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Abstract
Almost all governmental and international agencies use the Gini index to summarize income
inequality in a nation or the world. The index has been criticized because it can have the
same value for two different distributions. It will be seen that other commonly used summary
measures of inequality are subject to the same criticism. TheGini index has the advantage that
it is able to distinguish between twodistributions that have identical integer valuedgeneralized
entropymeasures. Because no single measure can fully summarize a distribution, researchers
should consider combining the Gini index with another measure appropriate for the topic
being studied.

Keywords Generalized entropy measures · Gini index · Lorenz curve · Measures of income
inequality · Pareto distribution · Moment problem

1 Introduction

Although the Gini index is the most commonly used measure of income inequality and has
many desirable properties (see [12,16,21]), it has often been criticized (see [3,4,13,20]),
because its values calculated from two different distributions can be equal. While this is true,
the other major summary indices of inequality, e.g., the generalized entropy family including
the Theil’s index, the mean log deviation, one half of the squared coefficient of variation, as
well as the Palma index (the ratio of the shares of income received by the top 10% to the
bottom 40%) and other ratios of the top 100q% to the bottom 100p% shares e.g., Dorling [6]
p = q = 0.2, Jasso [15] p = 1− q , also can have the same value for different distributions.
From a statistical viewpoint, this is not surprising, as two parameters, the mean and the
standard deviation are needed to determine a normal distribution. Thus, it is unreasonable to
expect any single summary measure to uniquely determine the underlying distribution and
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researchers should consider combining the Gini index with another measure focusing on the
portion of the income distribution most relevant to the topic under investigation.

This paper presents several examples clarifying the relationship between income inequality
measures and the underlying income distribution. In Sect. 2, examples of two distributions
with the same value of one of the three commonly used inequality measures (e.g., the Gini
index), but different values of the other two (e.g., the mean log deviation and the Theil index)
are presented. A classical example in the theory of moments is used in Sect. 3 to demonstrate
that the values of an infinite family of the generalized entropy indices can be identical for
two different distributions. In particular, this implies that two distributions can have identical
values of one half of the squared coefficient of variation, the mean log deviation and the Theil
index but their Gini indices are not equal. In Sect. 4, several recently proposedmeasures based
on the ratio of the share of income received by the top 100q% to the share of income received
by the bottom 100p% are examined. Given the Lorenz curve of an income distribution, the
share of the top 100q0% and the share of the bottom 100p0%, using the approach described in
[9,11], one can construct two Lorenz curves having the same values of L(p0) and L(1− q0)
as the given Lorenz curve, which bound the original Lorenz curve from above and below.
Consequently, the given Lorenz curve and the two bounding Lorenz curves have the same
ratio of the incomes received by the top 100q0% and bottom 100p0%. The Gini indices of the
three distributions, however, are different and the Gini index of the given income distribution
lies in between the Gini indices of the bounding Lorenz curves. Furthermore, an example of a
class of discrete income distributions with the same ratio of the top to bottom shares but very
different Gini indices is presented in Sect. 5. A summary and discussion of the implications
of these results are of given in Sect. 6.

2 Examples of distributions with the same value of one of three
commonly used inequality but not the others

Consider three commonly used inequality indices: the mean log deviation (MLD), the Theil
index (TI) and the Gini index (G), which are defined in [5] as

MLDY = −E

[
log

Y

μY

]
T IY = E

[
Y

μY
log

Y

μY

]
and GY = E |Y1 − Y2|

2μY
, (1)

where Y is the random variable (r.v.) generating the income data, μY = E[Y ] and Y1 and Y2
are i.i.d. as Y . The construction of the examples uses the fact that for any r.v. Y and a specific
inequality index (e.g., MLD, the Theil index, or the Gini index) with value γ , there exists a
discrete r.v. Xk of the form

Xk =
{
1 wi th probabili t y p
k wi th probabili t y 1 − p,

(2)

with the same value (γ ) of that inequality measure. For any given value of k, one solves for
p after setting the value of the specified inequality index of Xk to γ . The following example
demonstrates that while Xk and Y have the same value of the specified index, their values of
the other inequality indices can be noticeably different.

To illustrate the construction of the r.v’s Xk , let Y follow a Pareto distribution with (α, θ).
From the formulas given in [1,5], one obtains

MLDY = − 1

α
+ log

α

α − 1
T IY = 1

α − 1
+ log

α − 1

α
and GY = 1

2α − 1
. (3)
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Table 1 MLD, Theil Index, Gini Index for Y and different settings of X3

MLD Gini index Theil index

Y : Pareto(α = 3, θ = 1) 0.072 0.200 0.095

X3: p = 0.187 (same MLD) 0.072 0.116 0.055

X3: p = 0.334 (same TI) 0.115 0.191 0.095

X3: p = 0.896 (same TI) 0.074 0.154 0.095

X3: p = 0.355 (same Gini) 0.120 0.200 0.100

X3: p = 0.845 (same Gini) 0.100 0.200 0.120

Table 2 MLD, Theil Index, Gini Index for Y and different settings of X10

MLD Gini index Theil index

Y : Pareto(α = 3, θ = 1) 0.072 0.200 0.095

X10: p = 0.052 (same MLD) 0.072 0.047 0.036

X10: p = 0.136 (same TI) 0.182 0.120 0.095

X10: p = 0.993 (same TI) 0.047 0.061 0.095

X10: p = 0.229 (same Gini) 0.296 0.200 0.164

X10: p = 0.972 (same Gini) 0.164 0.200 0.296

From (2), the values of the three indices for a discrete r.v. of the form Xk are

MLDXk = p log k − log
k

p + (1 − p)k
, (4)

T IXk = k(1 − p)

p + k(1 − p)
log k − log(p + k(1 − p)) and (5)

GXk = p(1 − p)(k − 1)

p + k(1 − p)
. (6)

When Y ∼ Pareto(α = 3, θ = 1), by (3), the mean log deviation for Y is 0.072. Consider
a r.v. of the form X3, i.e. k = 3. From the condition MLDY = MLDX3 and (4), one obtains
that p = 0.187. For this value of p, the values of the other two indices (the Gini index and the
Theil index) for X3 are determined by (5) and (6), which are 0.116 and 0.055, respectively.
Similarly, for the Gini index or the Theil index, one can obtain the discrete r.v. X3 by solving
p from the condition that the value of the specific index for X3 equals the corresponding
value for Y . Once the value of p is calculated, the values of the other two indices for X3 are
determined.

When k = 3, Table 1 reports the values of p determined from Eqs. (4), (5) and (6) so
that one of the values of the mean log deviation, the Gini index, and the Theil index for X3

matches the corresponding value for Y ∼ Pareto(3, 1). The values of the other two indices
for that distribution are also reported. Table 2 presents the similar results when k = 10.

Tables 1 and 2 show that one can have different members of the Xk family with the
same value of any specific inequality index and noticeably different values of the others. For
example, consider the second row of both tables referring to the r.v.’s X3 and X10 with the
same value of the mean log deviation. Notice that the Gini index of X10 is less than one-half
of the Gini index of X3. The Theil indices for X3 and X10 are also different. The results in
Tables 1 and 2 also illustrate that for any Xk , there can be two solutions for the parameter p,
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so that two different Xks has the same value of the specific index, e.g., consider the third and
fourth row in Table 1, X3 with p = 0.334 and p = 0.896 and the same value of the Theil
index. Therefore, their corresponding Xk would have the same value of the specific index
but different values of the other inequality indices.

3 An example of two distributions with the same integer-valued
generalized entropymeasure

The generalized entropy family of indices are defined as

GEY (a) = 1

a (a − 1)
·
[
E[Ya]
E[Y ]a − 1

]
, (7)

where a gives more weight to the upper portion of the distribution as it increases. GEY (0)
and GEY (1) are defined as GEY (0) = lima→0 GEY (a) and GEY (1) = limα→1 GEY (a)

respectively. Recall that GEY (0) is the mean log deviation, GEY (1) is the Theil index,
and GEY (2) is one half of the squared coefficient of variation. It follows from (7) that
if two underlying income distributions have the same ath moments for a = 1, 2, . . ., the
corresponding sequence of the generalized entropymeasures for these two underlying income
distributions will be the same.

It is well known that the lognormal distribution does not satisfy the conditions [2,19]
required for a distribution to be uniquely determined by its moments. In particular, Heyde
[14] presented a family of distributions indexed by a parameter ε, having the same moments
as the lognormal. Hence, their values of GE(a) are the same for each integer value of a. The
Heyde’s family of r.v.’s is given as the following.

Lemma 1 (Heyde’s family of r.v.’s) Let Y be the lognormal randomvariable such that log Y ∼
N (μ, σ ) and let Yε be a random variable with the pdf

fYε (y) = fY (y) · [
1 + ε sin (2π (log y − μ))

]
f or y > 0 and − 1 ≤ ε ≤ 1, (8)

then we have

E
[
Ya

ε

] = E
[
Ya] + Ia, (9)

where Ia = ε
∫ ∞
−∞ ya fY (y) sin (2π(log y − μ)) dy = 0 for all integer values of a. Hence,

for all integer values of a,

GEYε (a) = GEY (a). (10)

The density function of the Heyde’s family of r.v.’s differs from the log normal random
variable by a function that oscillates with a magnitude of ε, but integrates to zero. Lemma
1 implies that for any lognormal distribution, there is an infinite family of distributions with
the same general entropy index for all integer values of a. On the other hand, the values of the
corresponding Gini indices differ. The Gini indices for several members of Heyde’s family
of distributions having the same moments as the lognormal distribution with μ = 0, σ = 1
are given in Table 3.

Table 3 shows that when ε takes different values, the Gini indices for Yε are different.
Because the distributions of Yε and Y have the same moment sequence, their distributions
should be very close to one another, which is why the values of the Gini index for different
ε are similar. In [19], one can find other examples of families of distributions with the same
moment sequence as well as the same values of GE(a) for a = 1, 2, . . ..
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Table 3 The Gini index of Yε

with log Y ∼ N (0, 1) ε −0.9 −0.5 0 0.5 0.9

GYε 0.5182 0.5198 0.5205 0.5198 0.5182

4 Example of distributions with the same ratio of the top to bottom
shares

The inequality measure r(p, q) having been used by Palma [18] (p = 0.4, q = 0.1)
and Dorling [6] (p = 0.2, q = 0.2) is the ratio of the share of the income received by
the top 100q% to the share of the income received by the bottom 100p%. This family of
inequality measures focuses on the difference of the upper 100q% and the lower 100p% of
the distribution, but ignores the middle portion of the distribution. It is obvious that there are
many Lorenz curves having the same values of L(p) and L(1− q) but differ noticeably over
the range of (p, 1 − q).

The ratio of the top to bottom shares for an income Y is defined as

rY (p, q) = 1 − LY (1 − q)

LY (p)
, (11)

where LY (p) = μ−1
Y

∫ p
−∞ F−1(t)dt = μ−1

Y

∫ yp
−∞ t · fY (t)dt is the Lorenz curve [8] of Y ,

and yp = F−1(p) = inf{y : FY (y) ≥ p} is the pth quantile of Y .
For any pair of values (p0, q0) and an income distribution (Y ) with its Lorenz curve

LY (p), following the approach in [9,11], one can obtain two piecewise linear Lorenz curves
that bound LY (p) from above (by L A(p)) and below (by LB(p)) with the same values of
LY (p0) and LY (1−q0), i.e., L A(p0) = LB(p0) = LY (p0) and L A(1−q0) = LB(1−q0) =
LY (1 − q0). By construction, the ratio r(p0, q0) of L A(p), LB(p) and LY (p) are equal.

The formulas for L A(p) and LB(p) will now be described. Let L A(p) be the piecewise
linear Lorenz curve bounding LY (p) from above. L A(p) consists of line segments TA1(p),
TA2(p) and TA3(p), where TA1(p) is the line segment connecting (0, 0) and (p0, LY (p0));
TA2(p) is the line segment connecting (p0, LY (p0)) and (1 − q0, LY (1 − q0)); and TA3(p)
is the line segment connecting (1 − q0, LY (1 − q0)) and (1, 1). Therefore, it follows that

L A (p) :

⎧⎪⎪⎨
⎪⎪⎩

TA1(p) = LY (p0)
p0

· p 0 ≤ p ≤ p0

TA2(p) = LY (1−q0)−LY (p0)
1−q0−p0

· (p − p0) + LY (p0) p0 < p ≤ 1 − q0

TA3(p) = 1−LY (1−q0)
q0

· (p − 1) + 1 1 − q0 < p < 1

. (12)

LB(p) consists four linear segments TB1(p), TB2(p), TB3(p), and TB4(p) that circumscribes
LY (p) at (p0, LY (p0)) and (1−q0, LY (1−q0)). Here TB2(p) and TB3(p) are the two tangent
lines segments circumscribing LY (p) at (p0, LY (p0)) and (1−q0, LY (1−q0)) respectively.
They intersect at (x0, y0). In addition, TB2(p) intersects L(p) = 0 at (x1, 0) and TB1(p) is
the line segment connecting (0, 0) and (x1, 0). TB3(p) intersects p = 1 at (1, TB2(1)), and
TB4(p) connects (1, TB2(1)) to (1, 1). Therefore, we have

LB (p) :

⎧⎪⎪⎨
⎪⎪⎩

TB1(p) = 0 0 ≤ p ≤ x1
TB2(p) = L ′

Y (p0)(p − p0) + LY (p0) p0 < p ≤ x0
TB3(p) = L ′

Y (1 − q0) (p − (1 − q0)) + LY (1 − q0) x0 < p < 1
TB4(p) = [

q0 · L ′
Y (1 − q0) + LY (1 − q0), 1

]
p = 1

, (13)

where L ′
Y (p) = F−1

Y (p)/μ is the derivative of LY (p).
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By the construction, the area between the line of equality and L A(p) will be smaller
than the area between the line of equality and LY (p), and the area between the line of
equality and LB(p) will be the largest. This implies that GB > GY > GA. In addition,
L A(p0) = LY (p0) = LB(p0) and L A(1 − q0) = LY (1 − q0) = LB(1 − q0), yielding
rA(p0, q0) = rB(p0, q0) = rY (p0, q0). Hence, the three Lorenz curves have the same value
of r(p0, q0) but different values of the Gini index.

To illustrate an example of how the curves L A and LB bouding a Lorenz curve of an
income distribution, consider Y ∼ Pareto(α, θ). From [1], we have

GY = 1

2α − 1
, (14)

LY (p) = 1 − (1 − p)1−
1
α , and (15)

L ′
Y (p) = α − 1

α
(1 − p)−

1
α . (16)

When p0 = 0.4, q0 = 0.1 and α = 1.125, from (12),(13), (15), and (16), L A(p) and LB(p)
are

L A (p) =
⎧⎨
⎩
0.138 · p 0 ≤ p ≤ 0.4
0.341 · (p − 0.4) + 0.055 0.4 < p ≤ 0.9
7.743 · (p − 1) + 1 0.9 < p < 1

and (17)

LB (p) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ p ≤ 0.121
0.175(p − 0.4) + 0.055 0.121 < p ≤ 0.779
0.860 (p − 0.9) + 0.226 0.779 < p < 1
[0.312, 1] p = 1

. (18)

Fig. 1 presents LY (p) (solid curve), L A(p) (dotted curve) and LB(p) (dash curve) for
Y ∼ Pareto(1, 1.125), p0 = 0.4 and q0 = 0.1. From the figure, it can be seen that the
LY (p) is between L A(p) and LB(p). The three Lorenz curves have the same r(0.4, 0.1) as
L A(p) and LB(p), because their values are the same when p = 0.4 and 0.9. Calculating the
areas between each of the Lorenz curve and the line of equality, it follows that

GA = 0.715 < GY = 1

2(1.125) − 1
= 0.800 < GB = 0.820. (19)

In this example, the difference between the Gini indices of the two bounding Lorenz
curves is about 0.1. The reason GA is less than GY is because its distribution assumes that
all individuals in the region between the 40th and 90th percentiles have the same income.

5 A family of discrete distributions with the same value of the ratio of
top to bottom shares

This section describes a family of discrete distributions having the same pre-specified ratio
of the top to bottom shares r(p0, q0), with noticeably different values of the Gini indices.
This means that the middle portion of these distributions varies substantially while the shares
of income received by the top 100q0% and the bottom 100p0% remain unchanged.

Suppose a population only has three classes of households, lower, middle and upper, and
every person within each class receives the same income. For a specified value of the ratio
of the top to bottom shares r(p0, q0), by varing the share received by the households in the
middle class, one can generate many populations with the same value of the ratio of the top
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Fig. 1 The Lorenz curves of LY (p), L A(p) and LB (p) with Y ∼ Pareto(1.125, 1) and the same value of
r(0.4, 0.1)

to bottom shares, but different values of the Gini index. For example, let p0% (q0%) be the
proportion of the households belonging to the lower (upper) class, so that 1 − p0 − q0% is
proportion of the households in the middle class. Consider the family of income distributions
Yx with the same value r = r(p0, q0) defined by

Yx =
⎧⎨
⎩
1 wi th probabili t y p0
x wi th probabili t y 1 − p0 − q0
rp0/q0 wi th probabili t y q0

, (20)

where

rYx (p0, q0) = 1 − LYx (1 − q0)

LYx (p0)
= q0(rp0/q0)

1 · p0
= r , (21)

for any 1 ≤ x ≤ rp0/q0 and rp0/q0 > 1. While r is determined by L(p0) and L(1 − q0),
and does not vary for any distributions of the form Yx , the share of the income received by
the middle class depends on x will increase as x goes from 1 to rp0/q0, i.e., as the income
recieved by the middle class approaches that of the upper class.

For any value of x , the Gini index of Yx is

GYx = ΔYx

2μYx
= p0 + (rp0 − xq0)(1 − p0 − q0) − p0(1 − p0)

p0 + x(1 − p0 − q0) + rp0
(22)

= p0 − q0 + p0(1 − p0)

p0 + x(1 − p0 − q0) + rp0
·
(
r − 1 − q0

1 − p0

)
. (23)
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Table 4 The Gini index of Yx for
different values of x , where
r = 10, p0 = 0.4 and q0 = 0.1

x 1 8 16 24 32 40

GYx 0.716 0.543 0.465 0.424 0.400 0.384

When r > (1−q0)/(1− p0), GYx is monotone decreasing in x , and when r < (1−q0)/(1−
p0), GYx is monotone increasing in x . In either case, GYx is in between

GY1 = 1 − q0 − 1 − q0
1 − q0 + rp0

and (24)

GYr = p0 − p0q0(1 − p0)

p0q0 + rp0(1 − p0)
. (25)

Therefore, as the income x , that all members of the middle class receive, varies, the Gini
index of Yx also varies.

To illustrate the wide range of the values that the Gini index can have for different dis-
tributions as the Yx family, consider the case that r = 10, p0 = 0.4, and q0 = 0.1. Table 4
presents the values of the Gini index for several values of x .

FromTable 4, one sees that the Gini indices of Y1 and Y40 are 0.716 and 0.384 respectively.
These values reflect that as x increases from1+ to 40−, the incomeof amiddle class household
goes from being lower class to being near upper class and the Gini index decreases.

6 Conclusion

This article demonstrates that the major indices of income inequality can take the same value
for different distributions so that criticizing the Gini index or any other single measure of
income inequality due to this reason is inappropriate. An example of two different distribu-
tions, arising in the theory of moments [2], having identical moments of all orders, indicates
that a single index will not be able to distinguish between all pairs of distributions. The Gini
index, however, is able to distinguish between members of a family of distributions with the
same values for the generalized entropy measures with an integer index.

The results in Sect. 3 demonstrate that it is unreasonable to expect a single measure to
completely describe the entire income distribution. Hence combining several measures may
provide more information about the income distribution. For example, Oancea and Pirjol
[17] show that for a heavily skewed distribution, the Theil index can increase to infinity, but
the Gini index is bounded by one. However, the modified Gini index [10] which replaces the
mean by the median, i.e., multiplies the Gini index by the ratio of the mean to the median, a
measure of skewness, resolves this problem. Foster and Wolfson [7] combine the Gini index
with the relative median deviation, i.e., (μU − μL)/μ where μU is the mean of those above
the median and μL is the mean of those below the median, to measure the polarization of an
income distribution.

Because no single measure can summarize the entire income distribution, researchers may
benefit from combining the Gini index with another measure which emphasizes the portion
of the underlying distribution most relevant to the research problem.
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