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Abstract We introduce an extension of the skew generalized normal distribution called
shape-skew generalized normal distribution. The proposed distribution has certain type of
flexibility which is different from those given in other flexible skew normal distributions. It
possesses properties such as uni/bimodality, skewness, wider range of the Pearson’s excess
kurtosis coefficient (γ2) with respect to skew generalized normal distribution and preserving
the most desirable features of the skew generalized normal distribution. Some basic distri-
butional properties of the new extension including moments, moment generating function,
characterization and relation to other distributions are derived. Also, the multivariate case of
our proposed distribution is introduced and some of its properties are studied. The suitability
of our model is demonstrated via comparisons with other generalized models.
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1 Introduction

Various types of skew-symmetric distributions have been proposed bymany researchers in the
literature. In general, there are four methods of constructing a skew-symmetric distribution
with a symmetric density function [17]. One of these methods is perturbation of a symmetric
density via skewing function, i.e. a skew probability density function (pdf) is created by
multiplying a symmetric pdf with a skewing function. A skewing function is a function
with range [0,1]. In fact, the starting point of all these studies was the skew-normal (SN)
distribution introduced by [5],

f (x; λ) = 2φ(x)� (λx) , x ∈ R, (1)

where φ and � are the pdf and cumulative distribution function (cdf) of the standard nor-
mal, respectively. A random variable X with the above density is denoted by X ∼ SN (λ).
[1] introduced a generalization of (1) with nice properties, called skew generalized normal
distribution (SGN) with pdf of the form

f (x; λ1, λ2) = 2φ(x)�

(
λ1x√

1 + λ2x2

)
, x ∈ R. (2)

Skew-curved normal distribution (SCN) is a SGN distribution with parameter λ2 = λ21. A
number of researchers proposed extension of this density such as [10,12,15,22]. Choudhury
and Abdul Matin [10] added one parameter to SGN family and called it, extended skew
generalized normal (ESGN) distribution with following density

f (x; λ1, λ2, λ3) = 2φ(x)�

(
λ1x√

λ2x2 + λ3x4

)
. (3)

They showed that ESGN distribution is more flexible since the range of Pearson’s excess
kurtosis coefficient of ESGN distribution is wider than those of SN and SGN distributions.
Certain studies was done for creating flexibility (bimodality) in the skew-symmetric family
of distributions by [2,3,9,11,14,16,18–20].

In this paper, an extension of SGN distribution is introduced by adding a shape parameter.
The addition of this parameter make our proposed distribution to be uni-bimodal and have
a wider range of Pearson’s excess kurtosis coefficient. Also, the multivarite version of our
distribution with multimodal shape is introduced.

The rest of the paper is organized as follows. In Sect. 2, we present the definition of our
proposed distribution and various graphs of its pdf. We also derive some important results
about this distribution and its relationship with other distributions. The main properties of
our proposed model such as moments, stochastic representation and characterizations are
also discussed in this section. Section 3 is devoted to maximum likelihood estimation. In
Sect. 4, we introduce the multivarite case of our proposed distribution and study some of its
properties. Finally, in Sect. 5, we use two real data sets to illustrate the usefulness of this
family of distributions.

2 The shape-skew generalized normal distribution and its main properties

In this section, we introduce a flexible class of skew normal distributions generalizing (2).
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Fig. 1 Some possible shapes of SSGN (λ1, λ2, α) distribution by different parameters

Definition 1 The random variable X has shape skew generalized normal distribution if its
density is given by

f (x; λ1, λ2, α) = 2φ(x)�

(
λ1x√

1 + λ2|x |2α
)

x ∈ R, (4)

where λ1 ∈ R, λ2 ∈ [0,∞) are skewing parameters, α ∈ R− {0} is a shape parameter with
the following conditions: if λ1 = 0 then λ2 and α must be zero and one, respectively and if
λ2 = 0 then α = 1. We denote this by X ∼ SSGN (λ1, λ2, α). The resulting distribution
for the special case λ2 = λ21 is called shape skew-curved normal (SSCN) and is denoted by
SSCN (λ1, α).

We like to point out that (4) is indeed a density, due to the fact that skewing function is
constructed based on [17] conditions for skewing function (See page 2). This condition is
presented as follows:

A skewing function is a mapping � : Rk × R
k → [0, 1] such that

�(−z, δ) + �(z, δ) = 1∀z, δ ∈ R
k ,�(z, δ∗) = 1

2
∀z ∈ R

k, (5)

where δ∗ is special case of δ. The parameter δ is a skewness/asymmetry parameter and the
normalizing constant equals 2. If α is zero formula (4) is not a density.

Figure 1 illustrates the various graphs of (4) under different choices of λ1, λ2, α which
shows that SSGNdensity can change to uni/bimodality, high and lowPearsons excess kurtosis
coefficient and heavy tail shape taking different parameters. To see the modality behavior of
a SSGN distribution, we used some graphical methods and observed that the derivative of
the density (4) changes sign at most once from positive to negative when α ∈ {−1, 1} and
changes sign two more times when α /∈ {−1, 1}. Therefore, the distribution in question is
either unimodal or bimodal. Figure 2 shows the effect of α on SSCN (λ, α) and it is compared
with SCN (λ), (α = 1) introduced by the [1]. We see that for the positive shape parameter,
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Fig. 2 Effect of positive or negative shape parameter on SSCN (λ1, α) distribution

the density tends to be more heavy tail and bimodal. On the other hand for the negative shape
parameter, mode of SCN density divides into two modes.

Basic properties of a SSGN (λ1, λ2, α):

Proposition 1 If X ∼ SSGN (λ1, λ2, α) then we have:

1. SSGN (0, 0, 1) = N (0, 1)
2. SSGN (λ1, 0, 1) = SN (λ1), for all λ1 ∈ R

3. SSGN (λ1, λ2, 1) = SGN (λ1, λ2), for all λ1 ∈ R, λ2 ≥ 0
4. SSGN (λ1, λ2, 2) = ESGN (λ1, 0, λ2), for all λ1 ∈ R, λ2 ≥ 0.
5. −X ∼ SSGN (−λ1, λ2, α)

6. f (x, λ1, λ2, α)+ f (−x, λ1, λ2, α) = 2φ(x), for all x ∈ R,λ1 ∈ R, λ2 ≥ 0, α ∈ Z−{0}.
7. lim

λ1→∞ f (x, λ1, λ2, α) = 2φ(x)I (x ≥ 0) (half normal distribution), for all λ2 ≥ 0,

α ∈ Z − {0}.
8. lim

λ1→−∞ f (x, λ1, λ2, α) = 2φ(x)I (x ≤ 0) (half normal distribution), for all λ2 ≥ 0,

α ∈ Z − {0}.
9. If Z ∼ N (0, 1), then for every even function h(·), (h(u) = h(−u)), we have h(Z)

d= h(X)

where
d= means the equality in distribution.

10. If Y ∼ SSGN (λ∗
1, λ

∗
2, α

∗), then for every even function h(·), (h(u) = h(−u)), we have

h(Y )
d= h(X).

Proof The proof is straightforward. 
�
Proposition 2 Let X ∼ SSGN (λ1, λ2, α) and F(x, λ1, λ2, α) be the cdf of X, then we have:

F(x, λ1, λ2, α) = �(x) − 2H(x, λ1, λ2, α), (6)

where

H(x, λ1, λ2, α) =
∫ ∞

−x

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu. (7)

Proof We have

�(x) =
∫ x

−∞
φ(t)dt =

∫ x

−∞

∫ ∞

−∞
φ(t)φ(u)dtdu
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=
∫ x

−∞

⎛
⎜⎝∫ λ1u√

1+λ2u
2α

−∞
φ(t)dt +

∫ 0

λ1u√
1+λ2u

2α

φ(t)dt + 1

2

⎞
⎟⎠ φ(u)du

= 1

2
F(x, λ1, λ2, α) + 1

2
�(x) +

∫ x

−∞

∫ 0

λ1u√
1+λ2u

2α

φ(t)φ(u)dtdu, (8)

from which the following equality is obtained

∫ x

−∞

∫ 0

λ1u√
1+λ2u

2α

φ(t)φ(u)dtdu =
∫ ∞

−x

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu = H(x, λ1, λ2, α). (9)


�
Properties of H function:

Proposition 3 The H function in the cdf of SSGN distribution has two following properties:

(1) H(x, λ1, λ2, α) = H(−x, λ1, λ2, α), for all x ∈ R,λ1 ∈ R, λ2 ≥ 0, α ∈ Z − {0}.
(2) H(x,−λ1, λ2, α) = −H(x, λ1, λ2, α), for all x ∈ R,λ1 ∈ R, λ2 ≥ 0, α ∈ Z − {0}.
Proof To prove (1), we start with definition of −H function

− H(x, λ1, λ2, α) =
∫ x

−∞

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu

=
∫ ∞

−∞

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu −

∫ ∞

x

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu

=
∫ ∞

−∞

(∫ λ1u√
1+λ2u

2α

−∞
φ(t)φ(u)dtdu − 1

2

)

−
∫ ∞

x

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu

= 0 −
∫ ∞

x

∫ λ1u√
1+λ2u

2α

0
φ(t)φ(u)dtdu. (10)

Equality (1) is obtained by multiplying both sides of the above equation by −1. The proof
of part (2) is straightforward. 
�
Now, we obtain the moments of SSGN. Note that in view part (9) of Proposition 1, the even
moments of SSGN and standard normal distribution are the same i.e.

E(X2K ) = 1 × 3 × 5 × · · · × (2K − 1), K = 1, 2, . . . . (11)

The odd moments of SSGN can be obtained using the following proposition.

Proposition 4 Let X ∼ SSGN (λ1, λ2, α). Then for K = 0, 1, 2, . . . we have

E(X2K+1) = 2 (bK (λ1, λ2, α) − bK (0, λ2, α)) , (12)

when

bK (λ1, λ2, α) =
∫ ∞

0

uk√
2π

e−u/2�

(
λ1

√
u√

1 + λ2uα

)
dx, (13)
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Fig. 3 Asymmetry and Kurtosis range variations of SSGN for some parameter values

and

bK (0, λ2, α) = 2K
(K + 1)√
2π

. (14)

Proof

E(X2K+1) = 2
∫ ∞

0
x2K+1φ(x)�

(
λ1x√

1 + λ2x2α

)
dx − 2

∫ ∞

0
x2K+1φ(x)dx

= 2bK (λ1, λ2, α) − 2K+1
(K + 1)√
2π

(15)


�
Using the above formulas, we can obtain the skewness and Pearson’s excess kurtosis coeffi-
cients of SSGN (λ1, λ2, α) for selective values of α. These coefficients are obtained via

γ1 = E(X3) − 3μσ 2 − μ3

(σ 2)
3
2

and γ2 = E(X4) − 4E(X3)μ + 6E(X2)μ2 − 3μ4

(σ 2)
2 .

Figure 3, shows the variability of these coefficients for various values of the parameters.
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Moment generating function is given by

MX (t) = 2et
2/2E(�

(
λ1(Z + t)√

1 + λ2(Z + t)2α

)
(16)

where Z has a standard normal distribution.
Certain relations of SSGN distribution with well-known distributions are mentioned in

the following proposition:

Proposition 5 • If X ∼ SSGN (λ1, λ2, α) and Y ∼ χ2
(k) then for G = X√

Y
k

, we have

fG(g) → 2 fT(k) (g)I (g ≥ 0) as λ1 → ∞
fG(g) → 2 fT(k) (g)I (g < 0) as λ1 → −∞ (17)

where fT(k) is density of student t distribution with k degrees of freedom.

• If X1, X2
i id∼ SSGN (λ1, λ2, α) and D = X1|X2| , then

fD(d) → 2 fU (d)I (d ≥ 0) as λ1 → ∞
fD(d) → 2 fU (d)I (d < 0) as λ1 → −∞ (18)

where fU is density of standard Cauchy distribution (C(0, 1)) and iid stands for inde-
pendent and identically distributed.

• If X1, X2, . . . , Xn
iid∼ SSGN (λ1, λ2, α) then D =

n∑
i=1

X2
i ∼ χ2

n .

• If X |Y = y ∼ SSGN ( λ1
y , λ2

y2α
, α), Y ∼ SN (θ) and V = X

Y , then

fV (v) = 2g(v)�

(
λ1v√

1 + λ2v2α

)
(19)

where g(v) is the standard Cauchy density (C(0, 1)).

Note the connection between Normal and SSGN distribution: If X ∼ N (0, 1), the resulting
random variable G has T(k) distribution. If X1, X2 ∼ N (0, 1) the resulting random variable
D has C(0, 1) distribution and finally if X1, X2, . . . , Xn ∼ N (0, 1) the resulting random
variable D has χ2

n distribution. So, we only prove (19).

Proof Let fV (v) denote the pdf of V. Then

fV (v) =
∫ ∞

−∞
2φ(vy)�

(
λ1v√

1 + λ2v2α

)
2φ(y)�(θy) |y| dy

= 2�

(
λ1v√

1 + λ2v2α

) ∫ ∞

−∞
2

|y|√
2π

φ(y
√
1 + v2)�(θy)dy

= 2√
2π

(
1 + v2

)�

(
λ1v√

1 + λ2v2α

) ∫ ∞

−∞
2 |y| φ(y)�(

θy√
1 + d2

)dy. (20)
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Since |W | d= |Z |, where Z ∼ N (0, 1) and W ∼ SN
(

θ√
1+d2

)
, we have

fV (v) = 2√
2π(1 + v2)

�

(
λ1v√

1 + λ2v2α

) ∫ ∞

−∞
|y| φ(y)dy = 2g(v)�

(
λ1v√

1 + λ2v2α

)
,

(21)

which completes the proof. 
�
The family of skew-Cauchy distributionwas introduced by considering the distribution of Xλ

X ,
where Xλ ∼ SN (λ) and X ∼ N (0, 1) are independent random variables [7]. Another family
of two parameters skew-Cauchy distribution which includes the skew-Cauchy distribution
as a special case was proposed by [13]. Nekokhou et al. [19] introduced three parameters
skew-Cauchy distribution based on relationships between SN and flexible skew generalized
normal (FSGN) distributions. The pdf (19) presents another three parameters skew-Cauchy
distribution based on SN and SSGN distributions without the assumption of independence
of the random variables.

Method of generating data from SSGN distribution is presented by the stochastic rep-
resentation. The first stochastic representation of SSGN distribution will be introduced in
Proposition 6 which is constructed on random variables with the standard normal distribu-
tions.

Proposition 6 Let Y and Z be iid random variables with N (0, 1) distribution, then

X =
⎧⎨
⎩
Y i f Z ≤ λ1Y√

1+λ2Y 2α

−Y i f Z > λ1Y√
1+λ2Y 2α

(22)

has SSGN (λ1, λ2, α) distribution.

Proof Observe that

FX (x) = P

(
X ≤ x, Z ≤ λ1Y√

1 + λ2Y 2α

)
+ P

(
X ≤ x, Z >

λ1Y√
1 + λ2Y 2α

)

= P

(
Y ≤ x, Z ≤ λ1Y√

1 + λ2Y 2α

)
+ P

(
−Y ≤ x, Z >

λ1Y√
1 + λ2Y 2α

)

=
∫ x

−∞

∫ λ1 y√
1+λ2 y

2α

−∞
φ(z)φ(y)dzdy+

∫ ∞

−x

∫ ∞
λ1 y√

1+λ2 y
2α

φ(z)φ(y)dzdy

=
∫ x

−∞
φ(y)�

(
λ1y√

1 + λ2y2α

)
dy+

∫ x

−∞
φ(y)�

(
λ1y√

1 + λ2y2α

)
dy

= 2
∫ x

−∞
φ(y)�

(
λ1y√

1 + λ2y2α

)
dy. (23)

Now, differentiating FX (x) with respect to x, we have:

fX (x) = 2φ(x)�

(
λ1x√

1 + λ2x2α

)
. (24)


�
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The second approach for generating data from SSGN distribution via standard normal and
uniform distributions is presented in the next proposition.

Proposition 7 Let Y andU be independent random variables with distributions N (0, 1) and
the uniform distribution on the interval [0,1] (U (0, 1)), respectively. The random variable

X =

⎧⎪⎪⎨
⎪⎪⎩
Y i f U ≤ �

(
λ1Y√

1+λ2Y 2α

)

−Y i f U > �

(
λ1Y√

1+λ2Y 2α

) (25)

has SSGN (λ1, λ2, α) distribution.

Proof The proof is similar to that of Proposition 6. 
�

The next proposition establishes the stochastic representation of SSGN based on Normal,
Uniform and Bernoulli distributions.

Proposition 8 Let Y,U and V be independent random variables with N (0, 1), U (0, 1) and

the Bernoulli (B(1, p)) distributions, respectively. Define X1 = Y |U ≤ �

(
λ1Y√

1+λ2Y 2α

)

and X2 = −Y |U > �

(
λ1Y√

1+λ2Y 2α

)
. Then

X1
d= X2 ∼ SSGN (λ1, λ2, α), (26)

and
H = V X1 + (1 − V )X2 (27)

has SSGN (λ1, λ2, α) distribution.

Proof Note that

P(X1 ≤ y) = P

(
Y ≤ y |U ≤ �

(
λ1Y√

1 + λ2Y 2α

))
=

P

(
Y ≤ y, U ≤ �

(
λ1Y√

1+λ2Y 2α

))

P

(
U ≤ �

(
λ1Y√

1+λ2Y 2α

))

=
∫ y
−∞ φ(y)�

(
λ1 y√

1+λ2 y2α

)
dy

∫ ∞
−∞ φ(y)�

(
λ1 y√

1+λ2 y2α

)
dy

=
∫ y

−∞
2φ(y)�

(
λ1y√

1 + λ2y2α

)
dy. (28)

Similarly X2 has the same SSGN distribution. Now, we show that H has SSGN distribution:

FH (h) = P(H ≤ h) = P(H ≤ h |V = 1 )P(V = 1) + P(H ≤ h |V = 0 )p(V = 0)

= P(X1 ≤ h)p + P(X2 ≤ h)(1 − p) = P(X1 ≤ h). (29)

The last equality is based on the fact that X1, X2 and H are identically distributed. 
�
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3 Maximum likelihood estimation

We consider the location-scale version of SSGN distribution for fitting a model to a real
data set. For this purpose, we define Y = μ + σ X where X ∼ SSGN (λ1, λ2, α) and
(μ ∈ R, σ > 0). Then

fY (y |θ ) = 2

σ
φ

(
y − μ

σ

)
�

⎛
⎝ λ1

( y−μ
σ

)
√
1 + λ2

( y−μ
σ

)2α
⎞
⎠ (30)

where θ = (μ, σ, λ1, λ2, α) i.e. Y ∼ SSGN (μ, σ, λ1, λ2, α).
Let x1, x2, . . . , xn be a random sample of size n from a population with pdf (30). Then

the likelihood function of the sample is

�(μ, σ, λ1, λ2, α) = n ln

(
2√
2πσ

)
− 1

2

n∑
i=1

z2i +
n∑

i=1

log

⎛
⎝�

⎛
⎝ λ1zi√

1 + λ2z2αi

⎞
⎠

⎞
⎠, (31)

where zi = xi−μ
σ

.
Since space of α is discrete, ML estimation is performed by the following algorithm based

on profile likelihood: suppose α ∈ {A = −N , . . . ,−1, 1, . . . , N } for each N ∈ Z.
For i = 1, . . . , 2N

• Set α = A(i).
• With numerical calculation based on following score function equal to zero, we findMLE

of μ, σ, λ1, λ2 and show them by (μ̂, σ̂ , λ̂1, λ̂2)

∂�

∂μ
= −

n∑
i=1

zi
σ

−
n∑

i=1

λ1(1 + λ2(z2αi + αz2α−1
i ))

σ (1 + λ2z2αi )
3
2

w∗
i

∂�

∂σ
= − n

σ
+

n∑
i=1

z2i
σ

+
n∑

i=1

λ1(2αλ2z
2α+1
i − zi

√
1 + λ2z2αi )

σ (1 + λ2z2αi )
w∗
i

∂�

∂λ1
=

n∑
i=1

zi√
1 + λ2z2αi

w∗
i

∂�

∂λ2
=

n∑
i=1

z2αi

(1 + λ2z2αi )
3
2

w∗
i (32)

where w∗
i =

φ

(
λ1zi√
1+λ2z

2α
i

)

�

(
λ1zi√
1+λ2z

2α
i

) .

• now calculate l(i) = �(μ̂, σ̂ , λ̂1, λ̂2, α).

Return to the first step with i replaced by i + 1 and after final step, we find α̂ based on
maximum of log likelihood l function and corresponding estimation of other parameters of
SSGN (μ, σ, λ1, λ2, α).
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4 The multivariate shape skew generalized normal distribution

In this section, we introduce certain interesting results when X = (X1, . . . , Xn) has a mul-
tivariate shape skew generalized normal density. This multivariate version can be used in
graphical models since we show that its conditional distribution belongs to this family as
well.

Definition 2 An n-dimensional random variable X = (X1, . . . , Xn) has the multivariate
shape skew generalized normal, MSSGN (λ1, λ2, α) distribution with the following condi-
tions: if λ1 = 0, then λ2 and α must be zero and one, respectively, and if λ2 = 0, then α = 1
with the following density:

f (x1, . . . , xn; λ1, λ2, α) = c(λ1, λ2, α).

n∏
i=1

φ(xi ).�

⎛
⎜⎜⎜⎜⎝

λ1
n∏

i=1
xi√

1 + λ2

(
n∏

i=1
xi

)2α

⎞
⎟⎟⎟⎟⎠ , (33)

where φ(x1),…,φ(xn) are standard normal densities and

c(λ1, λ2, α) = 1

∫ ∞
−∞ · · · ∫ ∞

−∞
∏n

i=1 φ(xi )�

(
λ1

∏n
i=1 xi√

1+λ2(
∏n

i=1 xi)
2α

)
dx1 . . . dxn

= 1

E

(
�

(
λ1(

∏n
i=1 Ui )√

1+λ2(
∏n

i=1 Ui )
2α

)) , (34)

where U1, . . . ,Un
iid∼ N (0, 1), with the following property:

c(−λ1, λ2, α) = c(λ1, λ2, α).

Proposition10presents the relationbetweenMSSGNandSSGNdistributions andProposition
11 presents an stochastic representation of MSSGN distribution.

Proposition 9 Let (X1, . . . , Xn) ∼ MSSGN (λ1, λ2, α). The following properties hold:

(1) The conditional distribution of each random variable given the other random variables
has a shape skew normal distribution, i.e.,

Xi |(X1, . . . , Xi−1, Xi+1 . . . , Xn) = (x1, . . . , xi−1, xi+1 . . . , xn)

∼ SSGN

⎛
⎜⎜⎝λ1.

n∏
j=1
j =i

xi , λ2.
n∏
j=1
j =i

x2αi , α

⎞
⎟⎟⎠ , (35)

for i = 1, . . . , n.
(2) The conditional distribution of each random vector given the other random variables

has a multivariate shape skew normal distribution, i.e.,
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(X1, . . . , Xr ) |Xr+1, . . . , Xn = (xr+1, . . . , xn)

∼ MSSGN

⎛
⎝λ1.

n∏
j=r+1

xi , λ2.
n∏

j=r+1

x2αi , α

⎞
⎠ (36)

for 1 < r < n.

Proof of part (1)Let Y = Xi |(X1, . . . , Xi−1, Xi+1 . . . , Xn) = (x1, . . . , xi−1, xi+1 . . . , xn) .
From the definition of conditional pdf, we have

fY (y) = fX1,···Xn (x1, . . . , xi−1, y, xi+1, . . . , xn)

fX1,...,Xi−1,Xi+1,...,Xn (x1, . . . , xi−1, xi+1, . . . , xn)

=

c(λ1, λ2, α).
∏n

j=1
j =i

φ(x j ).φ(y).�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝λ1

∏n
j=1
j =i

x j

⎞
⎠y

√√√√√1+
⎛
⎝λ2

∏n
j=1
j =i

x2αj

⎞
⎠y2α

⎞
⎟⎟⎟⎟⎟⎠

∫ ∞
−∞ c(λ1, λ2, α).

∏n
j=1
j =i

φ(x j ).φ(y).�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝λ1

∏n
j=1
j =i

x j

⎞
⎠y

√√√√√1+
⎛
⎝λ2

∏n
j=1
j =i

x2αj

⎞
⎠y2α

⎞
⎟⎟⎟⎟⎟⎠ dy

∝ dφ(y)�

⎛
⎜⎜⎜⎜⎜⎜⎝

(
λ1

∏n
j=1
j =i

x j

)
y

√√√√1 +
(

λ2
∏n

j=1
j =i

x2αj

)
y2α

⎞
⎟⎟⎟⎟⎟⎟⎠

(37)

whered is the normalizing constant. Therefore,Y has SSGN

(
λ1.

∏n
j=1
j =i

x j , λ2.
∏n

j=1
j =i

x2αj , α

)
distribution.

Proof of part (2) LetY = X1, . . . , Xr |Xr+1, . . . , Xn = (xr+1, . . . , xn) . From the definition
of conditional pdf, we have

fY(y1, . . . , yr ) = fX1,···Xn (y1, . . . , yr , xr+1, . . . , xn)

fXr+1,...,Xn (xr+1, . . . , xn)

=

c(λ1, λ2, α).
∏n

j=r+1 φ(x j ).
∏r

i=1 φ(yi ).�

⎛
⎜⎜⎜⎝

(
λ1

∏n
j=r+1 x j

) ∏r
i=1 yi√√√√1+

(
λ2

∏n
j=r+1 x2αj

) ∏r
i=1 y2αi

⎞
⎟⎟⎟⎠

∫ ∞
−∞ . . .

∫ ∞
−∞ c(λ1, λ2, α).

∏n
j=r+1 φ(xi ).

∏r
i=1 φ(yi ).�

⎛
⎜⎜⎜⎝

(
λ1

∏n
j=r+1 x j

) ∏r
i=1 yi√√√√1+

(
λ2

∏n
j=r+1 x2αj

) ∏r
i=1 y2αi

⎞
⎟⎟⎟⎠dy1, . . . , dyr

= d
∏r

i=1 φ(yi ).�

⎛
⎜⎜⎜⎜⎝

(
λ1

∏n
j=r+1 x j

) ∏r
i=1 yi√

1 +
(

λ2
∏n

j=r+1 x
2α
j

) ∏r
i=1 y

2α
i

⎞
⎟⎟⎟⎟⎠ (38)
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Fig. 4 Some possible contours of bivariate [6] for several values of λ1, λ2 and ρ
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Fig. 5 Some possible contours of bivariate [21] for several values of δ1 and δ2

whered is the normalizing constant. Thus,YhasMSSGN

(
λ1

∏n
j=r+1 xi , λ2

∏n
j=r+1 x

2α
i , α

)
distribution. 
�
Proposition 10 Let X1, . . . , Xn and Z be i.i.d. random variables with N(0, 1) distribution.
Then,

(X1, . . . , Xn)

∣∣∣∣∣∣
⎧⎨
⎩Z ≤ λ1

∏n
i=1 Xi√

1 + λ2
(∏n

i=1 X
2α
i

)
⎫⎬
⎭ ∼ MSSGN (λ1, λ2, α). (39)

Proof Let B =
{
Z ≤ λ1

∏n
i=1 Xi√

1+λ2(
∏n

i=1 Xi)
2α

}
. Then, we have

f(X1,...,Xn )|B (x1, . . . , xn |B ) = p(B |(X1, . . . , Xn) = (x1, . . . , xn) ). f(X1,...,Xn )(x1, . . . , xn)

p

(
Z ≤ λ1

∏n
i=1 Xi√

1+λ2
(∏n

i=1 X
2α
i

)
)
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=
p

(
Z ≤ λ1

∏n
i=1 xi√

1+λ2
(∏n

i=1 x
2α
i

)
) ∏n

i=1 φ(xi )

∫ ∞
−∞ · · · ∫ ∞

−∞
∏n

i=1 φ(xi )�

(
λ1

∏n
i=1 xi√

1+λ2(
∏n

i=1 xi )
2α

)
dx1, . . . , dxn

= c(λ1, λ2, α).
∏n

i=1
φ(xi ).�

⎛
⎝ λ1

∏n
i=1 xi√

1+λ2
(∏n

i=1 xi
)2α

⎞
⎠ . (40)

Thus (X1, . . . , Xn)

∣∣∣∣∣
{
Z ≤ λ1

∏n
i=1 Xi√

1+λ2
(∏n

i=1 X
2α
i

)
}

has MSSGN (λ1, λ2, α) distribution. 
�

TheMSSGNdistribution reduces tomultivariate normal distribution,MNn(0, I) ifλ1 = 0. In
Fig. 7, some possible contours of bivariate MSSGN (λ1, λ2, α) are shown for several values
of α, λ1 and λ2. This figure shows that our proposed class is more flexible than classical
multivariate skew normal such as [6] (Fig. 4), [21] (Fig. 5) and the density of MSSGN
distribution has different shape than the pdf of [18] (Fig. 6) distribution.
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Fig. 7 Some possible contours of bivariate MSSGN (λ1, λ2, α) for several values of α, λ1 and λ2

Table 1 Descriptive statistics for
the first and second examples

Example n x̄ s γ1 γ2

1 240 8.109 2.434 −0.209 2.534

2 49 8805.694 4553.915 0.093 2.085

5 Data analysis

Weconsider the variableE-Shiny (first example) available in the database creaminess of cream
cheese which can be found at http://www.models.kvl.dk/Cream and theKevlar data represent
the failure times when the pressure is at 70 percent stress level that is presented by [4]. Table
1 shows the summary statistics (length, mean, standard deviation, skewness (γ1 = m3

s3
) and

kurtosis (γ2 = m4
s4
)) ) for these two examples. (mr is the rth central sample moments about

mean). In Tables 2 and 5, two distributions are fitted to the data of the first and second
examples, respectively. They are SGN [1] and FSGN [19]. Also, we compare our proposed
distribution with two component mixture normal (μ1, σ1, μ2, σ2, p) distributions. In all
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Table 3 Formal goodness of fit
statistics for first example

Model Goodness of fit criteria

AIC C AIC

SGN 1114.658 1114.827

FSGN 1106.218 1106.472

SSGN 1105.142 1105.396

Mix-Normal 1107.088 1107.342

Table 4 Formal goodness of fit
statistics for second example

Model Goodness of fit criteria

AIC C AIC

SGN 971.592 972.113

FSGN 968.926 969.814

SSGN 965.484 966.372

Mix-normal 970.096 970.984

cases, the models are augmented by the inclusion of location (μ) and scale (σ ) parameters.
In the second example, FSGN reduces to FGSN [18], since λ̂2 = 0.

In all of the cases, the parameters are estimated by the method of maximum likelihood
using the stats package, optim function, of R software. If data set has unimodal histogram,
then the parameter α can have values −1 , 1 and if it has bimodal histogram, we must search
for α in Z−{−1, 0, 1} . In the following examples, we are faced with two bimodal data sets.
Thus, in view of Sect. 3, we must define a loop on the parameter α in Z − {−1, 0, 1} . For
simplicity, however, we choose an N in Z and define a loop on {−N , . . . , N } − {−1, 0, 1}.
Then at each step of the loop, by optim function inR program, theMLE and the corresponding
log-likelihood values are obtained. After completing all the steps in the loop, the MLEs of all
the parameters are obtained by maximizing the log-likelihood function. The standard errors
of all the parameters except α are calculated using observed Fisher InformationMatrix based
on Hessian Matrix. The Hessian Matrix is obtained via “Hessian = T ” code in optim
function and finally just for the parameter α of SSGN distribution, standard error of the MLE
is calculated using parametric bootstrap with the same sample size.

Akaike information criterion (AIC) and Corrected Akaike information criterion (CAIC)
[8] statistics are used for goodness of fit test criterion fitting mentioned distributions applied
to two data sets. The lower value of these statistics show better fit considering the number
parameters of models. Tables 3 and 4 present the values of these statistics for two real data
sets.

To compare the SSGN distribution with the SGNmodel for both data sets, consider testing
the null hypothesis of an SGN distribution against a SSGN distribution using the likelihood
ratio statistics based on the ratio � = LSGN (μ̂, σ̂ , λ̂1, λ̂2)/LSSGN (μ̂, σ̂ , λ̂1, λ̂2, α̂). Sub-
stituting the estimated values, we obtain −2log� for the first and the second example as
11.515 and 8.108, respectively. When compared with the 95 percent critical value of the
χ2

(1) = 3.841, we conclude that the null hypotheses are clearly rejected and there is a strong
indication that the SSGN distribution presents a much better fit than the SGN distribution to
the data sets under consideration.
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Fig. 8 Histogram for the E-Shiny variable. The curves represent densities fitted by maximum likelihood
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Fig. 9 Histogram for the failure times variable. The curves represent densities fitted by maximum likelihood

In both examples theoretical mean, standard deviation, skewness and kurtosis coefficients
(γ1 and γ2) of distributions are presented in Tables 2 and 5. By considering scale of data sets,
all theoretical and empirical statistics (Table 1) are approximately equal.
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6 Conclusion

This paper introduces a flexible generalization of skew generalized normal distribution by
adding a shape parameter to define shape skew generalized normal (SSGN) distribution,
which also includes the Azzalini skew normal, Arellano-Valle et al. [1] skew generalized
normal and special case of extended skew generalized normal distribution [10]. Inferential
properties and three generation procedures are mentioned for our model. This model includes
popular structure such as uni/bimodality, skewness, heavy tail and wider range for Pearson’s
excess kurtosis coefficient than SN and SGN distributions. Therefore, the proposed distri-
bution is appropriate for other aspects of statistical analysis. The bivariate version of the
distribution can model data sets with at most four modes, and its multivariate version can be
used in graphical models such as directed acyclic graphs (DAG) (Figs. 8, 9).
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