based on the information
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theory and formulated in the Bayesian context. In order to specify themost appropriate FCAR
model, one can calculate the BIC values for different candidate models of FCAR given in
(1) by choosing different values of p and d . The model corresponding to the least value of
BIC is finally taken as the best candidate model among others for further analysis.

It is important to mention here that the likelihood function (3) is not easy to obtain the
corresponding ML estimates in order to evaluate MLd due to the involvement of the non-
linear function g(.). To evaluate the same, one can approximate the non-linear function g(.)
by an unknown constant, say ψ , and then calculate the ML estimates by using, say, a non-
linear function minimization routine available in R software. It may be further noted that
the approximation of the non-linear function g(.) by an unknown constant ψ provides a
likelihood similar to that of a general linear AR model that finally leads to easy evaluation
of the approximate ML estimates and hence the value of MLd . Alternatively, one can use the
posterior modes as an approximation to the ML estimates provided the considered priors are
not strong enough to affect the posterior distribution significantly. This latter suggestion is
given in the literature by a number of authors (see, for example, [17]) and it is likely to be in
the Bayesian spirit as well.

2.4 Predictive samples

For the given set of observed data y : y1, y2, . . . , yT , one often wishes to obtain the next
observed value, that is, yT+1. This can be obtained from the model (1) once the estimated
values of the parameters aremade available. Truly speaking, if the estimated posterior density
is symmetric, one can use the posteriormean,median ormode of the corresponding parameter
as the most logical estimate. Among these estimates, the posterior mode is unconditionally
used even if the estimated posterior density is non-symmetrical. Accordingly, the functional-
coefficients gi (.)’s can be estimated after getting the desired posterior samples of β, ξ and
k as discussed in Sects. 2.2.1 and 2.2.5. The future observation yT+1, given the observed
informative data, can then be obtained using a normal distribution with mean

μT+1 = θ0 +
p∑

i=1

gi (yt+1−d)yt+1−i (27)

and varianceσ 2.Obviously, the next observation corresponding to the error term, εT+1, can be
simulated from a normal distribution with mean zero and variance equal to the corresponding
posterior estimate of σ 2 (see, for example, [24]).

3 Numerical illustration

3.1 Simulation study

To examine the empirical performance of the proposed methodology, let us proceed with a
simulation study on the two simple forms of the general FCAR model, that is, FCAR(1,1)
and FCAR(2,1). These models can be expressed, respectively, as

yt = θ0 + g1(yt−1)yt−1 + εt , (28)

yt = θ0 + g1(yt−1)yt−1 + g2(yt−1)yt−2 + εt . (29)
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In order to perform the simulation in the above two cases, one has to consider some arbitrary
choices for themodel parameters such as θ0=0.05, g1(yt−1) = (yt−1)exp(−y2t−1/2), g2(yt−1)

= −cos(1.5yt−1)/(y2t−1 +1). Besides, the assumed error terms ε’s are i.i.d. N (0, 0.42). We,
however, considered the other choices for σ 2 such as 0.01, 0.81 and 4; and obtained the esti-
mated posterior densities of σ 2 corresponding to these values in Fig. 10 and 11 for the two
considered models FCAR(1,1) and FCAR(2,1) respectively (see Appendix 3). In each of the
two cases, we have considered replicating the simulation 100 times for a random sample of
size 500 each. In each replication, the hyperparameters’ values, that is, λ1 = 1, r = 1, s2τ = 1
and σ 2

m = 105 are chosen arbitrarily but approved by simulation experience and provide a
good convergence rate in all the 100 replications. Such choices of hyperparameters are not
completely arbitrary, rather guided by a literature survey (see, for example, [28]). Referring
to Sect. 2.2.1, the value of the tuning parameter σ 2

m = 105 ensures the uniformity to select
the candidate knot from the interval (ξi, j−1, ξi, j+1) as for the higher values (more than 105),
the posterior samples remain unaltered. It is important to note that in each replication, the
ergodicity of g1(yt−1) and g2(yt−1) has been ensured numerically by imposing a bounded
condition on these functions (see Appendix 4).

To estimate the functional-coefficients, which are estimated by the quadratic splines, the
posterior samples are drawn from the full conditionals of (ki , ξi ) and βi ’s using the reversible
jump MCMC sampler as discussed in Sects. 2.2.1 and 2.2.2. Further, for the intercept θ0, the
hyperparameter M and the scaling constant c are assumed to be 100 and 0.6, respectively,
in each of the two cases (see Sect. 2.2.4). Also, the posterior samples of σ 2 can be easily
obtained from (24) using a gamma generating routine in each case.

To obtain the desired posterior estimates of the parameters of the two models, (28) and
(29), the proposedMCMC scheme (see Sect. 2.2) is implemented. Under the discussed initial
setup, we have considered a long run of 5K iterations of the proposed MCMC scheme after
observing a smooth convergence at about 2K iterations in its each replication. For each of
the two models, the final posterior estimates are obtained by considering a random sample
of size 1K, in each of the MCMC replications, after ignoring the initial transient behaviour
and by maintaining a gap of 3. It was noted that a gap of 3 was sufficient to provide serial
correlation negligibly small. The final posterior estimates are obtained as the “average” of
100 values of ‘posterior means’, ‘posterior medians’, ‘posterior modes’ and the ‘highest
posterior density intervals’ with coverage probability 0.95 (0.95 HPD). Table 1 and Table 2
are providing the final posterior estimates (an average estimate of 100 replications) separately
for FCAR(1,1) and FCAR(2,1) models respectively. Figure2 demonstrates an estimate of
functional-coefficient g1(.) of the FCAR(1,1) model along with 0.95 HPD region and the true
function based on the average posterior estimate, for 100 replications, corresponding to each
of the data point. A similar plot for the estimates of functional-coefficients g1(.) and g2(.) of
the FCAR(2,1) model along with the corresponding 0.95 HPD regions and the true functions
are provided in Fig. 3. The overall posterior estimates are quite satisfactory from the viewpoint
of non-linear characteristic of FCAR model and their proximity with the true values of the
parameters. In a single replication of FCAR(1,1) model, the trace plots of 10 equidistant grid
points, which are picked up randomly from 500 observations, are demonstrated by Fig. 4a–j.
Figure4k–l show the ergodic plot and autocorrelation function (ACF) plot, respectively, for
the FCAR(1,1) model. The ergodic plot advocates the convergence of the chain at about 2K
iterations whereas, the ACF plot conveys the continuous decay of the autocorrelations of
sample values at lag 100. It is to be noticed that Fig. 4k–l are obtained for a randomly chosen
grid point (corresponding to 7th observation in our case). The plots obtained in Fig. 4 are
quite subjective and demonstrate the whole simulation procedure at just one sight. Moreover,
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Table 1 Posterior summaries for the parameters of FCAR(1, 1) model corresponding to simulated dataset

Parameter Posterior mean Posterior median Posterior mode 0.95 HPD

θ0 −0.0032 −0.0026 −0.0058 −0.0849 0.0905

σ 2 0.2462 0.2444 0.2414 0.1533 0.3400

Table 2 Posterior summaries for the parameters of FCAR(2, 1) model corresponding to simulated dataset

Parameter Posterior mean Posterior median Posterior mode 0.95 HPD

θ0 0.0006 0.0006 0.0073 −0.0868 0.0905

σ 2 0.5133 0.5109 0.5112 0.1056 0.7837

Fig. 1 Average BIC values based on the simulated dataset

in all other replications and at any arbitrarily chosen grid point, the behaviour is not going to
be changed, in general. One may draw similar plots for FCAR(2,1) model as well, although
the same are not provided due to paucity of space and left to the part of readers because of
the ease of understanding of the proposed method.

The appropriateness of the model selection criterion is demonstrated by considering the
simulated dataset of size 500 from the FCAR(1,1) model. Obviously, the BIC value should
be least for a model from which the dataset is actually simulated. In order to investigate the
same, let us obtain the BIC values for FCAR models with different nearby choices of p and
d in each of the 100 replications. Figure1 demonstrates the average of BIC values, for 100
replications, for different nearby choices of p and d of a general FCARmodel. The height of
each bar indicates the strength of BIC value for each considered model. Obviously, the BIC
value is least corresponding to FCAR(1,1)model fromwhich the dataset is actually simulated.
This finding clearly indicates the appropriateness of the considered model selection criterion.

3.2 Real data example

Let us now begin with a real data example on monthly exchange rate of Indian rupees relative
to the US dollars from January 2011 to December 2020. The dataset has been taken from the
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Fig. 2 Estimated
functional-coefficient (solid line)
with 0.95 HPD interval (shaded
region) of the functional
coefficient g1(.) corresponding to
FCAR(1,1) model. The
corresponding true value of g1(.)
is shown by means of dotted line

Fig. 3 Estimated functional-coefficients (solid lines) with 0.95 HPD intervals (shaded regions) of the
functional-coefficients g1(.) and g2(.) corresponding to FCAR(2,1) model. The corresponding true values
of g1(.) and g2(.) are shown by means of dotted lines

website of Fusion Media Limited group of the British Virgin Islands (see http://in.investing.
com/currencies/usd-inr-historical-data) and is reported in Table 3.

The time series plot for the dataset reported in Table 3 is shown in Fig. 5. One can observe
that the time series exhibits an increasing pattern, which clearly advocates the non-stationary
behaviour of the original dataset (see Fig. 5). To remove non-stationarity from the data, we
considered the first difference from the original data and plotted the same as time series in
Fig. 6. It can be seen that the first difference plot exhibits nearly a stable pattern at least with
regard to its mean value and, therefore, considering the first difference appears logical for
further analyses of the data.Moreover, since the stability in the stationarity pattern is examined
only graphically (Fig. 6), it is pertinent to consider numerical evidence as well to examine
stationarity before proceeding further. For this purpose,we considered the augmentedDickey-
Fuller (ADF) test on the data and noted that the test was significant at 5% level (p-value close
to 0.01). Obviously, the first differenced data ensures stationarity on the basis of objective
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Fig. 4 (a)-(j) Trace plots of the estimated functional-coefficient g1(.) corresponding toFCAR(1,1)model for 5k
iterations at 10 random grid points. (k) Ergodic plot of the estimated functional-coefficient g1(.) corresponding
to FCAR(1,1) for 5K iterations. (l) ACF plot of the estimated functional-coefficient g1(.) corresponding to
FCAR(1,1) model

consideration as well. For further details on the ADF test, one may refer to [23, 24], among
others.

Selection of an appropriate model for further analysis is of utmost importance in order to
retrieve the reliable results. We, therefore, implemented the methodology discussed in Sect.
2.3 to select an appropriate FCARmodel by choosing the most appropriate values of its order
p and delay parameter d . For this purpose, we begin by considering a few combinations of
the AR order p and delay parameter d in the FCAR model (1) and then obtain the BIC value
corresponding to each such model. We have considered 25 combinations of the FCARmodel
by using different values of p(= 1, 2, 3, 4, 5) and d(= 1, 2, 3, 4, 5). The BIC values for
different d are then plotted against the variation of p in Fig. 7. The plot actually summarizes
the numerical values of BIC for different considered combinations of p and d and the line
combining similar plotting symbols is used for clarity of presentation and, of course, to
display a trend. One may interpret that the BIC values show an increasing pattern as the order
p increases for each value of the delay parameter d . Obviously, based on the values of BIC
shown in Fig. 7, p = 1 appears to be an appropriate choice as the corresponding BIC value
is least.

The choice of d , however, seems difficult on the basis of pictorial representation, since the
BIC values corresponding to all the considered FCAR(1, d) models for different d appear
to originate from the same point (see Fig. 7). Therefore, in order to provide a clear-cut
conclusion, the numerical values of BIC corresponding to FCAR(1, d) models with different
d(= 1, 2, 3, 4, 5) are shown in Table 4. Obviously, the BIC corresponding to FCAR(1, 1)
model is least recommending for the use of FCAR(1, 1) for the considered dataset. It may,
however, be noted that other BIC values (for d(= 2, 3, 4, 5)) are not too far away from the
value corresponding to FCAR(1, 1) and, therefore, one can proclaim why not to consider
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Fig. 5 Time series plot of
exchange rate data of Indian
rupees relative to the US dollars

Fig. 6 First differenced time
series plot of exchange rate data
of Indian rupees relative to the
US dollars

recommending other values of d . The answer is obvious. First, the value corresponding
to FCAR(1, 1) is the least and, second, the parsimony principle never allows us to go for
complicated models unless there is a real requirement. Moreover, the second term in (26)
is almost unaffected by a variation in d and it is only the first term that provides a minor
variation. So our final conclusion certainly supports FCAR(1, 1) model for the considered
dataset.

Let us now represent the selected FCAR(1, 1) model mathematically, for the differenced
dataset, as

�yt = θ0 + g1(�yt−1)�yt−1 + εt , (30)

where �yt denotes the first difference data at time t . To perform the Bayesian analysis, for
the selected FCAR (1, 1) model (30), we choose the quadratic spline for g1(.). It is needless
to mention that all the forthcoming analyses will be performed on the first difference data
where we have noticed a stationarity pattern in the time series. To begin with the Bayesian
analysis, we assign numerical values to the hyperparameters defined in the Sect. 2.1 as
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Fig. 7 Plot of BIC values for different choices of parameters p and d

Table 4 BIC values for FCAR(1, d) models with different choices of d (= 1, 2, 3, 4, 5)

Model FCAR(1,1) FCAR(1,2) FCAR(1,3) FCAR(1,4) FCAR(1,5)

BIC value −396.02 −395.60 −395.32 −395.13 −394.75

λ1 = 1, r = 1 and s2τ = 1 and M = 100. Of course, there is no basis in the selection of
these hyperparameters except using the suggestions given by [28] and [23, 24], etc. It is to
be noted that these choices of hyperparameters approximately result into weakly informative
priors in the sense that the resulting priors are more or less flat in an appreciable range and,
as such, most of the inferences can be regarded as driven by the likelihood function only.

With these choices of the prior hyperparameters, the MCMC implementation was done
as detailed in Sect. 2.2. The value of the tuning parameter, in the move step, can be taken
large enough to make the proposal uniform over the random interval (see Sect. 2.2.1) and it is
noted that σ 2

m=10
5 is an appropriate choice for this. The posterior samples of β ′

i s, on the other
hand, can be obtained easily by using the multivariate normal routine (see (18)). Also, the
posterior samples of σ 2 can be effortlessly obtained from (24) using the gamma generating
routine for the current values of shape and scale parameters. Now, following the three move
types, defined in Sect. 2.2, the posterior samples for the number of knots ki ’s and the locations
ξi ’s can be easily simulated and finally updated to get the functional-coefficient gi (.) (see
also Sect. 2.2.5). A reversible jump MCMC based estimates of the functional-coefficient is
shown in Fig. 8. These estimates are obtained exactly in a similar way as described for the
simulated dataset. Figure8 indicates that the estimated quadratic spline, corresponding to
the functional coefficient g1(.), is continuous at point 0 and has a range approximately from
−0.0175 to 0.025 with a coverage probability of 0.95. To be specific, the estimated spline
meets the zero line at two different location points, which further justifies the consideration
of quadratic spline as mentioned in the above paragraph. The trace plots at several grid points
and ergodic plots can also be obtained similar to Fig. 4, though we skip such plots due to the
paucity of space.
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Fig. 8 Estimated functional-coefficient g1(.) (solid line) with 0.95 HPD (shaded region) for the differenced
data

Table 5 Posterior summaries for the parameters of FCAR(1, 1) model corresponding to first difference data

Parameter Posterior mean Posterior median Posterior mode 0.95 HPD

θ0 0.229 0.228 0.248 0.061 0.425

σ 2 1.925 1.908 1.861 1.456 2.390

Next, the posterior samples of the intercept parameter θ0 can be obtained by implementing
the Metropolis algorithm as discussed in Sect. 2.2.4. As mentioned, we fixed the value of
the hyperparameter M = 100 and chose the value of the scaling constant as c = 0.6. This
choice of M = 100 can certainly be regarded as providing a vague choice of the prior
and hence allowing the inferences to be data driven. Also, the choice of scaling constant,
as mentioned above, was well within the permissible range and resulted in the maximum
acceptance probability (see also [24]).

Under the above setup, the joint posterior density (15) was managed for MCMC imple-
mentation to get the desired posterior samples for drawing the sample based inferences. To
draw such inferences, we considered a single long run of the chain up to 20K iterations
although the convergence was noticed at about 8K iterations. Next, after ignoring the out-
comes of the first 10K iterations, we picked up posterior samples of size 1K from the last
10K iterations by maintaining a gap of 10 in order to minimize serial correlation among
the generating variates. The extracted posterior summaries for the relevant parameters of the
selected FCAR(1, 1) model are given below in Table 5.

A statistical interpretation of Table 5 can be easily made and is mostly fact-driven. It is
obvious from the above posterior summaries that the estimated marginal posterior densities
of θ0 and σ 2 are quite close to symmetry. Since the above estimates are solely based on
the simulated posterior samples from their respective full conditionals, the accuracy of the
estimates conveys a strong message that the FCAR(1, 1) model is having an error term with
(an almost) constant value of σ 2 and, hence, the model is homoscedastic in nature. Moreover,
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Fig. 9 Time series plots for the predictive datasets with superimposed differenced dataset (the dark line
corresponds to the differenced data)

approximately normal shape of the densities was also assessed, which is not given here due
to the paucity of space.

To show the model compatibility with the data in hand, we relied on graphical tools which
appeared to bemore striking than other statistical tools.We, therefore, plotted the differenced
time series (using solid line) along with the predictive samples of time series (using dotted
lines). For such an assessment, we considered 10 predictive samples, each of size equal to that
of the differenced data, and superimposed them on to a plot of differenced data time series.
It may be noted that the 10 predictive samples were obtained on the basis of 10 posterior
samples of the concerned parameters, which were picked up randomly from the converged
set of simulated posterior samples (see Sect. 2.4). The corresponding plot is shown in Fig. 9.
It can be easily confirmed that the predicted time series and the observed (differenced) time
series exhibit similar pattern (see Fig. 9), which advocates the adequacy of the proposed
model with the data in hand.

Let us come to the final objective of our study to investigate the predictive ability of the
proposed FCAR(1, 1) model. For this purpose, we performed the retrospective predictions of
the exchange rate for the period from July 2020 to December 2020 by considering only the
data from January 2011 to June 2020 as an informative dataset. Obviously, we did not use the
observed dataset from July 2020 to December 2020, rather kept them for a comparison with
the values obtained from the retrospective predictions. It is important to mention here that the
entire posterior analysis was repeated for the updated informative set of data. By updating the
informative dataset, we mean to include the predicted observations one after another in the
informative dataset until the last value is predicted. Moreover, at each stage of prediction, we
used posterior mode to predict 1K predictive samples. The result of retrospective predictions
is given in the form of predictive modes and predictive intervals with coverage probability
0.95 (0.95 PI) (see Table 6). These estimates are everywhere based on the entire 1K predictive
samples.
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Table 6 The retrospective predictions of exchange rate of Indian rupees relative to the US dollars from July
2020 to December 2020 based on FCAR(1, 1) model

Month True value Predictive mode 0.95 PI

July 2020 74.916 76.039 73.293 78.535

August 2020 73.254 75.770 73.031 79.033

September 2020 73.560 75.748 73.517 78.447

October 2020 74.554 75.955 72.788 78.613

Novembe 2020 73.990 76.284 73.686 78.916

December 2020 73.036 75.521 72.215 78.012

Table 7 The prospective
predictions of exchange rate of
Indian rupees relative to the US
dollars from January 2021 to June
2021 based on FCAR(1, 1) model

Month Predictive mode 0.95 PI

January 2021 72.791 70.486 75.805

February 2021 73.392 70.682 76.098

March 2021 73.451 70.686 76.327

April 2021 73.752 71.307 75.933

May 2021 73.629 71.261 77.051

June 2021 74.177 70.787 76.929

Clearly, it can be seen that the predictive point estimates are not far away from their
corresponding true values and they liewell within the estimated predictive intervals (see Table
6). Obviously, our analysis supports the FCAR (1, 1) model for the considered exchange rate
dataset as the model based on retrospective predictions is in complete agreement with the
true values of informative data.

Once the retrospective prediction is successfully observed with the proposed FCAR(1, 1)
model, it is pertinent to look for the prospective prediction. Our objective was to predict the
values from January, 2021 to June, 2021. Thus, for the prospective prediction, we considered
the complete posterior analysis discussed earlier for the dataset reported in Table 3 with the
posterior estimates given in Table 5. Using estimated posterior modes as given in Table 5,
we obtained 1K predictive samples for predicting the corresponding value for January, 2021.
The results are given in Table 7 in the form of predictive modes and 0.95 PI for January, 2021.
Now adding the predictive mode for January, 2021 in the informative data, we repeated the
entire procedure and obtained the corresponding predictive mode and 0.95 PI for February,
2021. This procedure was repeated until we obtained the predictive mode and 0.95 PI for the
next four months, that is, up to June, 2021 (see Table 7). We do not provide a comparison of
the prospective predictions with the actual values, but our belief conveys that the predicted
results are close to the reality and the true values are reflected almost at the middle of our
estimated 0.95 PIs although there can be slight differences in the point estimates.

4 Conclusion

This paper discusses the Bayesian analysis of FCAR(p, d) model using a free-knot spline
technique. The significance of the work can be realized from the fact that it not only pro-
vides the complete Bayesian analysis using a hybrid MCMC based strategy but also looks
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at several important aspects such as model compatibility, specification of both p and d of
FCAR(p, d) model and, most importantly, both retrospective and prospective predictions.
The first part obviously employs the Gibbs sampler algorithmwith the intermediateMetropo-
lis steps supported by the reversible jump MCMC technique. Numerical illustrations based
on the simulated data as well as on a real dataset on the exchange rate of Indian rupees relative
to the US dollars not only convey the ease of implementation of our methodology but also
suggest that the proposed procedure has enough potential with regard to the prediction as
well. It is expected that such an analysis will help the business analysts, investors and policy
makers to come across an appropriate planning.

Appendix 1

Derivation of the conditional joint posterior of (ˇi, ki, �i)

Let us write the joint posterior of (βi , ki , ξi ), i = 1, 2, . . . , p, after combining the likelihood
function (7) and the prior distributions ((8) to (10)), up to proportionality as

π(βi , ki , ξi |y, θ0, β−i , k−i , ξ−i , τβ, σ 2)

∝ exp

⎛

⎝− 1

2σ 2

T∑

t=p∗+1

(yt − θ0 −
p∑

i=1

B ′
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2
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−1/2
β
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(
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(
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(
− 1

2σ 2τβ

β ′
iβi

)
,

where Zi and Xi are defined in Sect. 2.2.1. Now expanding the first exponential term, in
above expression, a more simplified version can be obtained as

π(βi , ki , ξi |y, θ0, β−i , k−i , ξ−i , τβ , σ 2)

∝ exp

(
− 1

2σ 2τβ
{β ′

iβi − Z ′
i Xiβi τβ − X ′

iβ
′
i Zi τβ + X ′

i Xiβ
′
iβi τβ)}

)

×
⎛

⎝
λi τ

−1/2
β

b − a

⎞

⎠
ki

× (σ 2)−ki /2 × exp

(
− 1

2σ 2 Z
′
i Zi

)
,

∝ exp

(
− 1

2σ 2 �−1
i {β ′

iβi − βi β̂
′
i − β ′

i β̂i + β̂ ′
i β̂i )}

)
×
⎛

⎝
λi τ

−1/2
β

b − a

⎞

⎠
ki

×(σ 2)−ki /2 × exp

(
− 1

2σ 2 {Z ′
i Zi − β̂ ′

i�
−1
i β̂i }

)
,

∝ exp

(
− 1

2σ 2 (βi − β̂i )
′�−1

i (βi − β̂i )

)
×
⎛

⎝
λi τ

−1/2
β

b − a

⎞

⎠
ki

× (σ 2)−ki /2 × exp

(
− 1

2σ 2 Si

)
,
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where the mathematical form of �i , β̂i and Si are defined in equation (17) of Sect. 2.2.1.

Appendix 2

Derivations of jump probabilities and acceptance probabilities in the
threemove-types

Jump probability:
Let Mki represents a model having ki interior knots and Mki+1 represents a model after
adding an additional knot. The jump probability in birth step can be written as

q(Mki+1|Mki ) = bki × probability of selecting a subinterval out of(ki + 1)subintervals

×probability of drawing a candidate knot, say,

×φuniformly from(ξi j , ξi, j+1)

= bki
ki + 1

ki∑

j=0

1

ξi, j+1 − ξi j
I {ξi j < φ < ξi, j+1}.

The probability defined above is actually the mixture of uniform densities as φ can be drawn
from any of ki different uniform distributions. Similarly, in the deletion process of death
step, the model moves from Mki to Mki−1 and hence the jump probability is given by

q(Mki−1|Mki ) = dki × probability of randomly chosing a knot out ofkiexisting knots

= dki
ki

.

The jump probability in move step can be defined as the probability of movement of the
current model Mki to the candidate model M∗

ki
with the same number of knots ki and it can

be given as

q(M∗
ki |Mki ) = ηki × probability of chosing a candidate knotξi j randomly out ofkiexisting

× knots probability of drawing a new location of candidate knot, say,

ξ∗
i juniformly from(ξi, j−1, ξi, j+1)

= ηki

ki

1

ξi, j+1 − ξi, j−1
.

Acceptance probability: The acceptance probability in all the three steps is defined earlier
as

min(1, posterior ratio × proposal ratio).

In birth step, the posterior ratio is obtained from the full conditional (19) as

π(Mki+1)

π(Mki )
=

(
τ

−1/2
β λi

b−a

)ki+1

× |�∗
i |1/2 exp

(−S∗
i

2σ 2

)

(
τ

−1/2
β λi

b−a

)ki

× |�i |1/2 exp
(−Si
2σ 2

)

=
(

τ
−1/2
β λi

b − a

)
×
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)
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and the proposal ratio is given by

π∗(Mki+1)

π∗(Mki )
= dki+1/(ki + 1)

bki /(ki + 1) × 1
ξi, j+1−ξi j

= dki+1

bki
× (ξi, j+1 − ξi j )

= p(ki )

p(ki + 1)
× (ξi, j+1 − ξi j )

= (ki + 1)

λi
× (ξi, j+1 − ξi j ).

The acceptance probability is, then, given by

π(Mki+1)

π(Mki )
× π∗(Mki+1)

π∗(Mki )
= ki + 1

τ
1/2
β

ξi, j+1 − ξi j

b − a
×
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)
.

In death step, the posterior ratio is obtained from the full conditional (19) as

π(Mki−1)

π(Mki )
=

(
τ

−1/2
β λi

b−a

)ki−1

× |�∗
i |1/2 exp

(−S∗
i

2σ 2

)

(
τ

−1/2
β λi

b−a

)ki

× |�i |1/2 exp
(−Si
2σ 2

)

=
(

τ
−1/2
β λi

b − a

)−1

×
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)

and the proposal ratio is given by

π∗(Mki−1)

π∗(Mki )
= bki−1/ki

dki /ki
× 1

ξi, j+1 − ξi, j−1

= p(ki )

p(ki − 1)
× 1

ξi, j+1 − ξi, j−1

= λi

ki
× 1

ξi, j+1 − ξi, j−1
.

The acceptance probability is, therefore, given by

π(Mki−1)

π(Mki )
× π∗(Mki−1)

π∗(Mki )
= τ

1/2
β

ki

b − a

ξi, j+1 − ξi, j−1
×
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)
.

Finally, inmove step, the number of knots remain sameand theonly change is the relocationof
a selected knot by the candidate knot. The posterior ratio is obtained from the full conditional
(19) as
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(a) for σ2 = 0.01 (b) for σ2 = 0.16

(c) for σ2 = 0.81 (d) for σ2 = 4

Fig. 10 Estimated posterior density plots of σ 2, at different values, corresponding to FCAR(1,1) model

π(M∗
ki

)

π(Mki )
=

(
τ

−1/2
β λi

b−a

)ki

× |�∗
i |1/2 exp

(−S∗
i

2σ 2

)

(
τ

−1/2
β λi

b−a

)ki

× |�i |1/2 exp
(−Si
2σ 2

)

=
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)
.

The proposal ratio in this case is given by

π∗(M∗
ki

)

π∗(Mki )
= 1.
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Hence the acceptance probability is given by

π(M∗
ki

)

π(Mki )
× π∗(M∗

ki
)

π∗(Mki )
=
( |�∗

i |
|�i |

)1/2

exp

(
Si − S∗

i

2σ 2

)
.

Appendix 3

As discussed in Sect. 3.1, we have checked the performance of two considered models for
different choices of error variance. We have performed the whole analysis for the values
0.01, 0.16, 0.81 and 4 of σ 2 and have plotted the estimated posterior densities in Fig. 10 and
Fig. 11 for FCAR(1,1) and FCAR(2,1) models respectively.

We can easily verify that the nature of plots are almost unchanged (close to symmetry)
except for the value very close to zero (for σ 2=0.01); which ultimately putting negligible
effects on the predicted values and non-linearity of the model. We, however, considered

(a) for σ2 = 0.01 (b) for σ2 = 0.16

(c) for σ2 = 0.81 (d) for σ2 = 4

Fig. 11 Estimated posterior density plots of σ 2, at different values, corresponding to FCAR(2,1) model
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σ 2=0.16 in order to get the final posterior estimates of parameters and functional coefficients,
for the two models, in the simulation study.

Appendix 4

Proof of boundedness for the proposed functions in simulation study

1) Proof of boundedness for the functional-coefficient g1(yt−1):
We have considered the following function for the non-linear functional-coefficient

g1(yt−1):

g1(x) = x × exp(−x2/2); ∀ x ∈ R.

We know that any function f : D → R, where D and R represent the possible domain
and range of the function respectively, will be differentiable at any point c ∈ D, if and only
if both the left-hand and the right-hand derivatives of the function are finite and equal, such
that-

lim
h→0

f (c − h) − f (c)

−h
= lim

h→0

f (c + h) − f (c)

h
.

It is important to mention that, for the considered function g1(.), domain (D) and range (R)
are the set of real numbers R. In order to show that the function is differentiable, we check
the left-hand and the right-hand derivative of the function g1(.) at any arbitrary point, say, c.
We can write the left-hand derivative as,

g′
1(c−) = lim

h→0

g1(c − h) − g1(c)

−h

= lim
h→0

[
(c − h)e−(c−h)2/2 − ce−c2/2

−h

]

= lim
h→0

[
(c − h)2e−(c−h)2/2 − e−(c−h)2/2

−1

]

= −e−c2/2(c2 − 1).

Similarly, the right-hand derivative can be written as,

g′
1(c+) = lim

h→0

g1(c + h) − g1(c)

h

= lim
h→0

[
(c + h)e−(c+h)2/2 − ce−c2/2

h

]

= lim
h→0

[
−(c + h)2e−(c+h)2/2 + e−(c+h)2/2

1

]

= −e−c2/2(c2 − 1).

One can see that both the left-hand and the right-hand derivatives, for the considered function,
are finite and equal. Hence, the function g1(x) is differentiable.Moreover, the optimumpoints
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for the function g1(x) can also be obtained by calculating the first derivative and putting it
equals to zero.

g′
1(x) = e−x2/2 − x2e−x2/2

= e−x2/2 (1 − x2
)
.

In above expression, the optimum points can be obtained by putting

1 − x2 = 0; (∵ e−x2/2 �= 0)

⇒ x = ±1.

Now, the value of the function can easily be obtained at the optimum points as,

g1(−1) = −e−1/2and

g1(1) = e−1/2

⇒ −e−1/2 ≤ g1(x) ≤ e−1/2.

Hence, the function g1(x) is bounded on a closed interval [−e−1/2, e−1/2] and, hence,

|g1(x)| ≤ e−1/2 or (|g1(x)| ≤ 0.6065).

2) Proof of boundedness for the functional-coefficient g2(yt−1):
We have considered the following function for the non-linear functional-coefficient

g2(yt−1):

g2(x) = −cos(1.5x)/(x2 + 1); ∀ x ∈ R.

We know that any real-valued function f (x) defined on a subset S of the real numbers
is said to be bounded if there exist a constant M , such that for all x ∈ S, the inequality
| f (x)| ≤ M holds, where M belongs to some positive real number (R+).

Now, we know that the range of the cos function lies in the interval [−1, 1]. So, the range
of cos(1.5x) also lies within the range [−1, 1] such that

|−cos(1.5x)| ≤ 1

Also, for all x ∈ R,

1

1 + x2
≤ 1

⇒
∣∣∣∣
−cos(1.5x)

1 + x2

∣∣∣∣ ≤ 1

⇒ −1 ≤ −cos(1.5x)

1 + x2
≤ 1

Hence, the function g2(x) is a bounded function.

123



P. K.Tripathi

Acknowledgements The authors wish to express their thankfulness to the Editor-in-Chief and the anonymous
reviewers for their valuable comments and suggestions that improved the earlier version of the manuscript.

Funding No funding was received for conducting this study.

Data availability statement The dataset is provided in the manuscript along with itssource link.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

References

1. Araveeporn, A.: Comparing random coefficient autoregressive model with and without autocorrelated
errors by Bayesian analysis. Stat. J. IAOS 33(2), 537–545 (2017)

2. Biller, C.: Adaptive Bayesian regression splines in semi-parametric generalized linear models. J. Comput.
Graph. Stat. 9(1), 122–140 (2000)

3. Box, G.E.P., Jenkins, G.M.: Time series analysis: forecasting and control, revised Holden-Day (1976)
4. Cai, Z., Fan, J., Yao, Q.: Functional-coefficient regression models for non-linear time series. J. Am. Stat.

Assoc. 95(451), 941–956 (2000)
5. Chen, R., Tsay, R.S.: Functional-coefficient autoregressive models. J. Am. Stat. Assoc. 88(421), 298–308

(1993)
6. Chib, S., Greenberg, E.: Bayes inference in regression models with ARMA (p, q) errors. J. Econ. 64(1),

183–206 (1994)
7. Denison, D.G.T., Mallick, B.K., Smith, A.F.M.: Automatic Bayesian curve fitting. J. R. Stat. Soc. Ser. B

(Stat. Methodol.) 60(2), 333–350 (1998)
8. Devroye, L.: Non-uniform random variate generations. Springer-Verlag, New York (1986)
9. DiMatteo, I., Genovese, C.R., Kass, R.E.: Bayesian curve-fitting with free-knot splines. Biometrika 2,

1055–1071 (2001)
10. Fan, J., Gijbels, I.: Variable bandwidth and local linear regression smoothers. Ann. Stat. 2, 2008–2036

(1992)
11. Fan, J., Yao, Q.: Non-linear time series: non-parametric and parametric methods. Springer-Verlag, New

York (2003)
12. Green, P.J.: Reversible jumpMarkov chainMonte Carlo computation and Bayesian model determination.

Biometrika 2, 711–732 (1995)
13. Grégoire, G., Hamrouni, Z.: Change point estimation by local linear smoothing. J. Multivar. Anal. 83(1),

56–83 (2002)
14. Haggan, V., Ozaki, T.: Modelling non-linear random vibrations using an amplitude-dependent autore-

gressive time series model. Biometrika 68(1), 189–196 (1981)
15. Lindstrom, M.J.: Bayesian estimation of free-knot splines using reversible jumps. Comput. Stat. Data

Anal. 41(2), 255–269 (2002)
16. Liu, L.-M., Tiao, G.C.: Random coefficient first-order autoregressive models. J. Econ. 13(3), 305–325

(1980)
17. Mukherjee, B., Gupta, A., Upadhyay, S.K.: A Bayesian study for the comparison of generalized gamma

model with its components. Sankhya B 72, 154–174 (2010)
18. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
19. Song, X.Y., Cai, J.H., Feng, X.N., Jiang, X.J.: Bayesian analysis of the functional-coefficient autoregres-

sive heteroscedastic model. Bayesian Anal. 9(2), 371–396 (2014)
20. Tong, H.: On a threshold model. In: Chen, C.H. (ed.) Pattern recognition and signal processing, pp.

575–586. Sijthoff and Noordhoff, Amsterdam (1978)
21. Tong, H.: Non-linear time series: a dynamical system approach. Oxford University Press, Oxford (1990)
22. Tripathi, P.K., Agarwal, M.: Bayesian prediction of monthly gold prices using an EARSV model and its

competitive component models. Int. J. Math. Stat. 22(3), 1–17 (2021)
23. Tripathi, P.K., Ranjan, R., Pant, R., Upadhyay, S.K.: An approximate Bayes analysis of ARMA model

for Indian GDP growth rate data. J. Stat. Manag. Syst. 20(3), 399–419 (2017)
24. Tripathi, P.K., Sen, R., Upadhyay, S.K.: A Bayes algorithm for model compatibility and comparison of

ARMA(p, q) models. Stat. Trans. New Ser. 22(2), 95–123 (2021)

123



A Bayes analysis of autoregressive model...

25. Tripathi, P.K., Upadhyay, S.K.: Bayesian analysis of extended auto regressive model with stochastic
volatility. J. Indian Soc. Prob. Stat. 20(1), 1–29 (2019)

26. Upadhyay, S. K., Vasishta, N., and Smith, A. F.M. (2001). Bayes inference in life testing and reliability via
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