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Abstract This paper analyses the effects of overlapping subgroups on inequality decompo-
sitions. Within the framework of the Gini inequality index is performed a simulation study
which allows to compare and evaluate alternative decompositions with respect to different
degrees and situations of overlapping.
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1 Introduction

Overlapping subgroups play a particular role in inequality decomposition since they give
a complex and not easily assessable contribution to total inequality. With respect to the
measurement of the traditional components of inequality decomposition, the inequalitywithin
subgroups and the inequality between subgroups, it is possible to observe relevant effects
related to the presence of overlapping units.

First, overlappingunits lead to an increase of the importance of inequalitywithin subgroups
on total inequality.

Second, they introduce some non trivial problems into the measurement of the inequality
between subgroups.

Third, they pose relevant questions on the interpretation of inequality between subgroups.
Given a poor subgroup A and a non-poor subgroup B, we need to interpret the contribution

to the inequality between subgroups given by a unit belonging to A, which is richer than a
unit belonging to B. Or, analogously, we need to interpret the contribution to the inequality
between subgroups given by a unit belonging to B, which is poorer than a unit belonging
to A.
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A related point to be addressed is whether overlapping units belonging to A are to be
classified as “poor” and whether overlapping units belonging to B are to be considered as
“non-poor”.

It follows that overlapping component requires a more detailed framework for both the
measurement and the interpretation of inequality. In particular, in order to properly evaluate
and explain total inequality, overlapping units have to be analyzed separately from non
overlapping units.

Furthermore, the aim of inequality decompositions is generally related to the identifica-
tion of the relevant factors determining the inequality structure. Given a possible inequality
factor (such as gender, working condition, education level, area of residence, etc.) and hav-
ing decomposed the inequality in terms of such factor, high levels of overlapping indicate
that the factor only slightly contributes to total inequality, while low levels of overlapping
suggest a stronger contribution. Therefore, overlapping analysis provides a powerful insight
on inequality structure and also allows to assess the importance of the various factors on total
inequality.

The case of overlapping subgroups has been deeply analyzed, using the term “transvari-
ation”, by Gini [13,14] and Dagum [4]. Their studies link transvariation to inequality
measurement achieved by means of the Gini index [6,10,12,17]. The effects of overlap-
ping component on inequality decomposition have been the focus of the interest for many
other researchers (see [12,13,17]). The different ways to analyze and interpret these effects
represent the main motivation of the various approaches to the Gini index decomposition.

The aim of the paper is to evaluate and compare alternative proposals for the measurement
of overlapping component in the Gini index decomposition. Furthermore, we want to analyse
the properties of these proposals with respect to different degrees of overlapping.

To this purpose we develop a Monte Carlo study which allows to observe and compare
the various Gini index decompositions as well as to illustrate the effects related to increasing
levels of overlapping.

The paper is organized as follows. Section 2 addresses the measurement of overlapping.
Section 3 illustrates three different methodologies for the decomposition of the Gini index.
Section 4 develops the simulation study and Sect. 5 concludes.

2 The measurement of overlapping

The general case of a population of n units disaggregated into k subgroups of size n j , with∑k
j=1 n j = n, refers to subgroups characterized by some degree of overlapping. Let be y ji

the value of character y in the i-th unit of the j-th subgroup and, accordingly, yhr the value
of y in the r -th unit of the h-th subgroup.

Overlapping occurs when at least one of the differences (y ji − yhr ), for i = 1,…, n j and
r = 1,…, nh , shows opposite sign to the difference (λ j − λh), where λ j and λh are mean
values (usually the arithmetic mean or the median) respectively for subgroups j and h.

In order to evaluate the relevance of overlapping, Gini introduced two indexes: the prob-
ability of transvariation and the intensity of transvariation [14].

Probability of transvariation refers to overlapping which occurs when y ji < yhr and the
median of the j-th subgroup,me ȳ j , is greater or equal to themedian of the h-th subgroup,me ȳh .

Null differences (y ji − yhr ) are equally divided between overlapping and non-overlapping
differences. The probability of transvariation between subgroups j and h, p(t jh), is then
computed as the ratio between the number of overlapping differences and its maximum; that
is:
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p(t jh) = (21nt jh +2 nt jh)/n jnh (1)

where 1nt jh and 2nt jh are, respectively, the number of negative and the number of null
differences (y ji − yhr ) for i = 1,…, n j and r = 1,…, nh , with me ȳ j ≥me ȳh .

The maximum of p(t jh) is reached when the two subgroups completely overlap and
the median of the j-th subgroup equals the median of the h-th subgroup. The probability
of transvariation ranges between 0, when there is no transvariation and no difference is
overlapping, and 1, when overlapping component reaches its maximum.

The second index introduced by Gini, the so called intensity of transvariation, refers to
overlapping which occurs when y ji < yhr while the mean of the j-th subgroup, ȳ j , is greater
or equal to the mean of the h-th subgroup, ȳh .

With respect to the probability of transvariation, which takes the number of overlapping
differences into account, the intensity of transvariation is based on their size, that is on the
quantities |y ji − yhr | for y ji < yhr , ȳ j ≥ ȳh , i = 1,…, n j and r = 1, nh .

Let Tjh be the sum of overlapping differences between subgroups j and h: Tjh =
∑n j

i=1

∑nh
r=1 |y ji − yhr |, for y ji < yhr and ȳ j ≥ ȳh .

It is immediate to notice that Tjh increases as the difference (ȳ j − ȳh) is decreasing.
Furthermore, for ȳ j = ȳh , Tjh reaches its maximum, that is

maxTjh = 1

2

n j∑

i=1

nh∑

r=1

|y ji − yhr | .

The intensity of transvariation is obtained as the ratio between the sum of overlapping
differences |y ji − yhr | and its maximum; that is:

i(t jh) = 2Tjh/

n j∑

i=1

nh∑

r=1

|y ji − yhr |. (2)

Intensity of transvariation ranges between 0, when no difference is overlapping, and 1,
when the two subgroups completely overlap.

By jointly using intensity and probability of transvariation it is possible to obtain a wide
information set about the relevance and the extent of the overlapping component.

3 Overlapping and the Gini index decomposition

The role of the overlapping component is analyzed within the framework of the Gini index
which, in a population disaggregated into k subgroups, can be expressed as

G = 1

2n2 ȳ

k∑

j=1

k∑

h=1

n j∑

i=1

nh∑

r=1

|y ji − yhr | (3)

where ȳ is the arithmetic mean of y in the overall population.
In the extant literature on the Gini index decomposition, the component of inequality

within subgroups is generally measured as

Gw =
k∑

j=1

G j j p j s j (4)
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where G j j is the Gini index in the j-th subgroup, p j = n j/n is the share of subgroup j in
the overall population and s j = (

∑n j
i=1 yi ni/

∑n
i=1 yi ni ) is the share of subgroup j in the

overall y.
Themeasurement of inequality within subgroups based on (4) is not exempt from criticism

[12]. However, in the following the topic of inequality within will not addressed. Conversely,
we will focus on the problem which mainly motivates the controversial and articulate debate
on the Gini index decomposition: the measurement of the inequality between subgroups.

3.1 Bhattacharia and Mahalanobis’s Gini index decomposition

Bhattacharia and Mahalanobis’s [1] seminal proposal for the measurement of inequality
between Gb, given by

BMGb =
k∑

j=1

k∑

h=1
j �=h

p j ph |ȳ j − ȳh |/2 ȳ

starts a tradition in which differences between subgroups are measured on the basis of the
difference between subgroups means.

Following the contribution by Bhattacharia and Mahalanobis, many authors (see [15],
and references therein) suggested further measures for evaluating the inequality between
subgroups. In all cases, however, the core of each expression is still represented by the
difference between subgroups means, as in Bhatthacharia and Mahalanobis.

This approach to the measurement of Gb does not present particular disadvantages when
the subgroups are not overlapping, but, in the general case of overlapping units, it leads to the
presence of a third term, BMGt , which acts as a “residual” in the Gini index decomposition:

G = Gw +BM Gb +BM Gt (5)

The minimum value of BMGb is 0 and it occurs when ȳ j = ȳ ∀ j . The component BMGt

ranges between 0, when the subgroups are not overlapping, and (G−Gw), when ȳ j = ȳ ∀ j
and BMGb = 0.

By using (5), Shorrocks [19] classifies the Gini index as a non-additively decompos-
able measure, thus shifting the preferences of many researchers toward generalized entropy
indexes, which are additively decomposable.

3.2 Yitzhaki and Lerman’s Gini index decomposition

The topic of overlapping subgroups in the Gini index decomposition is addressed in 1991
by Yitzhaki and Lerman [21], who extensively contributed to the development of the studies
about the Gini index and its decomposition. In 1991 they introduce a specific overlapping
index, Ojh , which measures the degree according to which the distribution of the j-th sub-
group is included in the range of the distribution of the h-th subgroup.

Ojh is defined as

Ojh = covh(y, Fj (y))/covh(y, Fh(y))

where Fj (y) is the cumulative distribution, which, in the sample, is estimated by the rank of
the observation. The denominator of Ojh is the covariance between incomes of subgroup h
and their rank, while the numerator of Ojh is the covariance between incomes of subgroup
h and their rank, as belonging to subgroup j .
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Overlapping component and inequality decomposition 197

Following Yitzhaki and Lerman [21] and Yitzhaki [20], the inequality between subgroups
is measured as

Y LGb = 2cov(ȳ j , F̄j )/ȳ

where F̄j = R̄ j/n and R̄ j is the average rank of group j in the overall population.
In summary, the Gini index decomposition proposed by Yitzhaki and Lerman is

G = Gw + Y LGb +
k∑

h=1

shGh

k∑

j=1, j �=h

p j O jh = Gw + Y LGb + Y LGt (6)

The minimum value of Y LGb is 0 and it occurs when ȳ j = ȳ ∀ j ; the component Y LGt

ranges between 0, when there is no overlapping, and (G−Gw), when ȳ j = ȳ ∀ j and Y LGb

= 0.
The approach by Yitzhaki and Lerman is further developed by Frick et al. [11], who

obtained new results on the Gini index decomposition and overlapping measurement by
providing an interesting interpretation of overlapping in terms of the inverse of stratification.

3.3 Dagum’s Gini index decomposition

A second contribution to the analysis of overlapping subgroups in the Gini index decomposi-
tion is proposed by Dagum [8,9], who extends a previous study by Mehran [18]. In Dagum’s
proposal, both the inequality between subgroups and the contribution of overlapping units
can be evaluated on the basis of two quantities: the Gini index between subgroups j and
h, G jh , and the economic relative distance Djh . First, starting from the Gini index for the
subgroup j , G j j ,

G j j = 1

2n2j ȳ j

n j∑

i=1

n j∑

r=1

|y ji − y jr |,

the Gini index between subgroup j and h, G jh , can be simply expressed as

G jh = 1

n jnh(ȳ j + ȳh)

n j∑

i=1

nh∑

r=1

|y ji − yhr |.

Second, the economic relative distance Djh [5,7] is

Djh = (d jh − p jh)/(d jh + p jh)

where d jh and p jh are, respectively, the gross economic affluence and the first order moment
of transvariation between the j-th and the h-th subgroups. Given ȳ j ≥ ȳh , the gross eco-
nomic affluence between the j-th and the h-th subpgroups, d jh , is a weighted average of the
differences (y ji − yhr ) for all y ji > yhr . Following Dagum [5,7], d jh can be expressed as

d jh = E j (yFh(y)) + Eh(yFj (y)) − Eh(y)

where the subscripts indicate the subgroups j and h, F(y) is the cumulative distribution
function and E stands for the mathematical expectation operator. Furthermore, the first-
order moment of transvariation between the j-th and the h-th subgroups, p jh , is a weighted
average of the differences (y ji − yhr ) for all y ji < yhr . Following Dagum [5,7], p jh can be
expressed as

p jh = E j (yFh(y)) + Eh(yFj (y)) − E j (y).
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In this framework, inequality between subgroups is measured as

DGb =
k∑

j=1

k∑

h=1, j �=h

G jh D jh p j sh

while the contribution to total inequality given by overlapping units is evaluated by means
of

DGt =
k∑

j=1

k∑

h=1, j �=h

G jh(1 − Djh)p j sh .

When ȳ j = ȳ ∀ j , the differences (y ji − yhr ) for all y ji > yhr equal the differences
(y ji − yhr ) for all y ji < yhr , that is, when ȳ j = ȳ ∀ j , the component DGb equals the
component DGt . The minimum value of DGb is then (G − Gw)/2 and the component DGt

ranges between 0 and (G − Gw)/2.
On the whole, Dagum’s Gini index decomposition is given by

G = Gw + DGb + DGt (7)

It is straightforward to note how bothG jh and Djh involve an heavy computational effort.
In order to overcome this problem a simplified version of Dagum’s contribution is developed
by Costa [2,3] as

DGb = DG
∗
b + 0.5(G − Gw − DG

∗
b)

and

DGt = 0.5(G − Gw − DG
∗
b)

where

G∗
b =

k−1∑

j=1

k∑

h= j+1

p∗
hj − s∗

hj

p∗
hj s

∗
jh + p∗

jhs
∗
hj

(p j sh + phs j ),

p∗
hj = ph/(ph + p j ),

s∗
hj = sh/(sh + s j ).

It is also worth noting how the intuition behind Dagum’s Gini index decomposition is both
extremely simple and appealing: each difference |y ji − yhr | in expression (3) is attributed to
inequality within subgroups for j = h, to inequality between subgroups for j �= h, ȳ j ≥ ȳh
and y ji ≥ yhr , and to transvariation for j �= h, ȳ j ≥ ȳh and y ji < yhr .

3.4 The comparison among Gini index decompositions

The main difference among Gini index decompositions is the measurement of inequality
betweenGb and it can be illustrated by analyzing the case of perfectly overlapping subgroups.

Following Bhattacharia and Mahalanobis [1], and Yitzhaki and Lerman [21], complete
overlapping implies a null inequality between, Gb = 0, while all differences among sub-
groups distributions are evaluated by means of the transvariation component,

Gt = G − Gw.
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Conversely, within Dagum’s approach, a complete overlapping leads to equally assign
(G − Gw) to inequality between Gb and to transvariation component Gt :

Gt = Gb = (G − Gw)/2.
It is possible to identify a direct relationship between the decompositions introduced by

Dagum and by Bhattacharia-Mahalanobis. The link between the two proposals is given by
the measurement of the inequality between subgroups: in particular, BMGb is obtained as
the sum of all differences (y ji − yhr ),∀ j, h, i, r , with ȳ j > ȳh , while DGb corresponds to
the sum of all differences |y ji − yhr |,∀ j, h, i, r , with ȳ j > ȳh . If differences (y ji − yhr )
are non negative—that is, if there is no transvariation—BMGb = DGb, while, in the case
of overlapping subgroups, BMGb < DGb and (DGb − BMGb) is given by the negative
differences (y ji − yhr ), that is by DGt . It follows that DGb =BM Gb +D Gt , which implies
DGt = 0.5BMGt .

Given the characteristics of the different decompositions with respect to the overlap-
ping component measurement, the approaches by Bhattacharya and Mahalanobis [1] and by
Yitzhaki and Lerman [21] could be more useful in an exploratory context, where we need to
assess the existence of inequality factors. In contrast, Dagum’s [8] proposal could be more
adequate in a confirmative framework, where the inequality factors are already known but it
is necessary to assess their contribution to total inequality.

In order to evaluate the behaviour of the various Gini index decompositions with respect
to the presence of overlapping we propose a two step procedure. First, we normalize the
transvariation components BMGt , Y LGt and DGt by dividing each quantity by its maximum,
thus obtaining

BMG∗
t = BMGt/(G − −Gw),

Y LG
∗
t = Y LGt/(G − −Gw),

DG
∗
t = 2DGt/(G − −Gw).

Second, we compare the normalized transvariation components to the probability and the
intensity of transvariation by calculating the absolute errors ep(t) and ei(t) where

ep(t) = |Gt∗−p(t)| (8)

and

ei(t) = |G∗
t −i(t)| (9)

Bymeans of expressions (8) and (9)we are able to evaluate the goodness of fit of the various
decompositionswith respect to overlapping component. High values of ep(t) and ei(t) indicate
the existence of a relevant distance between G∗

t and the measure of transvariation, thus
suggesting that the decomposition fails to correctly evaluate the overlapping component. In
contrast, low values of ep(t) and ei(t) point towards a good performance of the decomposition
in the measurement of the overlapping component.

Within the analysis of (8) and (9), it is also relevant to observe how the result DGt =
0.5BMGt implies DG∗

t = BMG∗
t and, therefore, Dep(t) = BMep(t) and Dei(t) = BMei(t).

In the following we develop a simulation study which provides m replications of the Gini
index decomposition. In this case, starting from ep(t) and ei(t), it is possible to obtain the
mean absolute errors Ep(t) and Ei(t) as

Ep(t) = 1

m

m∑

j=1

|G∗
t j − p(t) j | and (10)
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Table 1 Frequency distribution of the probability of transvariation in the simulated samples by number k of
subgroups

p(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Beta

k = 2 0.01 0.04 0.07 0.09 0.11 0.13 0.14 0.15 0.15 0.12

k = 3 0.00 0.01 0.04 0.08 0.14 0.18 0.20 0.18 0.13 0.04

k = 4 0.00 0.00 0.01 0.06 0.16 0.23 0.25 0.19 0.08 0.01

Gamma

k = 2 0.43 0.11 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.03

k = 3 0.25 0.20 0.16 0.12 0.10 0.07 0.05 0.03 0.01 0.01

k = 4 0.11 0.24 0.23 0.17 0.11 0.07 0.04 0.02 0.01 0.01

Ei(t) = 1

m

m∑

j=1

|G∗
t j − i(t) j |. (11)

Furthermore, the comparison of the Gini index decompositions is performed also on the
basis of the ratios BMGt/G, Y LGt/G, and DGt/G, which are analyzed with respect to the
ratio Gw/G, and to the probability and the intensity of transvariation.

4 The simulation study

The aim of the Monte Carlo study developed in this section is to evaluate and compare the
alternative Gini index decompositions with respect to the presence of transvariation.

Both probability and intensity of transvariation, together with three different Gini index
decompositions [(expressions (5) by Bhattacharya andMahalanobis, (6) byYitzhaki and Ler-
man and (7) by Dagum], are computed on simulated samples, which are randomly extracted
frombeta or gamma distributionwith the purpose to cover awide range of different situations.

We consider the cases of k = 2, 3, 4 for the number of subgroups and n =
100, 500, 1000, 5000 and 10,000 for the sample size. Subgroup’s size n j , j = 1, . . ., k,
is randomly selected with the constraints

∑k
j=1 n j = n and n j ≥ 50. Only for sample size

n = 100, the minimum value of n j is set to 10.
For each subgroup, beta distribution parameters B(a, b) are randomly selected with 0.5

≤ a ≤ 2 and 0.5 ≤ b ≤ 4, while gamma distribution parameters �(c, d) are randomly
selected with 0.5 ≤ c ≤ 10 and 0.5 ≤ d ≤ 10.

For each combination of k and n, 20.000 samples are randomly generated, 50 % from the
beta distribution and 50 % from the gamma distribution, for a total ofm = 300.000 samples.

Table 1 reports the frequency distribution of the probability of transvariation by number
k of subgroups. Each row illustrates the results related to 50000 samples. For example, from
the first row it is possible to observe how, within the 50000 samples generated from the beta
distribution and divided in k = 2 subgroups, we obtain a probability of transvariation lesser
than 0.2 only in the 5 % of cases, while a probability of transvariation greater than 0.8 occurs
in the 27 % of cases. Results are summarized for the 5 sample sizes used in the simulation
study (n = 100, 500, 1000, 5000 and 10.000), since different values of n lead to the same
classification of the simulated samples by both probability and intensity of transvariation.
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Table 2 Frequency distribution of the intensity of transvariation in the simulated samples by number k of
subgroups

i(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Beta

k = 2 0.02 0.08 0.11 0.12 0.12 0.12 0.12 0.12 0.11 0.07

k = 3 0.00 0.03 0.09 0.15 0.18 0.19 0.16 0.12 0.06 0.01

k = 4 0.00 0.01 0.06 0.16 0.24 0.24 0.18 0.10 0.03 0.01

Gamma

k = 2 0.53 0.11 0.08 0.06 0.05 0.04 0.04 0.03 0.03 0.02

k = 3 0.44 0.19 0.13 0.09 0.06 0.04 0.03 0.01 0.01 0.00

k = 4 0.31 0.28 0.18 0.11 0.06 0.03 0.02 0.01 0.01 0.00

It is possible to observe how the simulated samples extracted from gamma distribution
are concentrated on the lower values of probability of transvariation, while in the simulated
samples extracted from beta distribution medium and high values of probability of transvari-
ation are more frequent. Furthermore, as expected, by increasing the number of subgroups
k, frequencies shift towards higher levels of transvariation.

The frequency distribution of the intensity of transvariation in the simulated samples by
number k of subgroups is reported on Table 2, where it is possible to find a pattern only
slightly different from Table 1.

As expected, probability and intensity of transvariation have a similar effect on the distri-
bution of the simulated samples.

Results related to the Gini index decompositions are summarized on Table 3 for proba-
bility of transvariation and on Table 4 for intensity of transvariation by means of the ratios
Gw/G,BM Gt/G,Y L Gt/G and DGt/G. Each row refers to 100,000 samples divided in k
subgroups.

The ratio Gw/G evaluates the weight of inequality within in total inequality: for example,
for k = 2, Gw/G starts from 40 % when overlapping is weak, and it increases to over 60 %
for high levels of overlapping. The number k of subgroups strongly influence Gw/G, which
decreases by increasing k.

The ratios BMGt/G,Y L Gt/G and DGt/G illustrate the dynamic of transvariation com-
ponent by increasing levels of overlapping. In the first column of Table 3, when overlapping
is absent or weak, all decompositions lead obviously to the same results, with BMGt

≈ Y LGt ≈ DGt ≈ 0. The main difference between the decomposition can be clearly
observed in the last columnofTable 3:when overlapping is complete (or almost complete),we
have, for Bhattacharya-Mahalanobis andYitzhaki-Lerman,Gw/G+BMGt/G ≈ Gw/G+Y L

Gt/G ≈ 1, while, for Dagum, it holds Gw/G+2*DGt/G ≈1. From Table 3, by comparing
BMGt/Gand DGt/G, it is also possible to find the result DGt = 0.5 BMGt derived in para-
graph 3.4. Furthermore, it can be observed how BMGt/G < Y LGt/G, and, given DGt =
0.5 BMGt , we have DGt /G < BMGt/G < Y LGt/G.

The analysis of the ratios Gw/G,BM Gt/G,Y L Gt/G and DGt/G by intensity of
transvariation (Table 4) leads to different values but identical conclusion with respect to
the analysis performed by referring to probability of transvariation.

Furthermore, for both probability and intensity of transvariation, sample size n does not
influence the ratios Gw/G,BM Gt/G,Y L Gt/G and DGt/G.
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Table 3 Decomposition by Bhattacharya and Mahalanobis, Yitzhaki and Lerman, Dagum and by probability
of transvariation

p(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gw/G

k = 2 0.40 0.48 0.52 0.55 0.57 0.59 0.61 0.62 0.63 0.63

k = 3 0.24 0.29 0.31 0.33 0.36 0.39 0.42 0.44 0.45 0.46

k = 4 0.11 0.21 0.22 0.24 0.26 0.29 0.31 0.33 0.35 0.35

BMGt/G

k = 2 0.01 0.03 0.05 0.08 0.11 0.15 0.19 0.24 0.29 0.33

k = 3 0.01 0.03 0.07 0.11 0.16 0.21 0.27 0.33 0.41 0.46

k = 4 0.01 0.04 0.08 0.12 0.18 0.24 0.32 0.40 0.48 0.55

Y LGt/G

k = 2 0.04 0.10 0.16 0.21 0.25 0.29 0.32 0.35 0.36 0.37

k = 3 0.04 0.10 0.17 0.24 0.31 0.38 0.44 0.48 0.51 0.53

k = 4 0.02 0.10 0.18 0.26 0.34 0.42 0.50 0.56 0.60 0.63

DGt/G

k = 2 0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

k = 3 0.01 0.02 0.03 0.05 0.08 0.11 0.14 0.17 0.20 0.23

k = 4 0.01 0.02 0.04 0.06 0.09 0.12 0.16 0.20 0.24 0.28

Table 4 Decomposition by Bhattacharya and Mahalanobis, Yitzhaki and Lerman, Dagum and by intensity
of transvariation

i(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gw/G

k = 2 0.42 0.51 0.56 0.58 0.60 0.61 0.62 0.63 0.63 0.63

k = 3 0.25 0.31 0.34 0.37 0.40 0.42 0.43 0.45 0.46 0.47

k = 4 0.18 0.23 0.24 0.27 0.29 0.31 0.33 0.35 0.36 0.33

BMGt/G

k = 2 0.02 0.05 0.08 0.12 0.16 0.20 0.24 0.27 0.31 0.35

k = 3 0.02 0.06 0.11 0.16 0.22 0.28 0.33 0.39 0.45 0.50

k = 4 0.02 0.06 0.12 0.18 0.25 0.32 0.39 0.46 0.52 0.52

Y LGt/G

k = 2 0.06 0.15 0.22 0.26 0.30 0.33 0.34 0.36 0.37 0.37

k = 3 0.06 0.16 0.25 0.32 0.38 0.43 0.47 0.50 0.52 0.53

k = 4 0.06 0.17 0.26 0.35 0.43 0.50 0.55 0.59 0.61 0.56

DGt/G

k = 2 0.02 0.05 0.08 0.12 0.16 0.20 0.24 0.27 0.31 0.35

k = 3 0.01 0.03 0.05 0.08 0.11 0.14 0.17 0.20 0.22 0.25

k = 4 0.01 0.03 0.06 0.09 0.12 0.16 0.20 0.23 0.26 0.26

On the whole, within the Dagum’s approach the overlapping component plays a minor
role both with respect to other inequalities components and in comparison to overlapping
in other decompositions. On the contrary, within Yitzhaki and Lerman’s decomposition,
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Table 5 Results of the simulation study: mean absolute error Ep(t) by probability of transvariation p(t) and
number of subgroups k

p(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bhattacharya Mahalanobis

k = 2 0.04 0.10 0.15 0.18 0.19 0.19 0.17 0.13 0.10 0.07

k = 3 0.05 0.11 0.16 0.19 0.20 0.20 0.18 0.15 0.10 0.06

k = 4 0.03 0.11 0.16 0.19 0.20 0.20 0.18 0.15 0.11 0.08

Yitzhaki Lerman

k = 2 0.01 0.04 0.08 0.11 0.15 0.17 0.17 0.16 0.11 0.05

k = 3 0.01 0.03 0.05 0.08 0.10 0.12 0.13 0.13 0.10 0.06

k = 4 0.01 0.04 0.05 0.06 0.08 0.10 0.12 0.12 0.10 0.06

Dagum

k = 2 0.04 0.10 0.15 0.18 0.19 0.19 0.17 0.13 0.10 0.07

k = 3 0.05 0.11 0.16 0.19 0.20 0.20 0.18 0.15 0.10 0.06

k = 4 0.03 0.11 0.16 0.19 0.20 0.20 0.18 0.15 0.11 0.08

Table 6 Results of the simulation study: mean absolute error Ei(t) by intensity of transvariation i(t) and
number of subgroups k

i(t) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bhattacharya Mahalanobis

k = 2 0.02 0.06 0.07 0.07 0.06 0.05 0.03 0.02 0.01 0.00

k = 3 0.03 0.07 0.09 0.09 0.09 0.07 0.05 0.04 0.02 0.01

k = 4 0.03 0.07 0.09 0.10 0.09 0.08 0.06 0.04 0.02 0.01

Yitzhaki Lerman

k = 2 0.06 0.17 0.24 0.28 0.29 0.28 0.25 0.20 0.13 0.05

k = 3 0.04 0.09 0.14 0.18 0.20 0.21 0.20 0.17 0.12 0.06

k = 4 0.02 0.06 0.10 0.14 0.17 0.19 0.18 0.16 0.12 0.07

Dagum

k = 2 0.02 0.06 0.07 0.07 0.06 0.05 0.03 0.02 0.01 0.00

k = 3 0.03 0.07 0.09 0.09 0.09 0.07 0.05 0.04 0.02 0.01

k = 4 0.03 0.07 0.09 0.10 0.09 0.08 0.06 0.04 0.02 0.01

overlapping component becomes a major source of total inequality, while in Bhattacharya
and Mahalnobis’s approach it plays an intermediate role.

The comparison among alternative Gini index decompositions can be performed bymeans
of themean absolute errors Ep(t) and Ei(t), calculated as in (10) and (11), which are illustrated
on Tables 5, 6 for probability and intensity of transvariation, respectively. Each row refers to
100,000 samples divided in k subgroups.

The first and the last columns of Table 5 illustrate the results related to the two extreme
situations: absence of overlapping and complete overlapping, respectively. In both cases
we can observe low values of Ep(t), thus indicating a good performance of the different
decompositions in the overlapping component measurement.
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Furthermore, by comparing Bhattacharya andMahalanobis’s decompositions to Dagum’s
approach, we find the result Dep(t) = BMep(t) demonstrated in Sect. 3.4.

Finally, it is interesting to note how, by referring to probability of transvariation, Yitzhaki
and Lerman’s approach leads to the lowest values of the mean absolute error.

The analysis of the mean absolute error by intensity of transvariation (Table 6) validates
the indications of Ep(t) related to the two extreme situations (first and last columns still shows
really low values of Ei(t)) and to the comparison between Bhattacharya-Mahalnobis’s and
Dagum’s approaches (Dei(t) = BMei(t)).

However, in Table 6 it is also possible to observe a relevant difference with respect to
Table 5: Yitzhaki and Lerman’s approach shows the highest values of Ei(t), thus inverting
the previous result based on Ep(t).

Furthermore, the Gini index decompositions performed on the simulated data also indi-
cates that samples extracted from beta distribution and samples extracted from gamma
distribution show a similar pattern with respect to the role of the overlapping component.
Given the strong diversity among sample distributions this result ensures an high level of
robustness to our study.

Finally, a last result refers to the number of observations n, which seems to not influence
the overlapping component within the Gini index decomposition: sample sizes from 100 to
10,000 lead to the same pattern.

5 Concluding remarks

This paper developed a simulation study aimed to analyze and compare different Gini index
decompositions. Our focus is on the role of overlapping component, evaluated by means of
both probability and intensity of transvariation.

The analysis of the characteristics of the different decompositions with respect to the
overlapping component measurement leads to suggest that the approaches by Bhattacharya–
Mahalanobis and Yitzhaki–Lerman could be more useful in an exploratory context, where
we need to assess the existence of inequality factors, while Dagum’s proposal could be more
adequate in a confirmative framework, where the inequality factors are already known, but
it is necessary to assess their contribution to total inequality.

Results of the simulation study suggest that the number of observations does not influ-
ence the overlapping component, while the number of subgroups plays a key role. We also
provide evidence about the role of inequality within in total inequality by increasing levels
of overlapping and compare different methods for overlapping component measurement.

On the basis of probability of transvariation, that is by considering the frequency of
overlapping, Yitzhaki and Lerman’s proposal leads to the lowest mean absolute error, thus
indicating the best performance in the overlapping componentmeasurement. On the contrary,
by referring to intensity of transvariation, that is by considering the extent of overlapping,
the Dagum’s approach allows to obtain better results into the measurement of Gt .

Finally, the analysis of overlapping suggests appealing results also in the context of empir-
ical studies, where it can be extremely helpful into the assessment of the “poverty” degree
of the different units and into the investigation of the inequality structure.
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