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Abstract Following theworkofGini,DagumandTukey, this paper extendsGini’sTransvari-
ation measure for comparing two distributions to the simultaneous comparison of many
distributions. In so doing, it develops measures of absolute and relative similarity, dissimilar-
ity and exceptionality together with techniques for assessing particular aspects of variations
across those distributions. These techniques are exemplified in a study of differences between
the income distributions of males and females drawn from Metis, Inuit, North American
Indian and Non-Aboriginal constituencies in Canada in the first decade of the twenty-first
century. While the distributions were becoming increasingly similar (interpreted as improv-
ing equality of opportunity), this was occurring primarily at the center of the distribution. At
the extremes, the distributions were diverging, suggesting that such improvements in equality
of opportunity were not for all.

Keywords Relative transvariation · Dissimilarity · Exceptionality

1 Introduction

The similarity or dissimilarity of a collection of K (>2) distributions, f (x), g(x), h(x) . . . , of
the randomvector x (where x could be a scalar or vector) is of interest inmanyfields.Wherever
the degree of heterogeneity of types is an issue, measures and tests of the degree of similarity–
dissimilarity would be of great use especially in the era of big data. Notions of dissimilarity
in many distributions are closely related to Gini’s Transvariation Measure for two discrete
distributions [34,35], which was generalized to many discrete distributions by Dagum [14,
15]. In economics this interest ranges from concerns regarding the similarity–dissimilarity
of the outcome distributions of agents in different circumstance classes in the equality of
opportunity and social justice literature to the similarity–dissimilarity of technologies in the
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empirical growth literature to the commonality of valuation distributions in first price auction
theory literature. In economics and sociology literatures suchmeasures would have relevance
for social classification [10,12], social mobility [36] and segregation [7,13,18,19,21,27,30,
32,43]. In the political science literature on polarization [33], conflict, and diversity [22–
24,51] the subject matter has much to do with increasing or diminishing dissimilarities of
the latent subgroup distributions of an overall population distribution [20].

Perception of similarities and differences from particular viewpoints is also of interest.
In the population ethics literature [8,11,16,17] versions of the constituency principle1 argue
that only the views of a particular population or constituency (essentially those affected by
the comparison) are relevant in assessing goodness (or badness) of states. Underlying this
principle is the notion that “better-ness” from the point of view of one population may differ
from the corresponding view of another, apparently unaffected, population. Discourse in
this literature was pursued in the context of successive populations, but similar ideas can
be explored in the context of contemporaneous populations or constituencies. For example,
it is this doctrine that underlays the Focus Axiom in poverty analysis wherein only the
incomes of the poor constituency should matter in the poverty calculation. As a principle, it
is strong in the sense that only the views of one constituency are of account, the views of all
other constituencies have zero weight in the calculus. Weaker versions of the constituency
principle would see primacy given to the views of the affected population with lower but non-
zero weight attached to other constituencies. Extending the poverty measurement analogy,
higher orders of the Foster et al. [29] family of poverty measures attach increasing weight to
constituencies further below the poverty line. This in turn leads to the idea of intensifying
the focus, or magnifying in some sense, particular aspects of the distribution of interest to
those constituencies with primacy.

Here these ideaswill be explored and extended to comparisons of continuous distributions,
to the idea of relative dissimilarity and to the idea of comparisons of dissimilarity of particular
features of distributions all of which could potentially be multivariate. In Sect. 2 the concepts
will be developed in the context of Gini’s original two-distribution world. Various extensions
to the many distribution case are considered in Sect. 3. The comparison techniques will be
exemplified in a study examining differences by gender in Aboriginal and non-Aboriginal
constituency income distribution in Canada in the twenty first century in Sect. 4. Section 5
concludes.

2 Dissimilarity in a two-constituency world

Gini’s Transvariation Measure, “GI N IT D”, for comparing two discrete distributions fi
and gi defined on i outcomes i = 1, . . . , I where fi , gi are respectively the probabilities of
outcome “i” occurring is given by:

GI N IT D = 1

2

I∑

i=1

| fi − gi |

It can be shown that GI N IT D is bounded by 0 and 1. In addition, when f and g have
mutually exclusive support, GI N IT D = 1 (since

∑
i | fi − gi | = ∑

i fi + ∑
i gi = 2), and

when f and g are identical GI N IT D = 0. A convenient way of writing GINITD in what
follows is:

1 The constituency principle avers that the goodness of alternative states should be judged from the point of
view of some identified constituency of individuals who alone are judged to be the relevant and interested
parties to the outcome of the comparison exercise.
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GI N IT D = 1

2

I∑

i=1

| fi − gi | = 1

2

I∑

i=1

(max( fi , gi ) − min( fi , gi )) = 1

2
(θU − θL),

where θU = ∑I
i=1 max( fi , gi ) and θL = ∑I

i=1 min( fi , gi ).
Noting that θU = 2 − θL this can be rewritten as:

GI N IT D = 1 − θL (1)

The continuous version of Gini’s Transvariation Measure, GI N ITC , is similarly related to
the integral of absolute differences between two PDFs, f (x) and g(x), each defined on the
real line and is similarly related to the overlap measure θL(= ∫

min{ f (x), g(x)}dx):

GI N ITC = 0.5

∞∫

−∞
| f (x) − g(x)| dx = 1 − θL (1a)

In both continuous and discrete cases θ can be shown to be asymptotically normally dis-
tributed [2,6] and, since θ ∼a N (θ, V ), then bothGI N IT D andGI N ITC ∼a N (1 − θ, V )

thus facilitating inference. The distribution and properties of the latter parameter, θ , which
is a measure of the degree of overlap or commonality between the distributions, have been
provided for the two distribution multivariate case in Anderson et al. [2]. In essence, when
Kernel estimates of f (x) and g(x) are employed it is shown that:

√
n
(
θ̂L − θL

) − an ∼ N (0, v)

Thus from the relationship between GI N IT and θL in Eq. (1) above it follows that:
√
n
(

̂GI N IT − GI N IT
) + an ∼ N (0, v)

Here an , a bias correction term and v, the variance are dependent on the “contact set”, the
set of points where f (x) = g(x), when this set is empty or of measure 0 the bias term is 0
and v is given by:

v = h(n){p f (1 − p f ) + pg(1 − pg) + (p f,g − p f pg)},
where p f is the estimated probability that f (x)−g(x) < −c, pg is the estimated probability
that f (x) − g(x) > c and p f,g is the estimated probability that −c < f (x) − g(x) < c for
some tuning parameter c. (Note the last term is omitted if the random variables under f and
g are not jointly distributed).

A convenient way of thinking about this comparison is to note that it can be written as:

GI N ITC = 0.5

∞∫

−∞
| f (x) − g(x)| dx = 0.5

∞∫

−∞

∣∣∣∣
f (x)

g(x)
− 1

∣∣∣∣ g(x)dx

= 0.5Eg(x)

(∣∣∣∣
f (x)

g(x)
− 1

∣∣∣∣

)

similarly:

GI N IT D = 0.5
I∑

i=1

∣∣∣∣
fi (x)

gi (x)
− 1

∣∣∣∣ gi (x)

= 0.5Eg(x)

(∣∣∣∣
f (x)

g(x)
− 1

∣∣∣∣

)
(2)
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GI N IT then has the interpretation of half of the first moment or expected value of
∣∣∣ f (x)
g(x) − 1

∣∣∣
under distribution g(x).2 In essence it is a first moment comparator and the sample average
provides an immediate estimator with a method of moments interpretation.

2.1 Importance weighted comparisons in a two distribution world

Often interest will focus on particular aspects of the differences between f (x) and g(x) in
various regions of x , for example differences at the extremes of a reference distribution or
differences at the center of a reference distribution. Alternatively, interest may focus on the
differences between f (x) and g(x) in high frequency or low frequency regions of x according
to the reference or target distribution. For convenience suppose the reference distribution h(x)
has positive support over the whole domain of x then, for some chosen value λ, importance
weighted versions of GI N IT D and GI N ITC may be written as:

GI N ITC I =
∞∫

−∞
| f (x) − g(x)| h(x)λ

Eh(x)
(
h(x)λ

)dx

= Eg(x)

(∣∣∣∣
f (x)

g(x)
− 1

∣∣∣∣
h(x)λ

Eh(x)
(
h(x)λ

)
)

= 1

Eh(x)
(
h(x)λ

) Eg(x)

(∣∣∣∣
f (x)

g(x)
− 1

∣∣∣∣ h(x)λ
)

GI N IT DI =
I∑

i=1

| fi − gi | hλ
i

Eh(x)
(
hλ
i

)

= Eg(x)

∣∣∣∣
fi
gi

− 1

∣∣∣∣
hλ
i

Eh(x)
(
hλ
i

)

= 1

Eh(x)
(
hλ
i

) Eg(x)

(∣∣∣∣
fi
gi

− 1

∣∣∣∣ h
λ
i

)

Whereas the Gini Transvariation Measure can be seen as cumulating the absolute differ-
ence between the functions over all possible outcomes, the importance weighted versions
can be seen as cumulating the “importance” weighted absolute difference between the dis-
tributions.3 Generally h(x) will be related to g(x) or f (x) and, when h(x) is a regular

distribution or a cumulative distribution, the weighting function h∗(x) = h(x)λ

Eh(x)(h(x)λ)
when

applied to the regular distribution f (x) can be seen to transform it to another distribution
f ∗(x) = h∗(x) f (x) which retains all of the properties of a regular probability distribution

2 Note also the close relationship to Hellinger Distance [39,49]:

H2 ( f, g) = 1

2

∫ (√
f (x) − √

g(x)
)2

dx = 1 −
∫ √

f (x)g(x)dx

= 1 −
∫ √

f (x)

g(x)
g(x)dx =

∫ (
1 −

√
f (x)

g(x)

)
g(x)dx

= Eg(x)

(
1 −

√
f (x)

g(x)

)

3 This should not be confused with standardizing by a location measure, see for example [28].
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( f ∗(x) ≥ 0, 0 ≤ F∗(x) ≤ 1)with aspects of f (x) amplified ormuted according to the choice
of h(x) and λ. Thus the importance weighted version may be written as in Eq. (2) in terms
of transformed distributions, retaining all of the properties of that measure (boundedness
between 0 and 1, association with the overlap measure including its asymptotic normality,
etc.). As a result, the Importance Weighted Gini Transvariation Measure may be written as:

GI N ITC I = 0.5

∞∫

−∞

∣∣ f ∗(x) − g∗(x)
∣∣ dx = 0.5

∞∫

−∞

∣∣∣∣
f ∗(x)
g∗(x)

− 1

∣∣∣∣ g
∗(x)dx

= 0.5Eg∗(x)

(∣∣∣∣
f ∗(x)
g∗(x)

− 1

∣∣∣∣

)

similarly:

GI N IT DI = 0.5
I∑

i=1

∣∣∣∣
f ∗
i (x)

g∗
i (x)

− 1

∣∣∣∣ g
∗
i (x) = 0.5Eg∗(x)

(∣∣∣∣
f ∗(x)
g∗(x)

− 1

∣∣∣∣

)
(2a)

In the following λ = −0.5 is considered,4 a choice inspired by, and in the spirit of, entropic
measures of variation such as in [31,46,52,56]. For example, by letting h(x) = g(x), the
continuous version of Thiel’s EntropicMeasure (T E) can be related to the continuous version
of Pearson’s Chi Squared Dissimilarity Measure (PCH I ) as follows:5

T E =
∫

f (x) ln

(
f (x)

g(x)

)
dx =

∫
f (x) ln

(
f (x) + g(x) − g(x)

g(x)

)
dx

=
∫

f (x) ln

(
1 + f (x) − g(x)

g(x)

)
dx ≈

∫
f (x)

(
f (x) − g(x)

g(x)

)
dx

=
∫ (

( f (x) − g(x))2

g(x)

)
dx = PCH I

Note that the argument under the integral sign in GI N ITC I can be seen to be the square
root of the argument under the integral sign of PCH I . Intuition for Pearson-type measures
may be gleaned from noting that:

PCH I =
∫ (

( f (x) − g(x))2

g(x)

)
dx =

∫ (
( f (x) − g(x))2

(g(x))2

)
g(x)dx

=
∫ (

( f (x))2 + (g(x))2 − 2 f (x)g(x)

(g(x))2

)
g(x)dx

=
∫ (

( f (x))2

(g(x))2
+ 1 − 2

f (x)

g(x)

)
g(x)dx

=
∫ (

f (x)

g(x)
− 1

)2

g(x)dx

= Eg(x)

[(
f (x)

g(x)
− 1

)2
]

(3)

4 It is interesting to note that Tukey [57] proposed visualizing distributions in terms of a “Rootgram” since
it increased the visual importance of low frequency outcomes and muted the importance of high frequency
outcomes. Thus rescaling can be seen as viewing distributions relative to the Rootgram of the target distribution
standardized to make it conformable with a regular probability distribution. See also [37].
5 A similar algebra can readily demonstrate the relationship in the discrete paradigm.
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PCH I in turn has the interpretation of the expected value under g(x) of
∣∣ f (x)
g(x) − 1

∣∣2 yielding
an interpretation of the statistic as a second moment measure of

∣∣ f (x)
g(x) − 1

∣∣ with the sample

average of
∣∣ f (x)
g(x) − 1

∣∣2 providing an estimator of the dissimilarity parameter with a method

of moments interpretation.6

Importance weighting can be seen as weighting the differences between f (x) and g(x)
by some monotonic function of the “target” function so that for λ < 0, a given difference
from a small target plays a bigger role in the calculation than the same order of difference in
a correspondingly larger target (for λ > 0 the reverse is true). In essence the differences are
weighted with respect to some reference distribution (in this case h) and the statistic can thus
be considered a “relative” dissimilarity measure where differences are measured relative to
the target measure h(x).

Choice of the target distribution is a matter of some consequence, some special cases are
obvious. When the target measure h(x) is set equal to either g(x) or f (x), PCH I has the
form of a classic Pearson goodness-of-fit test of distributional form or independence where
the target distribution is the null hypothesized distribution. Suppose g and f are empirical
distributions, such that f (x) first-order stochastically dominates g(x) then measures with a
target g(x) are dissimilarity measures relative to the poor distribution and measures with a
target f (x) are dissimilarity measures relative to the non-poor distribution. When h(x) is the
sample size weighted sum of f (x) and g(x), the statistic has the form of a goodness-of-fit test
for homogeneity of distributions, in essence f and g are being compared to some “average”
distribution. Generally, when the distributions f and g are not identical, the dissimilarity of
the distributions f (x) and g(x) in terms of f (x) will not be the same as the dissimilarity of
those distributions in terms of g(x).7

3 Indices of dissimilarity in a many distribution world

These ideas can be extended to the comparison of many distributions in either continuous or
discrete paradigms. (Intuition suggests that the above statistics will work for parametric, semi
parametric and non-parametric representations of the distributions.)8 Consider first continu-
ous scalar x with continuous support on the interval {a, b} and discrete scalar x with support
on the set of non-negative integers with a set UK of K distributions f (x), g(x), h(x), . . .
under consideration:

For x continuous:

DI SC =
∫ b
a max ( f (x), g(x), h(x), . . .) dx − ∫ b

a min ( f (x), g(x), h(x), . . .) dx

K

6 Yalonetsky [60] in comparing the Overlap with the Pearson Measure can be construed as comparing the
performance of the two moment estimators.
7 For this to be the case f (x) and g(x) have to be such that:

Eg

((
f (x)

g(x)

)2
)

− 2Eg

((
f (x)

g(x)

))
= E f

((
g(x)

f (x)

)2
)

− 2E f

((
g(x)

f (x)

))

A sufficient condition for this is that f (x) and g(x) should be reflective of each other around some point x∗
so that f (x∗ + δ) = g(x∗ − δ) for all δ since then for every f (x1)

g(x1)
there will be a corresponding g(x2)

f (x2)
of

equal value with the same importance weight in the calculation.
8 Dagum [14,15] firstmooted the idea of extendingGini’s Transvariation tomany distributions in a discretized
paradigm.
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For x discrete:

DI SD =
∑∞

x=0 max ( f (x), g(x), h(x), . . .) − ∑∞
x=0 min ( f (x), g(x), h(x), . . .)

K

Note that 0 ≤ DI S ≤ 1. In particular, for complete dissimilarity (perfect segmentation in the
terminology of Ref. [61]) DI S = 1, and for complete similarity (all distributions identical)
DI S = 0. This index may be construed as the distributional analogue of a range statistic
for a variable measuring as it does the cumulative distances between the upper and lower
extremes of the collection of distributions over the values of x . The asymptotic distribution
of Eq. (3) and bootstrapping techniques for standard errors are developed in [5].

Conceptually these indices depend upon two components θU and θL given by:

θU =
∫ b

a
max ( f (x), g(x), h(x), . . .) dx

{
=

∞∑

x=0

max ( f (x), g(x), h(x), . . .) for x discrete

}

θL =
∫ b

a
min ( f (x), g(x), h(x), . . .) dx

{
=

∞∑

x=0

min ( f (x), g(x), h(x), . . .) for x discrete

}
(4)

When dissimilarity is complete (perfect segmentation of all distributions) θU = K and
θL = 0. When similarity is complete (perfect overlap of all distributions) θU = 1 and
θL = 1. When U is the set of outcome distributions for K inheritance classes, M = 1 −
DI S can be interpreted as a mobility index with M = 1 representing perfect mobility
(outcome distributions identical for all inheritance classes) andM = 0 representing complete
immobility (inheritance class outcome distributions have no common points of support).
When U is the set of outcome distributions for K social classes whose alienation is ordinal
measured on x , DI S can be considered a polarization measure. If dissimilarity from a base
or target distribution, for convenience refer to it as g(x), is of interest, following Tukey [57]
for interpretational purposes, one could contemplate:

For x continuous:

DI SC

=
∫ b
a max ( f (x), g(x), h(x), . . .) g(x)−0.5dx−∫ b

a min ( f (x), g(x), h(x), . . .) g(x)−0.5dx

K

For x discrete:

DI SD

=
∑∞

x=0 max ( f (x), g(x), h(x), . . .) g(x)−0.5−∑∞
x=0 min ( f (x), g(x), h(x), . . .) g(x)−0.5

K
(5)

So for example g(x) could be a weighted average of all the other distributions i.e. a mixture
where the weights reflected proportions of the population under the corresponding distri-
bution (commonly used in the segregation literature (see for example [43] and references
therein). Alternatively, g(x) could be the “poorest” or “richest” distribution in a collection
of distributions or the “median” distribution. In effect “inequality in distribution” or degrees
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of difference from a distribution g(x)9 is being measured where g(x) would be the basis of
the “importance” weighting function g∗(x) as in h∗(x) above.

These may be compared with the “many distribution” analogue to the Pearson goodness-
of-fit test [1] which for K distributions fk(x) k = 1, . . . , K may be written in the continuous
case as:

PT = 1

K − 1

K∑

k=1

∫
( fk(x) − g(x))2

g(x)
dx,

where g(x), the target distribution, is usually of the form:

g(x) =
K∑

k=1

wk fk(x) where
K∑

k=1

wk = 1

Following Eq. (3) above this multivariate Pearson Test has a similar Method of Moments
interpretation:10

1

K − 1

K∑

k=1

Eg(x)

[(
fk(x)

g(x)
− 1

)2
]

.

3.1 Specific dominance based indices

Stochastic dominance tests have been employed in a wide variety of situations, particularly in
the empirical wellbeing and finance literatures, where there is a specific theoretical rationale
for comparing distributions at a particular order of dominance in order to see how different
they are in that particular aspect. In empirical welfare analysis different orders of dominance
correspond to specific types of wellbeing measure. In finance different orders of dominance
correspond to specific types of risk class.

The condition for the dominance of G() by F() at order J is given by:

FJ (x) ≤ GJ (x) ∀ x ∈ [a, b] and FJ (x) < GJ (x) for some x ∈ [a, b]
where

Fi (x) =
∫ x

a
Fi−1(z)dz and F0(x) = f (x) (similarly for Gi (x)) (6)

Essentially the condition requires that the functions FJ (x) and GJ (x) do not cross so that
one, the dominating distribution, is “unambiguously” below the other.11

A variety of tests have been proposed for these dominance conditions at various orders. It
may readily be seen that successive orders of dominance attach increasingweight/importance
to lower values of x . If concern was with differences at high values of x one would work
with the condition for the dominance of G() by F() at order J given by:12

FJ (x) ≤ GJ (x) ∀ x ∈ [a, b] and FJ (x) < GJ (x) for some x ∈ [a, b],
9 For example, in the equality of opportunity literature, concern is for inequality of outcome distributions
across inheritance classes where the concern may be differences from the median inheritance class outcome
distribution or the richest or poorest inheritance class distributions.
10 All of the above indices can be shown to satisfy piecewise continuity, scale invariance, scale independence
and normalization axioms for inequality indices. See for example [42,54,55].
11 Also related here is the Integrated Squared Difference approach [38].
12 This is the condition used in the finance literature for risk loving behavior.
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where

Fi (x) =
∫ b

x
Fi−1(z)dz and F0(x) = f (x) (similarly for Gi (x)) (7)

Essentially the condition requires that the functions FJ (x) and GJ (x) do not cross so that
one, the dominating distribution, is “unambiguously” below the other.

For the indices of similarity for the collection of k distributions of the variable
x, f (x), g(x), h(x), . . . at the J th order we construct UJ (x) = maxx
(FJ (x),GJ (x), HJ (x), . . .) and L J (x) = minx (FJ (x),GJ (x), HJ (x), . . .). The maximum
range of variation of the collection of distributions at the J th order is given by the J th order
distance measure:

DI SS(J ) =
b∫

a

(UJ (x) − L J (x))dx

To provide a complete ordering of a collection of distributions at a particular order one could
also contemplate “proximity to the boundary” indices (see [4,5]) for a particular distribution
say f (x) of the form:

PROXUJ (FJ (x)) = 1 −
∫ b
a (UJ (x) − FJ (x))dx

DI SS(J )

PROXL J (FJ (x)) = 1 −
∫ b
a (FJ (x) − L J (x))dx

DI SS(J )
,

where PROXUJ (FJ (x)) {PROXL J (FJ (x))} measures proximity to the upper {lower}
boundary.

3.2 Distribution separation measures

The degree of separation between the classes reflecting increasedwithin class homogeneity or
better identified group classification in a polarization sense is of interest. To fix ideas, suppose
class distributions are ordered by some location measure, then one minus the average overlap
of contiguous classes is a useful measure, as is the overlap of distributions at the extremes.
These measures are closely associated with the measures of polarization in Ref. [20],13 and
the segmentation terminology of Ref. [61] in the following sense.

When the kth pair of contiguous lower and upper class distributions, fL(x) and fU (x)
respectively, do not overlap (i.e. θLUk = ∫

min( fL(x), fU (x))dx = 0), they are per-
fectly segmented in the terminology of Ref. [61]. When they overlap perfectly (i.e. θLUk =∫
min( fL(x), fU (x))dx = 1) separate distributions cannot be identified. Thus 1 − θLUk

provides a measure of the polarization or distance between two contiguous groups and
1 − θ = K−1 ∑

k(1 − θLUk), the average over all pairs of contiguous groups, provides
an index of polarity in the collection of groups. When all pairs are perfectly segmented the
average of these overlaps will be 0 and 1 − average θ will be 1. When all classes overlap
perfectly and cannot be separately identified it will be 0. In contrast the extent of overlap of
the extreme distributions yields a lower bound to the average overlap, reflects the extent to
which the extremes have polarized, and provides a measure of potential for polarization in
the collection of classes.

13 These measures can be shown to be the average polarization distance between all pairs of observations
[3].
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3.3 “Leave one out” measures and tests of exceptionality

Where concern regarding exceptionality (the distinct difference of one distribution from a
collection of others) is of interest a “leave one out test” i.e. a change in the dissimilarity
or overlap statistic is likely to have particular power. If concern is about differences in the
lower regions of the distributions, higher orders of dominance comparators are the relevant
instrument since they implicitly weight lower components of the indices more heavily. If
concern is about differences in the higher regions of the distributions, higher orders of dom-
inance comparators for the counter-cumulative densities are the relevant instrument since
they implicitly weight higher components of the indices more heavily.

In general, when some of the groups are segmented or non-overlapping in distributionwith
all other groups they may be thought to be exceptional. Leaving them out of the calculus, but
not reducing K , would reduce DI S by at most the proportion of the number of segmented
groups. If the segmented groups were first order dominated by and first order dominated
other distributions in the collection, that is they were internal to the collection, they would
be unexceptional and their omission would have no effect on DI S (if K was not reduced). In
general, for exceptionality measures, interest focuses on DI S−DI SO K1

K where DI SO relates
to the many group dissimilarity measure with K − K1 classes omitted. If the omitted classes
were perfectly segmented, the biggest contribution to the transvariation of K distributions

that the K − K1 constituencies could make would be K−K1
K , thus DI FO = K

(
DI S−DI SO K1

K

)

K−K1
provides a [0, 1] bounded measure of the degree of segmentation of a group of K − K1

subgroups in a K constituency comparison.

4 An application: comparing the incomes of Aboriginal and
non-Aboriginal constituencies in Canada in the twenty first century

Canada’s constitution recognizes three Aboriginal peoples: North American Indians, Inuit,
and Metis.14 It is well known that Aboriginal peoples in Canada have, on average, lower
incomes than non-Aboriginal people. For example, in comparison with non-minority native-
born workers with similar characteristics, Aboriginal women faced income and earnings gaps
of 10–20% between 1995 and 2005, while Aboriginal men faced gaps of 20–50% [47]. Less
commonly known, however, is that there are also significant disparities between Aboriginal
identity groups within Canada (NAEDB [44]; NAEDB [45]). The Right Honourable Paul
Martin, a former Prime Minister, argued that Canada faced “a moral imperative” to close the
income gaps that exist between Aboriginal and non-Aboriginal people—“the descendants of
the people who first occupied this land deserve an equal chance to work for and to enjoy the
benefits of our collective prosperity” [59, p. vi], prompting a variety of government policies
directed at improving the lot of aboriginal peoples.15

To check the response to government policies, income gaps have been tracked and doc-
umented over time. The previous literature tended to emphasize average incomes; here the

14 In this paper, we maintain the terminology used by Statistics Canada in their codebooks to identify
Aboriginal individuals belonging to these three groups.
15 These policies include, for example, the Affordable Housing Initiative (2001–2007), which helped fund
the “construction and renovation of affordable housing units” [9, p. 67] and the Urban Aboriginal Strategy
aimed at improving the socio-economic status of urban Aboriginals [9]. Other policies include Aboriginal
Head Start in Urban and Northern Communities [41], Aboriginal Head Start on Reserve, and the First Nations
and Inuit Child Care Initiative [40].
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focus is on differences in the distributions of incomes over the 8 constituencies of Inuit,
Metis, North American Indian and non-Aboriginal of each gender. In the spirit of Paul Mar-
tin’s “equal chance” declaration, the issue is very much one of equality of opportunity, that
income distributions should be independent of Aboriginal status, i.e. income distributions
conditional on Aboriginal status should be identical. An index of the degree of variation in
these conditional income distributions provides a measure of the extent to which equality of
opportunity prevails in the sense of similar outcomes across Aboriginal and non-Aboriginal
communities by gender. Usually this is examined in the context of a k × k transition matrix
(see for example [26,50,53–55,58]). Here the outcome state is continuous i.e. incomes have
not been categorized with the consequent loss of information. Furthermore, an adaptation
of Tukey’s “Rootgram” approach facilitates extra focus on particular aspects of the distribu-
tion, magnifying differences within regions of interest in the comparison distributions. By
setting λ at −0.5 and setting h(x) to be equal to one of the probability density or cumulative
densities of interest, differences in low frequency regions in the former case and differences
in the lower income strata in the latter case are magnified. To exemplify this, the extent
to which Canadian Aboriginal and non-Aboriginal groups have similar-dissimilar income
distributions and how those differences have progressed over time is studied.

4.1 Data

Data from the 2001 and 2006 Census and the 2011 National Household Survey are employed
to construct various weighted and unweighted transvariation estimates for the three observa-
tion years.16 Statistics Canada’s 2001 and 2006 censuses provide detailed data on the social
and demographic characteristics of the Canadian population. Each census is composed of
two parts: the long-form and the short-form, with fewer questions the short-form census
requires less time to complete than the long-form census. In 2001 and 2006, the short-form
census was delivered to 100% of households, while the long-form census was distributed
to one-fifth of Canadian households. Both surveys were mandatory. The long-form census
had a response rate of about 94% in 2006 [48]. In 2011, the short-form census was delivered
as usual, but the 2011 National Household Survey (NHS) replaced the long-form census,
the main differences being that it was voluntary and distributed to 33% of households. The
response rate, unsurprisingly, dropped precipitously to 69% [48].

4.2 Results

The relative positions of Aboriginal and non-Aboriginal constituencies in the income distri-
bution have long been an issue especially with respect to their relative progress. 8 identifiable
subgroups were examined for the years 2000, 2005 and 2010: the groups were male or female
members of Inuit, Metis, North American Indian and non-Aboriginal Societies.17 Nominal
incomes for individuals over the age of 15 were employed in the analysis. Note there was
some top and bottom coding. Values greater than the 99th percentile in each geographical

16 As noted by Feir andHancock [25], some caution is requiredwhen usingAboriginal data from theCensuses
and the NHS. First, a number of reserves in Canada are not enumerated. Second, the structure of the ethnic
origin question has changed a number of times. Finally, there is the potential impact of intra-generational
ethnic mobility. Each plausibly causing exogenous variation in the size and characteristics of the Aboriginal
population.
17 The incomes reported in the 2001, 2006, and 2011 surveys are based on individual earnings in 2000, 2005,
and 2010, respectively.
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Table 2 Relative male–female
total income, Aboriginal and
non-Aboriginal, 2000, 2005, and
2010

2000 2005 2010

Non-Aboriginal 1.6 1.6 1.5

North American Indian 1.3 1.2 1.2

Metis 1.5 1.5 1.5

Inuit 1.1 1.1 1.1

Table 3 Coefficients of
variation, total income,
Aboriginal and non-Aboriginal,
2000, 2005, 2010

2000 2005 2010

Non-Aboriginal

M 0.89 1.60 1.40

F 0.87 1.08 1.03

North American Indian

M 1.02 1.34 1.31

F 0.92 1.04 1.03

Metis

M 0.90 1.13 1.18

F 0.90 1.02 0.92

Inuit

M 0.94 1.06 1.08

F 0.96 1.05 1.06

region and gender were top coded and some negative values were down coded to a low
threshold.

Table 1 presents basic statistics for income by identity and gender. The data show that male
incomes are higher than female incomes for all four groups across all 3years. Non-Aboriginal
people face the largest gap between male and female incomes (Table 2). Metis have the next
highest male–female relative income measure, followed by North American Indians and,
finally, the Inuit. One surprising result is the consistency of the relative male–female income
gap across this decade for all four groups. There were slight declines for non-Aboriginal
people and North American Indians, but the Metis and the Inuit had the same level of relative
male–female income in all 3years.

Coefficients of variation (Table 3) show that in 2000, non-Aboriginal people of both
genders had lower coefficients of variation than all three Aboriginal groups. In 2005, the
reverse holds true. The data for males in 2010 suggest that non-Aboriginal people continued
to have higher coefficients of variation, but the gap was declining. For females, the picture
is less clear, as the highest coefficient of variation was among the Inuit, while the lowest
coefficient of variation was among the Metis.

The data also show that coefficients of variation in 2005 are higher than coefficients of
variation in 2000, while coefficients of variation in 2010 are lower for non-Aboriginal people,
North American Indians, and female Metis, but higher for male Metis and the Inuit. The log
income distributions for the 8 constituencies together with upper and lower boundaries for
the years 2000, 2005 and 2010 respectively are illustrated in Figs. 1, 2 and 3.

Table 4 reports theUnweightedTransvariationMeasures for 8 individual constituent distri-
butions (combined), 4 female constituent distributions, 4 male constituent distributions and 4
gender integrated constituent distributions. In addition it reports the corresponding Transvari-
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Fig. 1 Distribution of log income, Aboriginal and Non-Aboriginal by Gender in 2000

Fig. 2 Distribution of log income, Aboriginal and Non-Aboriginal by Gender in 2005

ation Measures for the Aboriginal constituencies. Firstly, from the full sample results, note
that there is substantially more distributional variability in the males than in the females
over all 3 years and there is a general trend in the reduction of distributional variability over
time. Such trends in Aboriginal group results are less discernable. Over the whole period, the
variation across Aboriginal categories in their distributions is much lower than for the full
collection, male distributional differences have tightened somewhat in 2010. But considering
the 8 distributions as a collection, there has been a considerable tightening, signalling the
closing gaps between the extreme distributions. This overall may be seen as an improvement
of equality of opportunity indexed by 1 − DI S.

Turning to the exceptionality results Table 5 reports the exceptionalitymeasures for each of
the constituencies. In the context of 8 constituencies the non-Aboriginal groups are the most
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Fig. 3 Distribution of log income, Aboriginal and Non-Aboriginal by Gender in 2010

exceptional, that is to say their distribution contributes most to the transvariation measure,
generating the biggest drop in transvariation when it is left out, the impact is greater when
male, female and male–female combined distributions are considered but its omission is
ubiquitously more important than the omission of any other group.

With regard to trends, the overriding trend in the 8 constituency analysis is a reduction
in the exceptionality of the non-Aboriginal group and the increasing exceptionality of the
North American Indian group. These results are a consequence of the non-Aboriginal group
being the primary constituency in the lower boundary (i.e. the highest income group) and
North American Indians being the primary constituency in the upper boundary (i.e. the lowest
income group). Thus it can be deduced that improvements in equality of opportunity have
been achieved largely as a result of reductions in the exceptionality of the non-Aboriginal
constituencies.

4.3 Importance weighted transvariation measures

Importance weighting presents an opportunity to assess aspects of transvariation with respect
to particular aspects of distributions relevant to particular groups. First importance weighting
with respect to the full societal distribution is explored, then with respect to the Aboriginal
communities, then with respect to non-Aboriginal communities. Two types of weighting are
entertained, weighting with respect to the probability density function and weighting with
respect to the cumulative density function. The former will emphasize variations in low
density regions of the focus distribution which, given the foregoing figures, will be in the
low and high income regions of the focus distribution. The latter emphasizes the low income
regions of the focus distribution. The results are reported in Table 6.

The full societal PDF focus reveals increased variation in the tails of the distribution in the
middle of the decade, which become attenuated at the end of the decade. The gender specific
analysis reveals males having the same trend, whereas females have the opposite trend,
which nets out when the genders are aggregated. The cumulative density results are similar
suggesting this is in essence a lower tail issue. Turning to the non-Aboriginal and Aboriginal
focus, an increasing trend in distributional variation in the tails is observed in virtually all
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Table 4 Unweighted transvariationmeasures, Aboriginal andNon-Aboriginal byGender in 2000, 2005, 2010

2000 2005 2010

Full sample

MNA, FNA, MI, FI, MM, FM, MNA, FNAI 0.1083 0.1002 0.0949

FNA, FI, FM, FNAI 0.1114 0.0948 0.1098

MNA, MI, MM, MNAI 0.1533 0.1482 0.1310

MFCNA, MFCI, MFCM, MFCNAI 0.1225 0.1180 0.1167

Aboriginal sample

MI, FI, MM, FM, MNAI, FNAI 0.1063 0.1024 0.1041

FI, FM, FNAI 0.0527 0.0356 0.0567

MI, MM, MNAI 0.0628 0.0664 0.0610

MFCI, MFCM, MFCNAI 0.0474 0.0496 0.0556

MNA male Non Aboriginal, FNA female Non Aboriginal, MI male Inuit, FI female Inuit, MM male Metis,
FM female Metis,MNAI male North American Indian, FNAI female North American Indian,MFCNAmale–
female combined NonAboriginal,MFCI male–female combined Inuit,MFCM male–female combinedMetis,
MFCNAI male–female combined North American Indian

Table 5 Exceptionality of Aboriginal and non-Aboriginal people, change in transvariation measures, total
income, 2000, 2005, 2010

Excluded group 2000 2005 2010

Panel A: Exceptionality of Non-Aboriginal people

Non-Aboriginal, male and female 0.1143 0.0939 0.0673

Non-Aboriginal, female 0.2876 0.2722 0.2693

Non-Aboriginal, male 0.4248 0.3936 0.3410

Non-Aboriginal, male and female combined 0.3476 0.3233 0.2998

Panel B: Exceptionality of North American Indians

North American Indian, male and female 0.0404 0.0341 0.0438

North American Indian, female 0.2611 0.2178 0.2506

North American Indian, male 0.3778 0.3453 0.3080

North American Indian, male and female combined 0.3119 0.2824 0.2795

Panel C: Exceptionality of Metis

Metis, male and female 0.0123 0.0073 0.0063

Metis, female 0.2384 0.1975 0.2256

Metis, male 0.3076 0.3029 0.2646

Metis, male and female combined 0.2504 0.2418 0.2376

Panel D: Exceptionality of Inuit

Inuit, male and female 0.0283 0.0246 0.0292

Inuit, female 0.2571 0.2179 0.2778

Inuit, male 0.3297 0.3210 0.2884

Inuit, male and female combined 0.2619 0.2593 0.2685
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Table 6 Weighted transvariation measures, total income, Aboriginal and non-Aboriginal, 2000, 2005, 2010

2000 2005 2010

Panel A: Population weighting

PDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0128 0.0182 0.0164

FNA, FI, FM, FNAI 0.0160 0.0114 0.0157

MNA, MI, MM, MNAI 0.0196 0.0344 0.0301

MFCNA, MFCI, MFCM, MFCNAI 0.0168 0.0168 0.0171

CDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0187 0.0761 0.0700

FNA, FI, FM, FNAI 0.0254 0.0759 0.0809

MNA, MI, MM, MNAI 0.0296 0.1172 0.1026

MFCNA, MFCI, MFCM, MFCNAI 0.0264 0.0941 0.0901

Panel B: Non-Aboriginal weighting

PDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0225 0.0386 0.0416

FNA, FI, FM, FNAI 0.0286 0.0371 0.0464

MNA, MI, MM, MNAI 0.0358 0.0596 0.0601

MFCNA, MFCI, MFCM, MFCNAI 0.0305 0.0474 0.0533

CDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0204 0.0253 0.0313

FNA, FI, FM, FNAI 0.0206 0.0185 0.0322

MNA, MI, MM, MNAI 0.0309 0.0435 0.0511

MFCNA, MFCI, MFCM, MFCNAI 0.0239 0.0278 0.0373

Panel C: Aboriginal weighting

PDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0190 0.0767 0.0717

FNA, FI, FM, FNAI 0.0262 0.0764 0.0828

MNA, MI, MM, MNAI 0.0305 0.1180 0.1045

MFCNA, MFCI, MFCM, MFCNAI 0.0273 0.0948 0.0919

CDF

MNA, FNA, MI, FI, MM, FM, MNAI, FNAI 0.0101 0.0727 0.0666

FNA, FI, FM, FNAI 0.0127 0.0726 0.0771

MNA, MI, MM, MNAI 0.0148 0.1130 0.0984

MFCNA, MFCI, MFCM, MFCNAI 0.0129 0.0904 0.0862

MNA male non Aboriginal, FNA female non Aboriginal, MI male Inuit, FI female Inuit, MM male Metis,
FM female Metis,MNAI male North American Indian, FNAI female North American Indian,MFCNAmale–
female combined non Aboriginal,MFCI male–female combined Inuit,MFCM male–female combinedMetis,
MFCNAI male–female combined North American Indian

categories of analysis suggesting that while there is increasing equality of opportunity overall
it is occurring mainly in the middle of the distribution and there is increasing variation in
incomes (i.e. increasing inequality of opportunity) in the tails of the distribution. That is to
say that, while average Metis, Inuit, North American Indian and non-Aboriginal people are
becoming increasingly similar in their outcomes the low and high income generators are not.
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In essence while some progress in equality of opportunity has been achieved over the
decade it has not been the experience of low-income earners in the Aboriginal communities.

5 Conclusions

A methodology for analyzing the degree of variation in a collection of distributions has
been presented which facilitates exploration of particular aspects of the differences between
many distributions. The techniques were employed to study differences between the income
distributions of males and females drawn fromMetis, Inuit, North American Indian and non-
Aboriginal constituencies inCanada in the first decade of the twenty first century. It was found
that, while the distributions were becoming more alike (which may be interpreted as increas-
ing equality of opportunity) this was occurring in the middle of the income distributions and
that, at their extremes the distributions were diverging, suggesting that such improvements in
equality of opportunity were not for all, that high and, in particular, low Aboriginal income
earners were experiencing diminishing equality of opportunity over the period. An excep-
tionality analysis revealed that these results were largely driven by non-Aboriginal income
earners contributing the most to the variation in income distributions, followed by the North
American Indian constituency, the former at the high end of the collection of distributions,
the latter at the bottom.
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