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Abstract Literature on the models for ordinal variables grew very fast in the last decades
and several proposals have been advanced when ordered data are expression of ratings,
preferences, judgments, opinions, etc. A dichotomy has been emphasized between methods
based on a latent variable which is behind the ordered selection and methods anchored to a
probability distribution with a well defined pattern. In this paper, a comprehensive framework
to regression models is proposed in case ordinal data come out from a discrete choice. The
added value of this unifying perspective is the possibility to introduce further generalizations
and also to deepen similarities and differences among the proposed models. A case study
confirms the usefulness of this general framework. Some concluding remarks end the paper.

Keywords Ordinal data · Feeling · Uncertainty · Cumulative models · cub models ·
Generalized mixture model with uncertainty

1 Introduction

Ordinal data are collected in many fields such as Sociology, Psychology, Medicine, Eco-
nomics and Marketing [1]. In these contexts, quite often, they represent responses of
interviewees as ratings, preferences, judgments, opinions, and so on. In this setting, the
statistical analysis focusses on regression models able to interpret the subjects’ selection
process.
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From a general point of view, ordinal data are usually analyzed by means of models
based on the multinomial distribution, which do not imply that the probabilities of categories
belong to a family of random variables. Different approaches rely on Item Response Theory
[10,63,70], Underlying Response Variable models [6,53–56] or, more recently, stochastic
binary search algorithms [8]. These proposals have been introduced also to pursue clustering
or classification objectives [71].

More specifically, the paper considers as paradigms for regression models of ordinal
data those based on cumulative functions and discrete mixtures: proportional odds [49] and
cub models [58] are the simplest instances of the two approaches, respectively. Though
derived from different principles, they are often compared in terms of fitting, parsimony,
graphical tools and interpretation. In fact, it will shown that such models are just two speci-
fications of a more general paradigm for the analysis of ordinal data.

Then, a focal point of the discussion concerns the specification of “cutpoints” (or thresh-
olds) which are real values able to transform a continuous phenomenon (whose existence is
real or virtual) into a sequence of ordinal categories in a one-to-one correspondence with the
first m integers, for some known m. In addition, we emphasize the need to parameterize the
role of uncertainty in the responses as an inherent component of human decisions.

Several classifications are legitimate and we set apart models which are generated by a
family of random variables characterized by few parameters from those which do not search
explicitly for it. In the first instance a close relationship with the data generating process is
required whereas in the second case more stringent fitting aptitudes are pursued.

The paper is organized as follows: in the next section, we examine the main components
to be considered for the analysis of data generated by a selection of ordered categories. Then,
a general framework and its main inferential issues are discussed in Sect. 3. Sections 4 and 5
consider different models according to discrete and latent variable paradigms, respectively.
Section 6 investigates a real case study and the interpretative usefulness of the proposed
approach. Some final remarks conclude the paper.

2 Data generating process for ordinal data

When data expresses opinions, evaluations, judgments, perceptions, etc. the selection of an
ordinal category is the final outcome of a complex activity involving the human mind in
a multifacet space filled by knowledge, memory, emotion, instinct, deduction, etc. where
several factors related to subjects, items and circumstances affect the answer.

An important point of the debate is the distinction between people who optimize (those
who do their best to give accurate responses) and people who satisfice (those who choose to
do just enough to give a plausible answer that may not be the optimal one), as emphasized
by [43,45]. In any case, an authoritative model of question answering [66] distinguishes four
steps in selecting a category for the response: (i) comprehension of the question; (ii) retrieval
of information; (iii) derivation of a judgment; (iv) formulation of a response. This cognitive
process includes both the perceptual aspect (the rater’s perception of the content of the item)
and the decisional aspect (the rater’s use of the available ordinal scale). In all these steps, a
subjective decision is mixed with a varying fuzziness.

To summarize, a simplified version of this mechanism assumes that at least two compo-
nents drive the process leading to an ordinal choice: a substantive personal attractiveness
towards the item and an inherent indecision to select a single category from a list of ordered
options. Although these components should be better specified in each case study, hereafter,
for simplicity, we qualify them as feeling and uncertainty.
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2.1 Feeling

The first reaction of the mind towards an item/question may be positive, negative or indif-
ferent: if a more accurate selection is requested then respondents should evaluate a finer
subdivision. This human reaction will be called feeling but, according to different contexts,
it may be better specified as attraction, preference, worry, concern, liking, agreement, level
of perception, etc.

Feeling is the result of the personal history of the respondent with respect to the given item
and, in this respect, genetic factors, emotional facts, family traditions, achieved education,
environmental pressures, media influence, etc. are substantial and not independent facts.
Thus, a probability distribution should be able to explain the continuous perception which
derives from several agents (most of them are unconscious) and manifests itself as a discrete
response.

A community of interviewees reacts to questions/items in different manner according to
the factors which influence the final selection; however, people are positively, negatively or
indifferently oriented in different proportions with some spread of preferences around the
modal option. When positive, negative or indifferent proportions are prevalent, we should
expect a left-skewed, right-skewed or almost symmetric distribution of the responses, respec-
tively. That is, a homogeneous community should have a unique mode and the responses
distribution may be captured by a well specified probability mass function. On the contrary,
if subgroups are present (according to gender, nationality, education, marital status, working
conditions, income distribution, etc.) different modal values may be expected.

These arguments do not conflict with situations where some interviewees adhere to a
specific category by laziness, ignorance, desire of privacy: this is a refuge option named
shelter effect and represented as a degenerate distribution collapsed at the shelter category.

The psychological movement which generates an ordinal choice should be explained by
a discrete random variable parsimoniously parameterized to include uni or multimodality,
shelter effect and different skewness. If the output is conditional on manifest (concomi-
tant) variables, the so-called subjects’ covariates, one should insert these information in the
modelling structure so as to improve interpretation and fitting of the observed data.

2.2 Uncertainty

Uncertainty is the result of convergent and related factors of different origins: limited set
of information, knowledge/ignorance of properties and/or characteristics of the item to be
judged, personal interest/engagement in activities related to the specific or similar items,
amount of time devoted to the response, nature of the scale in terms of range and wording,
tiredness or fatigue for a correct comprehension of the wording, willingness to joke and
fake, lack of self-confidence of the respondent, apathy/boredom in the selection mechanism.
Satisficing behaviour generates a varying degree of indecision [64] ranging from a complete
lack of satisficing (totally accurate answer) to strong satisficing (totally random responses).

When a community of respondents manifests high uncertainty towards a given item a
great heterogeneity in the distribution of responses is observed (the proportions of different
categories tend to be similar), whereas if the uncertainty in the responses is extremely low
most of the respondents select the same or surrounding categories (the distribution tends to be
concentrated on a limited number of options). This component is not related to the variability
of the responses (which is computed with the values r, r = 1, . . . ,m of the ordinal scores)
but to the variability of the numeric values of the probabilities pr , r = 1, . . . ,m (which
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Feeling
Attractiveness, Satisfaction, Awareness, . . .

Yi ∼ FY (. ;γ,Tm)

Uncertainty
Indecision, Fuzziness, Blurriness, . . .

Vi ∼ FV (.)

Ordinal choice

Ri ∼ FR(. ;θ)

Fig. 1 Stochastic mechanism of a discrete ordinal choice

involves the concept of heterogeneity of the distribution and derives from variability across
individuals).

A further aspect is the overdispersion, that is the possibility that respondents manifest
an inter-subject variability higher than those expected [36]. Overdispersion may be caused
but not exhausted by uncertainty; thus, in some circumstances, a formal specification of the
overdispersion may be effectively and parsimoniously achieved [37].

3 A unifying perspective

A framework which encompasses different regression models for ordinal data expresses the
probability of a response as a finite mixture of (at least) two components which we have
named as feeling and uncertainty (see Fig. 1).

Hereafter, with respect to a given item I submitted to a sample of n respondents, we denote
as Ri the final response expressed by the i-th subject and as Yi and Vi , i = 1, . . . , n, the
corresponding random variables for feeling and uncertainty, respectively. All these random
variables are defined over the discrete support {1, . . . ,m}, for a knownm. Let θ = (β,�) and
� = (γ , Tm) the set of parameters characterizing the distribution of (R1, . . . , Rn) and of the
feeling component, respectively. Here, Tm = (τ1, . . . , τm−1) denotes a vector of parameters,
called thresholds and possibly involved in the distribution of Yi , as specified in the following.

From a formal point of view, the feeling component Yi assumes (categorical) values
c1, . . . , cm and, for convenience, we score them by letting c j = j , for j = 1, . . . ,m. If the
i-th subject is attracted by the j-th category as the preferred response to a given item we will
denote this circumstance as:

Yi = j , for i = 1, . . . , n and j = 1, . . . ,m.

A Generalized mixture model with uncertainty (gem) is defined as follows:

Pr (Ri = j | θ) = πi Pr
(
Yi = j | t(γ )

i ,�
)

+ (1 − πi ) Pr (Vi = j) , (1)

for i = 1, . . . , n and j = 1, . . . ,m, whereπi = π(t(β)
i ,β) ∈ (0, 1] are introduced to weight

the two components and t(γ )

i ∈ T (γ ), t(β)
i ∈ T (β) include the selected covariates for the i-th

subject. Available information on the subjects’ characteristics (covariates) are collected in a
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matrix T , and T (β) and T (γ ) are submatrices of T containing the regressors for πi and Yi ,
respectively.

The probability distribution of the uncertainty component Vi is assumed known on the
basis of a priori assumptions and it does not require parameters. Quite often, Vi is a discrete
Uniform random variable over the support {1, . . . ,m} although some different distributions
without parametersmay be usefully introduced to take account of different response styles (as
discussed by [27], for instance). An increase ofπi implies a reduced impact of the uncertainty
component; thus, (1− πi ) is a (normalized) measure of the importance of the uncertainty in
themodel (1). The caseπi ≡ 0 is logically possible if we conjecture that the selection process
is equivalent to a totally random choice; however, this assumption rules out the identifiability
of the parameters concerning the feeling. Thus, we prefer to set πi > 0, ∀i and, to simplify
notation, we drop in πi the (possible) dependence on t(β)

i and β .
Turning to the feeling component Yi , ordinal phenomena may be interpreted as genuinely

observed or derived by a continuous variable Y ∗ (a latent variable) which for convenience
or necessity is examined in a discrete version by means of Y . This dichotomy, expressed
by [4], and also discussed by [1] and [67], is a fundamental issue in ordinal data modelling
since it may lead to different specifications. In the first case the correspondence with integers
is immediate (although the scale is not metric) and the assumptions about a latent variable
are not so important because the statistical procedures involve a direct consideration of Y .
In the second case the discretization of Y is obtained by means of cutpoints (thresholds)
τ j , j = 1, . . . ,m − 1 which transform the continuous support of Y ∗ into a sequence of
ordered bins related to Y .

In general, the probability distribution of the feeling component Yi is
{
Pr

(
Yi = j | γ , t(γ )

i

)
, if specified via a discrete distribution;

FY ∗
i
(τ j ; γ , t(γ )

i ) − FY ∗
i
(τ j−1; γ , t(γ )

i ) , if specified via a latent variable distribution;

where FY ∗
i
(τ j ; γ , t(γ )

i ) = Pr
(
Y ∗
i ≤ τ j | γ , t(γ )

i

)
is the distribution function of the latent

variable Y ∗
i .

The interpretation of (1) is two-fold:

– according to the logic of latent class models [31,46], respondents split into two clusters
in proportions (πi ) and (1 − πi ), respectively, and one class consists of people whose
selection is completely random;

– each respondent has propensities (πi ) and (1 − πi ) to select an ordinal category with a
meditated and a random choice, respectively.

We strongly support the second interpretation. In fact, finite mixture models for ordinal
data have been already discussed [12,28,29,72]; however, all these experiences concern
combinations of probability distributions belonging to the same family and they implicitly
assume that several subgroups justify such assumptions. As an instance, a proportion of
Uniform distribution has been introduced to capture outliers (see: [5] for the continuous
case).

A possible classification of regressionmodels for ordinal data derives from the information
available on the set of cutpoints:

Tm = {−∞ = τ0 < τ1 < · · · < τm−1 < τm = +∞} .

In this regard, we distinguish between supervised (classes I and II) and unsupervised dis-
cretization (class III) and, to simplify discussion and notation, wewill assume fixed cutpoints.
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I There are no cutpoints to define the ordered sequence, thus Tm ≡ ∅. In this case, the
probability mass function of Yi is directly specified.

II Cutpoints are defined on a priori basis and are assumed to be known. A density function
for Y ∗

i is required and Y ∗
i is transformed into a discrete version Yi by means of some

acceptable but arbitrary convention. A simple solution, valid for Y ∗
i with a finite range

(τmin, τmax ), consists in selecting equi-distributed thresholds. It implies that, for each
i = 1, . . . , n, the latent variable Y ∗

i is discretized into Yi bymeans of the transformation:

τmin + ( j − 1) d < Y ∗
i ≤ τmin + j d 	⇒ Yi = j , j = 1, . . . ,m ,

where d = (τmax − τmin)/m. Alternative solutions are possible to take account of
rounding effects, for instance.

III Cutpoints are unknown and may be located everywhere on the real support of Y ∗
i . The

mapping from Y ∗
i to Yi is obtained by an ad hoc specification of cutpoints which are

estimated by data. Notice that, since Y ∗ is a latent variable, both the scale and the
origin cannot be identified ([2], pp.13–15). Then, for the continuous (latent) variable
Y ∗ ∈ (τmin, τmax ), where one or both τmin and τmax may be infinite, the correspondence
between Y ∗

i and Yi becomes:

τ j−1 < Y ∗
i ≤ τ j 	⇒ Yi = j , for i = 1, . . . , n and j = 1, . . . ,m.

In all situations, Yi is a discrete random variable characterized by a probability mass

function Pr
(
Yi = j | γ , t(γ )

i

)
. However, this discretization may be reached in a direct way

(case I) or by means of the probability distribution function FY ∗
i
(.) of a continuous latent

variable Y ∗
i and the knowledge (classes II) or the estimation (class III) of the cutpoints

τ j ∈ Tm which are necessary to transform Y ∗
i into Yi .

Discretization implies a different knowledge about the generating mechanism of the ordi-
nal data. The uniform splitting (class II) reproduces the shape of the continuous variable Y ∗;
as an instance, if a latent variable is strongly right-skewed we are assigning high probabilities
to the first (low) categories. Instead, a general splitting (class III) may change the distribution
of the latent variable Y ∗ by assigning the concentration of probabilities to selected categories
thanks to a convenient subdivision of the original range. In a sense, the option to estimate
cutpoints lets the observed data to become the criteria of subdivision of the range of Y ∗
(unsupervised choice). However, the main burden of estimable cutpoints is that the number
of parameters increases by (m − 1), and ceteris paribus this leads to a less parsimonious
model.

The deterministic aspects of gem model (1) concern the relationships of the weight of
uncertainty (related to πi ) and the intensity of feeling (denoted with ξi ) with respect to
subjects’ covariates. These links are expressed by:

πi = gπ

(
t(β)
i ,β

)
; ξi = gξ

(
t(γ )

i ,�
)

. (2)

Then, according to theGLM jargon, the stochastic and systematic components of the response
Ri will be specified by (1) and (2), respectively.

Here, πi and ξi summarize the statistical content of the model (1) with respect to uncer-
tainty and feeling, respectively. As it will be evident in Sects. 4, 5, the quantities ξi may be
related to the expectation or distribution function of Yi or directly to the parameters which
characterize such a distribution.
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Common specifications are the logistic, Gaussian or complementary log-log functions [1],
for instance. Formally, we get:

⎧
⎨
⎩
logi t (πi ) = t(β)

i β;
logi t (ξi ) = t(γ )

i γ ; or H−1
(
Pr (Yi ≤ j | Tm, γ )

)
= τ j − t(γ )

i γ .

where logi t (p) = log (p/(1 − p)) and H(.) is a monotone increasing function mapping R

into (0, 1); the logi t (.) function and the inverse of the Gaussian distribution function are just
two instances of H−1(.).

For inferential purposes, given a sample r = (r1, . . . , rn)′ of ratings and a matrix T
containing all subjects’ covariates, the likelihood function is:

L(θ) =
n∏

i=1

m∏
j=1

[Pr (Ri = j | θ)]I (ri= j)

and the corresponding log-likelihood function is

�(θ) = logL(θ) =
n∑

i=1

m∑
j=1

I (ri = j) log
[
πi Pr

(
Yi = j | t(γ )

i ,�
)

+ (1 − πi ) p
V
j

]
,

where I (ri = j) = 1 if the i-th respondent selects the j category and I (ri = j) = 0
otherwise. Hereafter, for simplicity, we let pVj = Pr (Vi = j).

For this class of models, the EM procedure [25] is an effective algorithm to reach conver-
gence almost everywhere for general mixture distributions [26,50]. Consistent starting values
may be derived for most of the mixtures hereafter examined (as in [34], for instance) and
convergencemay be achieved when the increase in log-likelihood is less than a prefixed small
value. Standard analyses based on deviance and likelihood ratio tests apply and AIC, BIC
indexes are useful to compare non-nested models.

We mention the comparison of estimated probabilities p̂ j with the corresponding relative
frequencies f j by means of a dissimilarity measure (Diss) or a fitting index (F2) defined,
respectively, by:

Diss = 1

2

m∑
j=1

| f j − p̂ j | ; F2 = 1 − Diss .

Both of them are normalized in [0,1] and are especially useful in gem models without
covariates or when covariates have a discrete support.

In the next Sections, we will discuss some specifications of (1), (2) which lead to well
known statistical models, so far presented as alternative approaches to the analysis of ordinal
data.

4 Specification of models via discrete random variables

In case latent variables are not involved in the specification of the probability distribution,
models for ordinal data are derived on the basis of an explicit data generating process without
the knowledge of cutpoints (Class I). Considered as a whole, these probability distributions
represent a sequential strategy aimed to fit the observed data with increasing complexity.
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4.1 IHG models

The generating process of the marginal rank distribution of a given item (which can be con-
sidered as an ordinal evaluation of the item) has been studied by means of a discrete random
variable [20,22,23]. More specifically, the inverse (or negative) hypergeometric distribution
(IHG) has been introduced to mimic the waiting time of a white ball in the sequential drawing
from an urn which contains black and white balls in some definite proportion [30,51,73].

No uncertainty is present (then, πi ≡ 1), and the stochastic and systematic components
of the ihg model are:

⎧
⎪⎪⎨
⎪⎪⎩

Pr (Yi = j | γ ) = ξi (1 − ξi )
j−1 m − 1

m

j∏
s=1

m − s + 1

m − s + ξi (s − 1)
;

logi t (ξi ) = t(γ )

i γ ;
for j = 1, . . . ,m and i = 1, . . . , n. The expectation of this random variable is E (Yi ) =

m − ξi

1 + ξi (m − 2)
. Then, a different parameterizationwhich involves themean value is possible.

This model is especially useful in case subjects judge the items as extreme (the worst or
the best in a list) since the modal value of the ihg distribution may be 1 orm. The skewness is
positive (negative) according to ξi < 1/m (ξi > 1/m); if ξi = 1/m the ihg random variable
becomes the discrete uniform distribution. A positive (negative) feeling towards the item is
determined by ξi < 1/m (ξi > 1/m); as a consequence, the interpretation of the parameter
depends on the maximum of the support. This characteristic causes some difficulties in
comparing ihg models when the number of categories is different.

4.2 Shifted binomial models

To take account of an intermediate modal value, a shifted binomial (SB) random variable
has been introduced as a proxy of the generating process of paired comparison of categories
[21]. If m = 2, the so-called Binomial regression is obtained.

Again, the proposal does not include uncertainty (then, πi ≡ 1) and the stochastic and
systematic components of (1) are:

⎧
⎨
⎩

Pr (Yi = j | γ ) =
(
m − 1

j − 1

)
ξ
m− j
i (1 − ξi )

j−1 ;
logi t (ξi ) = t(γ )

i γ ;
j = 1, . . . ,m; i = 1, . . . , n.

Since E (Yi ) = 1+ (m − 1)(1− ξi ) = m − (m − 1) ξi , a direct parameterization by using
the mean value is possible.

The SB random variable is a unimodal distribution but this model may well be exploited
for fitting/interpreting multimodal observations if explanatory covariates (as a dichotomous
one, for instance) are able to characterize the clusters. As an instance, for m = 9, Fig. 2
shows the implied distributions (conditional to Di = 0, 1, respectively) of the following SB
model:

{
Pr (Ri = j) = ( 8

j−1

)
ξ
8− j
i (1 − ξi )

j−1 ;
logi t

(
ξi

) = −1.362 + 2.744 Di ; j = 1, 2, . . . , 9; i = 1, 2, . . . , n.

and a simulated frequency distribution generated by this model.
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Fig. 2 A bi-modal distribution well fitted by a shifted binomial model with a dichotomous covariate: condi-
tional (left panel) and simulated (right panel) distributions

A relationship of the shifted binomial distribution with item response theory (IRT) has
been advanced by [3] in the context of Likert-type personality measures to support the idea
of a genuinely discrete generating process of the responses to a given item.

4.3 CUB models

The mixture defined cub model is a (convex) Combination of a discrete Uniform and a
(shifted) Binomial distribution. It has been introduced by [58] on the basis of psychological
arguments and further discussed by [24,38,41,59], among others. A package in R [42] for
building cub models and several generalizations [40] is available.

This class of models is very flexible and parsimonious since observed data with different
location, variability and skewness are adequately fitted with just two parameters. In addi-
tion, given the one-to-one correspondence between the parameters (πi , ξi ) and a probability
distribution conditional on the observed covariates for the i-th subject, a cub model allows
effective interpretations when parameter estimates are examined as points in the parameter
space (i.e., unit square). As amatter of fact, this visualization conveys immediate information
in terms of uncertainty and feeling, respectively.

Formally, a cub model is specified by the stochastic and systematic components given,
respectively, by:

{
Pr (Ri = j | β, γ ) = πi b j (ξi ) + (1 − πi ) pVj ;
logi t (πi ) = t(β)

i β ; logi t (ξi ) = t(γ )

i γ ; j = 1, . . . ,m ; i = 1, . . . , n . (3)

We have set b j (ξi ) = (m−1
j−1

)
ξ
m− j
i (1 − ξi )

j−1 and pVj = 1/m, j = 1, . . . ,m, for the
probability mass functions of the shifted binomial and discrete Uniform random variable,
respectively. Here, (t(β)

i , t(γ )

i ) are the information set for the i-th subject extracted from
T to specify the relationships of πi and ξi with the corresponding subjects’ covariates.
Of course, the deterministic part of model (3) is not limited to the logistic link since any
monotone mapping Rp ↔ (0, 1) between linear combinations of covariates and parameters
is legitimate.

cub models have been also applied to a collection of items related to the same ques-
tionnaire to describe, classify or discriminate the behaviour of respondents with respect
to the different items: these objectives may be pursued without any reference to sub-
jects’ covariates for clustering objectives [14,16] or for missing data imputation [19].
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Furthermore, multilevel extensions [35] and multivariate generalizations [13,15] have been
advanced since the approach has been interpreted as a new paradigm for modelling ordinal
data.

An important variant has been advanced by [48] who proposed non-linear cub models
specified by a non-constant transition probability from one category to the next. In this
perspective, cub models are the simplest solution for they assume a constant transition
probability derived by some approximation.

4.4 CUBE models

To take account of a possible overdispersion in ordinal data, [36] proposed a mixture model,
denoted as cube (Combination ofUniform and BEta-Binomial random variable), which has
been further extended with the introduction of subjects’ covariates [60]. The stochastic and
the systematic components of this model are defined by:

{
Pr (Ri = j | θ) = πi h j (ξi , φi ) + (1 − πi ) p

V
j ;

logi t (πi ) = t(β)
i β ; logi t (ξi ) = t(γ )

i γ ; log (φi ) = t(α)
i α ; (4)

for j = 1, . . . ,m and i = 1, . . . , n. Generally, pVj = 1/m, j = 1, . . . ,m. We let θ =
(β, γ ,α) whereas h j (ξi , φi ) is the (shifted) Beta-Binomial distribution of the feeling of the
i-th subject which has been parameterized as follows:

h j (ξi , φi ) =
(
m − 1

j − 1

)
j∏

k=1

[
1 − ξi + φi (k − 1)

] m− j+1∏
k=1

[
ξi + φi (k − 1)

]

[
1 − ξi + φi ( j − 1)

] [
ξi + φi (m − j)

] m−1∏
k=1

[
1 + φi (k − 1)

] ,

(5)
for j = 1, . . . ,m and i = 1, . . . , n. If φi ≡ 0, ∀i we get a cub model; thus, cub are nested
into cube models and the selection between them is made effective by means of likelihood
ratio tests.

Simulations and experimental evidence show that an explicit parameterization of a possible
overdispersion allows a more correct analysis of the uncertainty in the estimated model [37].

4.5 Models with varying uncertainty

Hitherto, the discrete Uniform random variable has been considered as the building block to
account for a subjective propensity to indecision: this solution is motivated by simplicity and
parsimony.

In order to fit real situations generated by different response styles of interviewees, a
greater flexibility has been suggested for pVj [27]; it can be achieved by selecting one of
alternative discrete distributions over the support {1, . . . ,m}, without the addition of further
parameters. Formal tests have been introduced in this respect.

cub models with a varying uncertainty (vcub models) belong to the gem models family
(1) with a convenient specification of pVj and vice versa, all gem models may be safely

considered with a varying uncertainty in pVj .
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4.6 The family of models with a shelter component

In psychological, sociological, political and marketing surveys an important proportion of
respondents may choose a category which represents a sort of “refuge” to avoid a more
demanding selection: this circumstance has been named a shelter effect and the corresponding
option a shelter category [16]; then, a cub model with a shelter effect as a sort of c-inflated
distribution has been considered [32].

4.6.1 GeCUB models

A cub model with a shelter effect which includes subjects’ covariates has been referred to
as a gecub model [39,41]. The stochastic and the systematic components are specified by:

⎧⎨
⎩

Pr (Ri = j | θ) = δi

[
D(c)

j

]
+ (1 − δi )

[
πi b j (ξi ) + (1 − πi ) p

V
j

]
;

logi t (πi ) = t(β)
i β ; logi t (ξi ) = t(γ )

i γ ; logi t (δi ) = t(ω)
i ω ; i = 1, . . . , n ;

(6)

where θ = (β, γ , ω) and the dummy (degenerate) random variable is defined by: D(c)
j =

I ( j = c), with I (E) the indicator function of E . The integer c ∈ [1,m] is assumed known
on the basis of the nature of the selected option. Again, the logistic link may be substituted
by a continuous monotone mapping from R to (0, 1).

The stochastic component of (6) may be written as

Pr (Ri = j | θ) = π∗
i Pr (Yi = j | γ , ω) + (1 − π∗

i ) pVj

where {
π∗
i = πi + δi (1 − πi ) ;

Pr (Yi = j | γ , ω) =
(

δi
δi+πi (1−δi )

)
D(c)

j +
(

πi (1−δi )
δi+πi (1−δi )

)
b j (ξi ) ;

then, gecub models fit the gem model family defined by (1), (2).

4.6.2 “Don’t know” models

The family of cub models has been exploited to cope with non-responses motivated by a
“Don’t know” option [47]. The empirical results are really convincing and the new proposal
captures respondents’ opinions with more fidelity than the simplistic solution to exclude
“Don’t know” responses.

The specification of this model is:

Pr (Ri = j) = Pr (A = 0) Pr (Ri = j | A = 0) + Pr (A = 1) pVj ,

where A is a dichotomous random variable indicating whether the respondent is able or not
to formulate the requested rating Ri ; it assumes values 0, 1 with probabilities p0 and 1− p0,
respectively. Then, Authors argued that Pr (Ri = j | A = 0) may be the probability mass
function of a cub model.

These assumptions lead to a class of models included in (1):

Pr (Ri = j | θ)=π∗∗
i Pr (Yi = j | γ , ω) + (1−π∗∗

i ) pVj , i = 1, . . . , n ; j = 1, . . . ,m ,

where

Pr (Yi = j | γ , ω) = b j (ξi ); pVj = 1/m, ∀ j; π∗∗
i = πi p0 ;

and πi , ξi , are defined as in (3).
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Although this model may be formally included in the family of cub models with a shel-
ter effect (“Don’t know” response is a sort of refuge caused by difficulties to express an
opinion), a substantial difference should be noted: the shelter category c belongs to the sup-
port {1, . . . ,m} whereas the “Don’t know” option is an added choice for the respondent.
This characteristic justifies a two-step procedure for the estimation of p0 and the model
parameters.

A possible extension includes subject’s covariates to characterize clusters of respondents
who select the “Don’t know” option. In addition, to investigate the possible causes of the
missing selection, we might consider objects’ covariates in a multi-item perspective, as
pursued by [61], for instance. Thus, it would be possible to explain the reasons because
some items have been considered by respondents more awkward than others.

5 Specification of models via latent variables

Some specifications of (1), which are based on the relationship with a latent variable and
whose cutpoints are necessary to set the ordered categories, are now discussed. A difference
between supervised (models of Class II: Sects. 5.1 and 5.2) and unsupervised discretization
(models of Class III: Sects. 5.3 and 5.4) is considered. For these models, ξi = logi t (μi ) and
ξi = logi t (FYi ( j)), respectively.

5.1 CUN model

In a note relating cub models and IRT, a direct discretization of the Normal distribution has
been proposed [62] by specifying model (1) with

Pr (Yi = j | μ, σ) = 


(
j + 1/2 − μ

σ

)
− 


(
j − 1/2 − μ

σ

)
,

where 
(.) is the distribution function of a standard Gaussian random variable and (μ , σ )

are quantities estimable by data. Here πi ≡ 1 and Tm = ( 12 , 1 + 1
2 , . . . ,m − 1

2 ).
The introduction of the parameter σ for the variability improves the fitting of observed

data; however, the uniform splitting and the symmetry of the Gaussian distribution around
j = [

μ ± 1
2

]
are severe constraints to cope with observed data.

Simple generalizations include: (i) an ad hoc splitting of cutpoints by means of thresholds
Tm to be estimated by data as in probit/logit models; (ii) a link between parameters and
subjects’ covariates by means of:

logi t (μi ) = t(γ )

i γ ; log(σi ) = t(λ)
i λ ;

where (t(γ )

i , t(λ)
i ) are the information set derived from T (γ ) and T (λ), the submatrices of T

containing regressors for the mean level and variability, respectively.

5.2 Discretization of a Beta random variable

The noticeable flexibility of the shape of the Beta random variable over a finite continuous
support has driven different Authors to address this distribution to get ordered values (updates
references in [65]). Indeed, this random variable achieves “separation effects” in order to
eliminate dependence of the variance from the expectation in robust experimental designs
[11]. In a recent Ph.D. thesis [69], the split of the (0, 1) range of a Beta distribution into
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m equi-distributed cutpoints to obtain a probability mass function with a flexible shape has
been proposed. The model does not consider uncertainty; thus, πi ≡ 1, ∀i (see also [52]).

The parameterization for Y ∗ is:

hY ∗(y) = �(φ)

�(μφ)�(φ (1 − φ))
yμ φ−1 (1 − y)(1−μ) φ−1 , y ∈ (0, 1)

with μ > 0 and φ > 0, as in Beta regression analysis [18]. As a consequence, the first two
central moments are:

E
(
Y ∗) = μ ; Var(Y ∗) = μ (1 − μ)

1 + φ
.

Thus, μ and φ may be interpreted as location and precision parameter, respectively.
Similarly to [52], Tm = {0 , 1/m , 2/m, . . . , 1} has been selected as a supervised splitting.

In presence of covariates, let us define:

Pr
(
τ j−1 < Y ∗

i < τ j
) =

∫ τ j

τ j−1

hY ∗(y) dy

= I Bμiφi ,(1−μi )φi (τ j ) − I Bμiφi ,(1−μi )φi (τ j−1) ,

for j = 1, . . . ,m and i = 1, . . . , n, where τ j = j/m for j = 0, 1, . . . ,m and I Bμφ,(1−μ)φ(.)

is the incomplete Beta function with parameters (μiφi , (1 − μi )φi ).
Then, the stochastic and systematic components of this Discrete-Beta model become, for

j = 1, . . . ,m and i = 1, . . . , n:
{
Pr (Yi = j | γ , λ) = I Bμiφi ,(1−μi )φi (τ j ) − I Bμiφi ,(1−μi )φi (τ j−1) ;
logi t (μi ) = t(γ )

i γ ; log(φi ) = t(λ)
i λ .

The proposed distribution may be underdispersed with respect to the (shifted) Binomial
one whereas cubmodels tend to have tails heavier than this discretized Beta random variable.

5.3 Cumulative models

In this class of models, the response Ri is interpreted as coincident with the expressed feeling
Yi . A distinctive feature of the approach is the presence of (unsupervised) cutpoints in Tm .
Since πi ≡ 1, a possible uncertainty/heterogeneity of data is spread around all categories
and captured by the estimated cutpoints.

Assume that p ≥ 1 covariates are relevant for explaining the latent regression model by
means of

Y ∗
i = t(γ )

i γ + εi , i = 1, . . . , n,

where εi ∼ FY ∗
i
(τ j ; γ ). Common choices for FY ∗(.) are Gaussian, logistic or Com-

plementary log-log distributions: see [1,67], for details. Then, Pr (Yi = j | Tm, γ ) =
Pr

(
τ j−1 < Y ∗

i ≤ τ j
)
.

If a logistic random variable for εi is considered, the stochastic and systematic components
of the model are:

{
Pr (Yi = j | Tm, γ ) = FY ∗

i
(τ j − t(γ )

i γ ) − FY ∗
i
(τ j−1 − t(γ )

i γ ) ;
logi t

[
Pr (Yi ≤ j | Tm) , γ

] = τ j − t(γ )

i γ .
(7)
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Of course,

Pr (Yi ≤ j | Tm, γ ) =
[
1 + exp(−[τ j − t(γ )

i γ ])
]−1

, i = 1, . . . , n ; j = 1, . . . ,m.

The parameter vector (Tm, γ ) consists of intercepts Tm = (τ1, . . . , τm−1) and covariate
coefficients γ . If there are no covariates the cumulative model is a saturated one and, given
a sample of ordinal data, empirical and estimated distribution functions coincide.

Intercepts τ j characterize each category but model (7) assumes a constant effect t(γ )

i γ

for all categories. This restraint has been removed by considering a varying effect t(γ )

i γ j
as in stereotype models [4], for instance. However, this extension increases the number of
parameters to be estimated and requires a priori constraints to take the order of the categories
into account: see ([1], pp 103–115) and ([67], p 260). Finally, a dispersion parameter may be
added [49] and more general location-scale cumulative odds models may be considered [17].
Other generalizations include multilevel versions, varying choice of thresholds, multivariate
setting, etc.

Ceteris paribus, model (7) presents constant log-odds for consecutive values of a single
covariate and it has been denoted [49] as aProportionalOddsModel (pom) or, more correctly,
a “proportional odds version of the cumulative logit model” ([1], p. 53). This assumptionmay
be tested in practical applications by a formal score test [57] and/or a graphical device [44].
Other cumulative models (as adjacent category and continuation ratiomodels, for instance)
have been introduced but their usage is more limited. Finally, sequential models support the
selection of an ordinal score which implies a stepwise decision process ([67], pp 252–255).
Notice that cumulative logit models can be also interpreted following both the IRT and URV
approaches.

5.4 CUP models

Tutz et al. [68] have recently proposed to extend the class of cumulative models by introduc-
ing a component of uncertainty to improve the fitting. This mixture has been denoted as a
cupmodel (that is, a Combination of a discrete Uniform and a Preference random variable).

Formally, the stochastic and systematic components of a cup model are:
⎧⎨
⎩

Pr (Ri = j | θ) = πi

[
FY ∗

i
(τ j − t(γ )

i γ ) − FY ∗
i
(τ j−1 − t(γ )

i γ )
]

+ (1 − πi )
1

m
;

logi t (πi ) = t(β)
i β; logi t (Pr (Yi ≤ j)) = τ j − t(γ )

i γ ;
for j = 1, . . . ,m and i = 1, . . . , n. Then, a cup model may be considered a gem model (1)
where Pr (Yi = j | Tm, γ ) coincides with (7) and pVj is the probability mass function of a
discrete Uniform random variable.

The systematic part of the model saves the traditional definition of a predictor (as in
cumulative models) but considers as well parameters πi (as in the family of cub models) to
weight for the uncertainty component. Then, a plot of log-odds (which are independent of
categories when the link is logistic) versus 1 − πi has been proposed as a graphical tool to
interpret the effect of subjects’ covariates.

Authors emphasize the ability of cup models to capture multimodality and empirical
overdispersion with a better fitting. From an abstract point of view, the comparison with
more parsimonious models (as those discussed in Sect. 4) should lead to prefer cup models
since they achieve more fidelity given a greater number of parameters. Empirical evidence
shows that this is not a rule when one considers both fitting and parsimony criteria, as derived
by BIC measures, for instance.
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6 A real case study

During 2007, a survey has been carried out in Naples, Italy, to score the most serious emer-
gencies of the metropolitan area by using a Likert scale, with m = 9 (where 1 = “completely
unimportant” and 9 = “absolutely serious”). Hereafter, we will emphasize only the ordinal
responses to the “worry for organized crime” item (crime) of n = 2381 subjects. Sample
data include the subjects’ covariates gender and age, among others.

Table 1 lists themain results based on log-likelihood and dissimilaritiesmeasures obtained
by fitting parsimonious models based on discrete probability distributions (standard errors
of estimated parameters are in parentheses). For the moment, we consider models without
subjects’ covariates and for fitting purposes we compare the models which admits an explicit
data generating process (see Sect. 4). More specifically, Fig. 3 shows the distribution of the
observed responses (left panel) and compares them with the estimated probabilities obtained
from a cube model (right panel).

We notice an almost perfect fit of cube model (dissimilarity index shows that less than
1% of responses should be changed to obtain a complete overlapping of the observed and
estimated distributions) and this result is confirmed by a log-likelihood at the maximum
which is very close to that of the saturated model (= −3994.56). Worry for this item is
very strong (1 − ξ̂ is always greater than 0.83) and all estimated models imply an expected
response in [7.1, 7.5]. In addition, uncertainty has been estimated around 0.30 by all models
of cub family. However, most of uncertainty may be attributable to overdispersion, as shown
by the cube model where the inclusion of φ significantly cuts uncertainty by half.

Table 1 Models fitted to the crime response (without covariates)

Models 1 − π̂ 1 − ξ̂ δ̂ φ̂ Mean value Log-lik B IC Diss

ihg 0.963
(0.001)

7.108 −4111.0 8229.8 0.125

cub 0.315
(0.015)

0.919
(0.004)

7.307 −4079.3 8174.1 0.105

cub +sh(9) 0.319
(0.018)

0.828
(0.007)

0.289
(0.015)

7.425 −4014.4 8052.0 0.042

cube 0.151
(0.020)

0.863
(0.008)

0.193
(0.025)

7.465 −3995.8 8014.9 0.010
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Fig. 3 Distribution of responses to crime and probabilities of a fitted cube model
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Table 2 Models fitted to the crime response (with covariates)

Models 1 − π̂ γ̂0 γ̂1 γ̂2 γ̂3 φ̂ Log-lik B IC

ihg −3.255
(0.004)

0.315
(0.004)

−0.255
(0.004)

0.097
(0.004)

−4098.7 8228.6

cub 0.305
(0.004)

−2.362
(0.004)

0.602
(0.004)

−0.765
(0.004)

0.189
(0.004)

−4061.0 8160.9

d- betaa 1.445
(0.036)

−0.213
(0.059)

−0.091
(0.049)

−4006.3 8056.1

pom −0.411
(0.086)

−0.149
(0.075)

−3980.4 8046.3

cup 0.119
(0.035)

−0.528
(0.105)

−0.192
(0.088)

−3978.8 8043.1

cube 0.052
(0.004)

−1.929
(0.004)

0.434
(0.004)

0.146
(0.004)

0.185
(0.023)

−3979.4 7997.6

a Dispersion link: log
(
σ̂i

) = 1.123
(0.037)

+ 0.225
(0.085)

lagei

No significant covariates affect uncertainty whereas gender and the transformed covari-
ate lage=log(age)− log(age) are significant for the feeling component. Thus, we estimate
different models with gender, lage and lage2 and present results only for significant
covariates. The (more complete) systematic component for the feeling turns out to be:

logi t (ξi ) = γ0 + γ1 lagei + γ2 lage
2
i + γ3 genderi , i = 1, . . . , n .

In addition, for the Discrete-Beta model we found a significant relationship of the dispersion
parameter with gender and lage expressed by:

log(σi ) = λ0 + λ1 lagei , i = 1, . . . , n .

Table 2 lists the estimates obtained for the main models discussed so far. Opposite signs
in d- beta, pom and cup models are expected given their different parameterizations.

In our case study, the significance of lage and gender is a common feature of allmodels
with a similar impact whereas only ihg, cub and partially cube (with a fairly significant
estimate) are able to capture a parabolic effect of lage on the responses. The unsupervised
models (class III) improve the fitting and exclude lage2; then, the parabolic effect is masked
by (accounted for) the estimated cutpoints which adapt themselves to the specific shape of the
categories. Observe that the maximum of log-likelihood is obtained for a cupmodel (with 11
parameters) whereas a comparable fit is obtained by a cube model (with just 5 parameters)
which turns out to achieve the minimum BIC .

A more effective picture displays the effect on the mean value E (Ri ) of a varying age,
given the gender, for some of the previous models (Fig. 4). These plots show that the
expectedworry is regularly inferior forwomen; in addition, the effect of cube and cupmodels
are quite similar whereas some difference in level is implied by ihg and cub models.

7 Conclusions

The specifications previously discussed may be further extended in several directions, by
considering different distributions for the random variables Yi and Vi . Given the many pos-
sibilities offered by the proposed mixture it seems difficult to be exhaustive in this regard.
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Fig. 4 Expected worry for crime as a function of gender and age according to ihg (top-left), cub (top-
right), cube (bottom-left) and cup (bottom-right) models

Some of them are legitimate by a direct relationship with the data generating process and
should be supported by empirical evidences.

According to the latent variable approach, possible candidates for the feeling are the nega-
tive exponential, Gamma and similar distributions: they are characterized by few parameters
of location, variability and/or shape which can be related to subjects’ covariates by adequate
link functions. Similarly, if we jointly consider items and subjects, the approach of 3PL
model in IRT [9], which implies a “guessing option”, may be explored within the class of
gem models.

Finally, the paradigm so far discussed emphasizes the role of a discrete support in mod-
elling ordinal data and the importance to consider discrete states in the selection process, an
approach fostered by [7] for longitudinal data and by [3] for personality measures.

A unifying perspective for modelling ordinal data is a useful framework to compare
models, to discover unexpected similarities and to introduce new distributions. Most of all,
the opportunity to see the same data from different points of view improves interpretation
and prediction of ordinal responses by means of statistical models.
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