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Abstract This paper examines, from a historical and model-based Bayesian perspective,
two inferential issues: (1) the relation between confidence coverage and credibility of interval
statements about model parameters; (2) the prediction of new values of a random variable.
Confidence and credible intervals have different properties. This worries some statisticians,
who want them to have the same properties, in frequentist repeated sampling coverage and
Bayesian credibility content. Research continues on the conditions under which intervals
have the same repeated sampling coverage and credibility content. We conclude that these
two inferential approaches generally have incommensurable properties, which converge only
asymptotically in sample size, and in a restricted class of samples. The repeated confusion,
by new students of statistics, of the coverage of a confidence interval with the credibility
of the observed interval, suggests that in general the credibility of the interval is the more
important inferential aim.We showhow the credibility of a confidence interval canbe assessed
generally. Bayesian prediction of new values is well established using the posterior predictive
distribution. This has some curious features, known since Laplace but not well understood.
The prediction of new Bernoullis highlights these features. We suggest that the credibility of
predictive intervals needs to be reassessed.

Keywords Likelihood · Confidence · Credible · Prediction intervals

1 History of confidence and credibility

1.1 The central limit theorem

In the nineteenth century there was no general theory of statistical inference. The repeated
sampling distribution of means was known to be normal from the Central Limit Theorem,
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first discovered by de Moivre in 1733 and extended by Laplace in 1812. So the mean and
variance of a normal sampling distribution could be estimated from data, and the precision of
the sample mean estimate expressed through multiples of the sampling standard deviation.
This was initially expressed through the probable error (giving 50% probability between
the sample mean ± one probable error), later changed to the standard error, the square
root of the sampling variance. The absence of any assessment of goodness-of-fit of the
normal distribution to sample data allowed a general belief that all, or nearly all, variables
were normally distributed, and so estimation of any population mean could be based on the
sampling distribution of the sample mean, with its sampling standard deviation.

1.2 Bayes’s theorem

Bayes’s theorem of [4] had shown how to use “inverse probability” to draw conclusions about
competing hypotheses for data, but this needed a prior distribution. The general assumption
of normal distributions for variables allowed a uniform prior distribution for themean, widely
recommended by Laplace [18], under his Principle of Insufficient Reason, which led to the
same posterior conclusions as the repeated sampling distribution, since the standard deviation
was assumed known. So in the nineteenth century data analysis was mixed: some analysts
used Bayes’s theorem, others used the repeated sampling distribution, with no serious conflict
among them.

1.3 Karl Pearson

From 1894, Karl Pearson made a dramatic change to this comfortable state. To do this, he
developed three new concepts and tools:

• amethod for assessing the agreement between empirical data and the normal distribution;
• a set of alternative distributions which could represent departures from normality;
• a criterion for fitting these distributions to empirical data.

Over an 8-year period 1894–1902, he achieved all three of these aims:

• the X2 test for goodness-of-fit [24] was the first such test, based on the comparison
of the sample frequencies in each histogram bin with those expected under the normal
distribution, computed as normal bin probabilities from the fitted normal distribution
multiplied by the sample size. He showed that the sum of squared differences divided by
the expected frequencies was distributed asymptotically as χ2, with degrees of freedom
which he took as the number of histogram bins.1

• Pearson [25,26] proposed a large system of non-normal distributions, based on the solu-
tions to a set of differential equations. These distributions had up to four parameters,
allowing for skewness and kurtosis in the densities of these distributions.

• He had already [23] proposed the method of moments for estimating the parameters of
distributions, by equating the population moments (easily computed for his new family
of distributions) to the sample moments of the data, and solving the resulting set of
simultaneous equations.

With his new goodness-of-fit test Pearson was able to show that many published data sets
which were put forward as examples of the normal distribution were in fact definitely non-
normal, withminute tail-area goodness-of-fit probabilities from theχ2 distribution. Pearson’s

1 The small expected frequencies in the extreme bins affected the validity of the asymptotic distribution, and
so he suggested pooling of the extreme bins.
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examples of (grouped) continuous variableswhichwere found to be clearly non-normal began
to discredit the almost universal assumption of normality, and the Pearson system of non-
normal distributions became an important tool for analysis.

1.4 Fisher and likelihood

Fisher’s development of likelihood [11–13] was a revolution in statistical inference. It
depended on a probability model specification, but did not depend on prior information
about the model parameters.

Maximum likelihood (ML) became a standard tool in non-Bayesian inference, and the first
two derivatives of the log-likelihood function became the standard tools for estimation and
precision for nearly a century. The key to this successwas that the log-likelihoodwas generally
a linear function of the responses yi , and so the Central Limit Theorem would provide the
asymptotic distributions of any linear functions involved in the MLE. In some probability
distributions the exact distribution of the MLE could be found. Fisher dismissed Pearson’s
method of moments as it did not use the likelihood, so did not give efficient estimates. An
inefficient estimate could be improved by using it as a starting value in the scoring algorithm;
after one iteration the new estimate would be effectively efficient.

A troubling feature of using the first two derivatives of the log-likelihood was that mono-
tone transformations of the model parameter would give different precisions, and so the
precision quoted for the ML estimate depended on the parametrization adopted. Fisher’s the-
ory depended on the Central Limit Theorem for the distribution of the sufficient statistics, but
he did not accept the repeated sampling principle, though the interpretation of the precision
of the estimates required this principle. He referred to the “unique sample”, and developed
his own fiducial theory of how to transform from a precision statement about the MLE to
a precision statement about the parameter, without using the repeated sampling principle.
This theory was very close to the Bayesian theory, but without the prior: Fisher was fiercely
anti-Bayesian.

Neyman formulated the repeated sampling approach through confidence intervals: the
confidence coefficient of a confidence interval for a model parameter is the coverage prob-
ability of the interval in repeated sampling. For the normal distribution this gave the same
intervals as Fisher’s fiducial approach, and Fisher at first thought that the theories were equiv-
alent, but more complex examples showed that they were different, and Fisher then rejected
confidence intervals. Since Fisher’s fiducial theory did not produce acceptable general results,
confidence intervals became the standard expression of precision.

Early studies of maximum likelihood showed that it could give biased estimators in small
samples, so was only asymptotically efficient, and so other estimators, like moment estima-
tors, might have better small-sample properties than ML estimators. The repeated sampling
principle does not specify which estimator should be used, and this stimulated a search
for alternative estimators, which would be compared by their sampling variances or mean
squared errors, if biased estimators were to be allowed.

1.5 Jeffreys and Bayesian views of likelihood

Bayesians were already using the likelihood, in Bayes’s theorem. So in the view of many
Bayesians, Fisher was reproducing with maximum likelihood the Bayesian results achieved
with flat or noninformative priors. In Bayesian analysis there was no need to rely on the
first two derivatives of the log-likelihood: the whole posterior distribution was available. The
problem was computational rather than theoretical: except in simple models with flat priors,
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posterior distributions were not analytic, and computation was slow and tedious on electric
calculators.

Bayesian theory was developed further by Jeffreys [17]. He argued from first principles
for the Bayesian inferential theory, and stimulated by Fisher’s likelihood developments, he
gave the Bayesian versions of several of Fisher’s innovations, using flat priors on normal
means and regression model parameters and the log standard deviation. He showed that the
Bayesian and Fisherian analyseswere very close. He also argued strongly for non-informative
priors, following Bayes and Laplace. Bayesian contributions from 1925 to 1960weremodest,
and Fisher and Neyman dominated the statistical world, with the FNP—Fisher–Neyman–
Pearson—paradigm developing rapidly and fruitfully.

In his 1961 edition Jeffreys hinted at the development of more general priors which would
expand the Bayesian analysis possibilities. This development, of conjugate priors, by Raiffa
and Schlaifer [27] greatly expanded the Bayesian toolkit. The idea was a simple one: to make
the prior “fit”—conjugate with—the likelihood by replicating its structure with additional
prior parameters. So for the Bernoulli model with likelihood c · pr (1 − p)n−r the prior has
the same form, of a Beta distribution:

π(p) = pa−1(1 − p)b−1/B(a, b),

where B(a, b) is the complete Beta function.
The posterior distribution is then another Beta distribution

π(p | r, n) = pr+a−1(1 − p)n−r+b−1/B(r + a, n − r + b),

in which the prior parameters are simply added to the success and failure counts in the
likelihood. By varying the prior parameters, the prior information could be represented by
the full variety of shapes of the Beta distribution in both location and variation. An additional
valuable feature was that the prior information could be thought of as coming from an
auxiliary experiment which gave a − 1 successes and b − 1 failures. In particular, when
a = b = 1 (no auxiliary experiment has actually been performed), and there is clearly no
prior information, the prior reduces to the uniform prior, giving another justification for this
prior as the noninformative prior for the Bernoulli case.

The term credible interval—an interval statement about the parameter from the posterior—
was coined to replace “Bayesian confidence interval”. Although in normal models credible
intervals had the same formal probability content as confidence intervals, this was not so in
other simple models like the binomial, which we discuss below.

1.6 The MCMC revolution

The EM algorithm of Dempster, Laird and Rubin [9] was a remarkable contribution to the
maximum likelihood analysis of complex data. It enabled full ML analysis of models with
latent variables, latent structure, mixtures and missing data. However the reliance on the first
two derivatives of the log likelihood for estimates and precisions showed the difficulties of
the Fisherian paradigm: themore latent or missing data structures there were in themodel, the
less reliable was the second derivative information matrix for the precisions of the parameter
estimates. Missing data produced skewness and kurtosis in the likelihood which could not
be identified in the first two derivatives.

The Bayesian version of EM, first published by Tanner and Wong [29], solved this by
alternating between randomdraws of the parameters from their conditional distribution given
random draws of the missing data, analogous to the M-step computation of ML estimates,
and random draws of the missing data from their conditional distribution given the random
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draws of the parameters, analogous to the E-step conditional expectation of the missing
data, in the EM algorithm. This provided the full joint posterior distribution of the model
parameters, which EM could not: the random draws of the parameters were based on the full
likelihood (plus priors), and so allowed correctly for the shape of the likelihood.

A further great advantage of MCMC was that it allowed the posterior computation of any
function of the model parameters and observed data, by simple substitution of the random
parameter draws into the function.

This development has reinvigorated the Bayesian paradigm, which now has the tools for
full analysis, which the FNP paradigm does not. This has important implications for standard
data analyses, which we illustrate below.

2 Bernoulli trials I

Anexperimenter performsn = 10Bernoulli trialswith success probability p. r = 3 successes
are observed. What interval statement can be made about the success probability p?

Frequentists and Bayesians approach this question from different philosophical positions:
the repeated sampling principle for frequentists and the likelihood principle (combined with
a prior distribution) for Bayesians. (Extensive discussions of these principles can be found
in [7].)

For frequentists, in single parameter models, inference is based on the repeated sampling
distribution of the maximum likelihood estimate (MLE), or of the score function. For the
Bernoulli model, the likelihood, log-likelihood and score functions are

L(p) =
(
n

r

)
pr (1 − p)n−r

�(p) = c + r log(p) + (n − r) log(1 − p)

s(p) = r

p
− n − r

1 − p

= r − np

p(1 − p)
.

The MLE is p̂ = r/n, with sampling mean p and variance p(1 − p)/n, while the score has
sampling mean 0 and variance 1/[np(1 − p)]. These lead to the same conclusion, invoking
the Central Limit Theorem for the asymptotic normal distribution of p̂ : N (p, p(1− p)/n).

Replacing the unknown p in the variance by itsMLE p̂ gives theWald asymptotic (approx-

imate) 95% confidence interval for p : p̂ ± 2
√

p̂ (1− p̂)
n , giving 0.3 ± 0.29, or [0.01, 0.59].

A better approximation has the p confidence limits as the roots of the quadratic inequality
obtained from the interval in which p is not replaced by p̂ in the variance:

(p − p̂)2 ≤ 4p(1 − p)/n

(n + 4)p2 − 2p(n p̂ + 2) + n p̂2 ≤ 0,

which are [
n p̂ + 2 ± 2

√
n p̂2 + n p̂ + 4

]
/(n + 4),

or [
r + 2 ± 2

√
r2/n + r + 4

]
/(n + 4).
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For the example this gives [0.16, 0.56]. Other approximate intervals can be constructed, but
these two are sufficient for our purposes. Asymptotically, the sets of intervals (hypothetically)
constructed in this way will cover the true value of p in 95% of the intervals. Whether the
confidence interval from the observed sample covers the true value is unknown: the coverage
probability refers to a hypothetical ensemble of such samples, not to the sample on which
the interval is based.

For a Bayesian, a prior is needed to answer the question. Throughout this paper we use the
uniform prior, given no other information about the experiment. The posterior distribution
of p is then Beta(4, 8), and the central 95% credible interval for p is [0.11, 0.61]. Figure 1
shows the cdf of the Beta(4, 8) distribution.

The 95% credible and asymptotic 95% confidence intervals are different, and the Wald
confidence interval is longer, while the quadratic interval is shorter, than the credible interval.
The posterior credibility of any interval is easily computed from the cdf of the Beta(4, 8)
distribution. For the Wald interval this is 0.966, and for the quadratic interval it is 0.867.
Credibility increases with length, not surprisingly. If our aim is 95% credibility, the Wald
interval is unnecessarily long, and the quadratic interval is too short.

Many improvements on theWald interval have been suggested, mostly based onmonotone
transformations of the success probability p. These were investigated by Anscombe [2] and
extended by Diaz-Francés [10]. As noted above, this dependence on parametrization is a
difficulty with the Fisherian paradigm. For the purposes of this paper, we focus on the
proposal of Agresti and Caffo [1], who suggested improving the Wald interval by adding
two successes and two failures to the observed data; they noted that this was equivalent
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Fig. 1 Beta(4, 8) cdf

123



Confidence, credibility and prediction 257

to an informative Beta(3, 3) prior on p. Under this prior, the prior probability is 0.5 that
p ∈ [0.36, 0.64].

For a Bayesian, it is difficult to see why this informative prior could be generally
appropriate—what is the relevant external information on which it is based? Are values
of p around 0.5 universally more frequent than values near 0 or 1? A Bayesian using this
prior with the trial data would give a central 95% credible interval of [0.16, 0.62], compressed
slightly and shifted slightly to the right compared to the uniform prior, as would be expected
from its informativeness.

2.1 The relation of credibility to coverage

Many Bayesians and frequentists would like credibility and confidence coverage to agree,
at least asymptotically. Rubin [28] argued that credible intervals should be well calibrated
in the sense that 95% credible intervals should have repeated-sampling coverage near 95%,
and suggested posterior predictive checks as a way of using frequentist repeated sampling
procedures to assessBayesianmodel assumptions.Gelman et al. [15] extended and formalised
this approach. Little [19–21] discussed it at length, in arguing for a broader acceptance of
Bayesian procedures.

Frequentists saw the problem differently. For example, in their review of probability
matching priors (PMPs), Datta and Sweeting [8] commented:

From a Bayesian point of view it can be argued that a PMP is a suitable candidate
for a nonsubjective Bayesian prior [for p], since the repeated sampling property of
the associated posterior regions provides some assurance that the Bayesian results will
make some inferential sense, at least on average, whatever the true value of [p].

Datta and Sweeting took it as given that Bayesians have to assure frequentists that their
credible intervals “will make some inferential sense”, presumably in the sense of having the
same confidence coverage as their credibility. The implication is that this is to be achieved by
getting the prior right. Datta and Sweeting’s review paper however showed that the agreement
between confidence coverage and credibility could not be achieved in general by choice of the
prior. Since coverage and credibility refer to different inferential processes, it is not surprising
that in general they give different intervals (for the same credibility and nominal confidence).
Datta and Sweeting [8] summarised the connections.

Exact agreement occurs in models with normal likelihoods and flat priors in the parameter
θ : if the log-likelihood is quadratic in θ then central confidence and central credible intervals
are exactly equivalent. This result extends asymptotically (with flat priors) to models with
internal log-likelihood maxima in the parameter space, where the cubic and higher order
terms in the Taylor expansion about the MLE go to zero with sample size, relative to the
quadratic term.

The binomial case is a simple example. If the MLE is near 0.5, the likelihood will be
close to normal even in small samples. If it is near 0 or 1, the likelihood will not be close
to normal even in large samples. The credible interval automatically adjusts for any skew in
the likelihood; its validity as a measure of precision is unaffected by the sample size or the
location of the MLE.

The Datta and Sweeting results have recently been upgraded by Müller and Noretz [22].
They showed that under “mild” conditions (excluding continuous parameter spaces) there
existed a coverage inducing prior for which the 1 − α highest posterior density or equal-
tailed credible interval gave exact confidence coverage of 1 − α. This prior however had
to be determined iteratively as the solution of a fixed-point problem, involving adjusting an
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initial guess for the prior by iteratively updating the (discrete) prior probabilities of parameter
values which were found to undercover in repeated sampling with these values. This could
require a vast amount of computing, just to obtain a prior.

For Bayesians, this approach raises the same question as that of Agresti and Caffo: why
should the choice of prior be determined by the frequentist coverage of the credible interval?
For frequentists, the Bayesian analysis depends on the prior assumption. Many Bayesians
emphasize the importance of getting the prior right. To these Bayesians the prior is funda-
mentally subjective—“right” for the analyst who specifies it. Many frequentists have no idea
of the reproducibility of this kind of inference, unlike the confidence interval which is based
on the repeated sampling process and the properties of the intervals in this process. Simu-
lation studies follow exactly this process in evaluating the properties of interval procedures.
Fraser [14] argued that Bayes is just quick and dirty confidence.

Bayesians are in conflict over the role of priors. The Jeffreys recommendation for the
uniform prior is supported by the “reference” school of Bayesians [5] which requires a
default non-informative (or minimally informative) analysis so that the data can “speak”
through the likelihood, unaffected by an informative prior. Then we can assess the effect of
an informative, subjective or personal prior on the default analysis.

To most Bayesians, the reproducibility of the confidence interval statement is irrelevant.
We know that students constantly misinterpret confidence intervals as credible intervals,
despite the endless emphasis by even the best teachers that the confidence coefficient is not
the probability that the parameter lies in the interval, and that we can say nothing about this
probability—either the interval covers it, or it doesn’t. The replication of the interval construc-
tion process is hypothetical, and its claimed coverage depends on unverifiable assumptions
about the repeated sampling distribution of the sufficient statistic or MLE in the hypothetical
unobserved samples.

However it is in principle straightforward to determine the credibility content of a confi-
dence interval by direct analysis, or by sampling from the model parameter posterior, though
determining the confidence coverage of a credible interval procedure would require large-
scale simulations. Formost experimenters or survey analysts, the precisionquestionof interest
is: how precise was my estimation in this sample, not how precise would this form of estima-
tion be in an ensemble of such samples?

We argue that the concern of Datta and Sweeting for the reassurance of frequentists by
Bayesians is misplaced: it is rather for frequentists to reassure themselves of their precision
statements by establishing that their confidence intervals have acceptable credibility for the
given sample.

We now consider prediction.

3 History of prediction

Statistical prediction is a relatively recent development of statistical modelling. The first
example was given by Laplace, in his famous Law of Succession, discussed below. Jeffreys
(1961, p. 143) obtained the predictive distributions for the mean and variance of a second
sample from a normal distribution given a first sample and a flat prior distribution of the mean
and log variance. The first comprehensive book, by Aitchison and Dunsmore [3] followed the
Bayesian approach, which we describe below. Fourteen non-Bayesian likelihood prediction
approaches are discussed at length in Bjornstad [6]. We do not deal with them here as our
concern is with the fundamentals of the Bayesian approach.
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4 Bernoulli trials II

4.1 Predicting a binary

The previous experimenter wants to predict—make a predictive statement about—the out-
come of the 11-th trial, given the three successes in the first ten trials. How should this be
done? We use the non-informative uniform prior throughout this section. The posterior dis-
tribution of p is Beta(4, 8). We note that the posterior mode is 0.3, the posterior median is
0.324, the posterior mean is 0.333, and the posterior standard deviation is 0.13.

The prediction of a new binary Y is of the form pY (1 − p)1−Y , which is equivalent to a
prediction of p, the probability that the new Y = 1.

The Bayesian approach has been standard to Bayesians (Gelman et al. [16], p. 7) since
Laplace’s Law of Succession. The probability of success at the 11th trial, given the trial data,
is expressed as

Pr[Y11 = 1 | r, n] =
∫ 1

0
Pr[Y11 = 1 | p] · π(p | r, n) dp

=
∫ 1

0
p · p3(1 − p)7 dp/B(4, 8)

= B(5, 8)/B(4, 8)

= 4/12 = 0.333.

This is called the posterior predictive probability of success at the next trial. It can be extended
to more complex predictions, like the probability of s successes in a second set of m trials.
This is

Pr[s | m, r, n] =
(
m

s

) ∫ 1

0
ps(1 − p)m−s · π(p | r, n) dp

=
(
m

s

) ∫ 1

0
ps+3(1 − p)m−s+7 dp/B(4, 8)

=
(
m

s

)
B(s + 4,m − s + 8)/B(4, 8).

For example, the posterior predictive probability of s = 3 successes in a second set ofm = 10
trials is (

10

3

)
B(7, 15)/B(4, 8) = 0.195.

This approach, though widely used, has some strange features:

• it gives a precise probability for any prediction event, however small the sample size;
• it gives a precise probability for any prediction event, without any data.

On the second point, the predictive argument can be appliedwith the prior distribution instead
of the posterior, if there are no data, to give a prior predictive distribution (Gelman et al.
[16], p. 7).

For the prior predictive probability of success at the outcome of the first trial, we have

Pr[Y1 = 1] =
∫ 1

0
Pr[Y1 = 1 | p] · π(p) dp
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=
∫ 1

0
p · 1 dp

= 0.5.

For the prior predictive probability of three successes in the first 10 trials, we have

Pr[s = 3 | m = 10] =
∫ 1

0

(
10

3

)
p3(1 − p)7 · 1 dp

=
(
10

3

)
B(4, 8)

= 1/11 = 0.091.

It seems very strange that, with no data and a non-informative prior, we can make precise
informative probability statements about future values. The explanation is simple, though
rarely emphasized:

… the posterior predictive distribution [is] an average of conditional predictions over
the posterior distribution of θ (Gelman et al. [16] p. 7, emphasis added).

So the posterior predictive probability of success at the 11-th trial is simply the mean of the
posterior distribution of p. It is not the probability of success at the 11th trial,—that remains
at p—but a one-number summary of its posterior distribution, like the posterior mode or
median, or the plug-in MLE. In the same way, the prior predictive probability of success at
the first trial is not the probability of success, but its priormean: the choice of prior determines
the prior predictive probability, but not the probability of success.

What predictive statements can be made then, priorly or posteriorly, about new values?
Exactly those inferences from the prior or the posterior.

Without any data, what can be said about the probability of success at the first trial? With
no data, the only statement is that the probability of success has the uniform prior distribution.
Given three successes in the first 10 trials, the probability of success at the 11th trial has the
Beta(4, 8) distribution. The probability of three more successes in the next 10 trials does
not have an analytic posterior distribution, but it can be simulated easily:

• make M = 10,000 random draws p[m] of p from its Beta(4, 8) posterior distribution;
• substitute them into the binomial probability of three successes in 10 trials:

b[m](3, 10) = b(3, 10; p[m])

=
(
10

3

)
p[m]3(1 − p[m])7,

and sort the binomial draws into increasing order. Figure 2 shows the (severely skewed)
cdf of the 10,000 draws of the binomial probability. The 95% central credible interval is
[0.028, 0.267], the posterior mean is 0.195 (the posterior predictive probability value) and
the posterior median is 0.218.

With continuous distributions, the problem is more algebraically complex. We give a
general definition.

4.2 General theory

Given a probability model f (y | θ) for a random variable Y with cdf F(y | θ), a random
sample y of size n already drawn from f , and a prior distribution π(θ) for θ , what can be
said (as a 95% central probability interval statement) about the next value of Y to be drawn?
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Fig. 2 Binomial (3, 7) cdf

The two methods to be considered both use the posterior distribution π(θ | y) of θ given
the sample data.

• Method 1 (traditional):

– Compute the posterior predictive distribution of Yn+ j : g(yn+ j | y)
= ∫

f (yn+ j | θ)π(θ | y)dθ , with cdf G;
– find the appropriate percentiles α and β of the posterior predictive distribution:

G(β | y) = 0.975, G(α | y) = 0.025.

• Method 2 (alternative):

– Find the appropriate percentiles a(θ) and b(θ) of the conditional distribution of Yn+ j

given θ : F(b(θ)) = 0.975, F(a(θ)) = 0.025;
– compute the conditional credibility γ (a, b | θ) = b(θ) − a(θ);
– make M draws θ [m] from the posterior distribution of θ and substitute them

in γ to give M draws from the marginal credibility distribution: γ [m](a, b)
= γ (a, b | θ [m]) = b(θ [m]) − a(θ [m]);

– sort the M (typically 10,000) values of γ ; and find the 2.5 and 97.5 percentiles of the
posterior of γ .

These define the central 95% credible interval for γ .
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4.3 Normal example

The experimenter draws a sample y1, . . . , yn with n = 10 from the normal distribution
N (μ, σ 2). The samplemean ȳ is 1 and the (unbiased) sample variance s2 is 4.What inferential
statement can be made about the next random value Y11 to be drawn from the distribution?

The traditional approach is very well known:

With reference flat priors on μ and log σ , we have the standard posterior distributions:

• νs2/σ 2 ∼ χ2
ν ;

• μ | σ ∼ N (ȳ, σ 2/n).

So

f (Y11 | ȳ, s2) =
∫

f (Y11 | μ, σ)π(μ, σ | ȳ, s2) dμ dσ

Y11 ∼ ȳ + s
√
1 + 1/n · tν,

and the 100(1 − α)% central prediction interval for Y11 is

ȳ − t1−α/2,n−1s
√
1 + 1/n < Y11 < ȳ + t1−α/2,n−1s

√
1 + 1/n.

(This result is also obtained as one of the 14 frequentist likelihood-based predictive distribu-
tions.) For the example with ȳ = 1, s = 2, n = 10, the 95% central predictive interval is
[−3.75, 5.75].

For the alternative approach, we assess the credibility of this prediction interval. The
probability that the new value Y11 lies in the interval (a, b), here [−3.75, 5.75], given the
parameters μ and σ , is

Pr[Y11 ∈ (a, b) | μ, σ ] = �[(b − μ)/σ ] − �[(a − μ)/σ ] = γ (a, b | μ, σ).

So the credibility γ (a, b | μ, σ) of the conditional predictive interval (a, b) is a random
function of μ and σ . To compute its posterior distribution, we make 10,000 random draws
(μ[m], σ [m]) from the joint posterior distribution of μ and σ , and substitute them into γ to
give 10,000 random draws γ [m] from its posterior distribution.

It can be shown easily that the posterior predictive interval is the mean (with respect
to the posterior distribution of (μ, σ )) of the conditional predictive interval given (μ, σ ).
Figure 3 shows the 10,000 values of μ[m] graphed against σ [m], and Fig. 4 shows the cdf of
the credibility distribution of γ for this example.

The 2.5%, median, mean and 97.5% values of the credibility γ are 0.782, 0.972, 0.951
and 0.999. The median is close to, and the mean is equal to, the predictive coverage, and the
central 95% credible interval is [0.782, 0.999]. The uncertainty in μ and σ from the small
sample is reflected in the variation in the credibility content of the 95% prediction interval.

Credibility can be improved by increasing the predictive coverage. Changing this to 99%,
with the same sample data, gives the 2.5%, median, mean and 97.5% values of the credibility
as 0.926, 0.999, 0.990 and 1.000. Figure 5 shows the credibility distribution.

4.4 Relation between approaches

These two approaches have different foci. The traditional approach focuses on the predictive
distribution—we have to find this by integrating out the parameters to make an interval, or
other, statement from it. Integrating out eliminates some of the random variability, since the
result is the posterior mean—the posterior variance and higher moments are ignored. The
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Fig. 3 10,000 posterior draws from π(μ, σ |ȳ, s)
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Fig. 4 Cdf of draws from the credibility distribution, 95% predictive
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Fig. 5 Cdf of draws from the credibility distribution, 99% predictive

alternative approach focuses on the interval: we integrate out the parameters, not from the
distribution of the new Y but from the conditional interval probability. The approaches differ
by when marginalisation across the posterior distribution occurs.

The advantage of the traditional approach is that a full probability interval statement can
be made; the advantage of the alternative approach is that it assesses the credibility of the
traditional (or any other) interval. Its disadvantage is that it cannot give a predictive interval
with exact credibility: all intervals will have a credibility distribution, though this converges
to the predictive coverage with increasing sample size.

A small simulation illustrates this. The effect of sample size on the credibility of the 95%
predictive interval is shown in two graph panels. Figure 6 shows 10,000 posterior draws of
μ and σ for sample sizes n = 5, 10, 20 and 50, with the same data mean of 1 and SD of 2.
Figure 7 shows the posterior cdfs of the 10,000 draws of γ from the parameter draws. Table 1
gives the medians and central 95% intervals for the credibility of the 95% predictive interval
from the predictive distribution, extended to n = 2 and 100.

For samples of 50 or more the median credibility is close to the predictive coverage,
and the credibility distribution converges to it as n increases and the posterior for μ and σ

concentrates on the sample estimates. The strange appearance of the interval for n = 2 is a
consequence of the very long tails of the Cauchy and χ2

1 distributions. From a sample of 2
we learn almost nothing about a new Y .
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Table 1 Median and 95%
credibility intervals

n 2.5% Median 97.5%

2 0.303 1.000 1.000

5 0.659 0.991 1.000

10 0.782 0.972 0.999

20 0.848 0.961 0.995

50 0.893 0.954 0.984

100 0.912 0.952 0.977
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Fig. 6 10,000 posterior draws of μ and σ . a n = 5. b n = 10. c n = 20. d n = 50
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Fig. 7 Cdfs of 10,000 posterior draws from the posterior credibility distribution. a n = 5. b n = 10. c n = 20.
d n = 50

5 Conclusion

As heterodox Bayesians, we see the claimed need for at least asymptotic coherence of
Bayesian and frequentist interval procedures from a different angle. The “need” is clearly felt
by frequentists: most Bayesians are not concerned about the repeated sampling properties of
their credible intervals since these are irrelevant to the interpretation of the precision with the
given sample. What concerns the heterodox Bayesians is that confidence coefficients may
be much higher than credibility, and therefore that scientists relying on confidence interval
procedures for their precisions need to ensure that the credibility of their quoted intervals
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is adequate for their purposes: credibility is the scientifically more important expression of
precision.

Since Laplace’s Law of Succession it has become standard Bayesian practice to predict
new values from the posterior predictive distribution. The simple binomial case shows the
difficultywith this approach: the summarisation of the posterior by itsmean. The prediction of
continuous variables is more complicated, but the same issue appears: the posterior predictive
distribution is again the posterior mean of the conditional predictives, and so the posterior
predictive interval is the mean of the conditional predictive intervals.

Bayesians have been rightly critical of one-numbermeanormedian summaries of posterior
distributions of model parameters: their criticism needs to be extended to this aspect of
prediction. Jeffreys (1961, p.53) long ago emphasised this point:

Incorrect results have often been obtained by taking an expectation as a prediction of an
actual value; this can be done only if it is also shown that the probabilities of different
actual values are closely concentrated about the expectation. …
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