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Abstract This paper investigates the use of latent variable models in assessing escalation
in crime seriousness. It has two aims. The first is to contrast a mixed-effects approach to
modelling crime escalation with a latent variable approach. The paper therefore examines
whether there are specific subgroups of offenders with distinct seriousness trajectory shapes.
The second is methodological—to compare mixed-effects modelling used in previous work
on escalation with group-based trajectory modelling and growth mixture modelling (mixture
ofmixed-effectsmodels). The availability of software is an issue, and comparisons offit across
software packages is not straightforward. We suggest that mixture models are necessary in
modelling crime seriousness, that growth mixture models rather than group-based trajectory
models provide the best fit to the data, and that R gives the best software environment for
comparing models. Substantively, we identify three latent groups, with the largest group
showing crime seriousness increases with criminal justice experience (measured through
number of conviction occasions) and decreases with increasing age. The other two groups
showmore dramatic non-linear effectswith age, and non-significant effects of criminal justice
experience. Policy considerations of these results are briefly discussed.

Keywords Escalation · Aggravation · Longitudinal data analysis · Latent variable
methods · Heterogeneity · Group-based trajectory modelling · Growth mixture modelling ·
Criminal careers · Comparative study

1 Introduction

The term “escalation” has different meanings in the criminological literature. Some authors
such as [9] and [35] use the term in relation to increasing frequency of offending; others (e.g.,
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[4]) define escalation as a tendency to move to more serious offence types. In this paper we
follow the second usage of the term and refer to escalation in crime seriousness. Surprisingly
little quantitative work has been done in this area, with most work using crime type switching
tables, fitting log-linear models or using methods such as the forward escalation coefficient.
Liu et al. [21] provides a literature review.

In previous work, a linear mixed-effects model has been used to model escalation in
offence seriousness over the criminal lifespan [21]. This paper took a multi-level modelling
approach to the sequence of seriousness scores for each offender. This statistical approach
modelled sequences of seriousness scores with time-varying covariates and accounted for
between individual and within individual variability. The paper also identified that there are
two temporal scales—age and conviction occasion, and so examined two types of escalation
process—escalation associatedwith experience of the criminal justice process, and escalation
associated with age and maturation. The resulting model suggested some interesting findings
where ageing is associatedwith de-escalation,whereas increasing conviction occasions (court
appearances) are associated with escalation. However, one potential criticism of this work is
that it did not consider that there may be different subpopulations of offenders with different
escalation processes. This paper therefore addresses this problem and considers a variety of
models which allow for different escalation trajectories.

In the disciplines of psychology, medicine, and criminology, the work of Nagin and Land
[31] has popularised the use of group-based trajectory modelling, which assumes that there
are a number of latent subpopulations with different temporal trajectories present in the data.
While in criminology such models have been used for offending frequency, there has been
little work in estimating trajectories of crime severity over age and conviction history. This
is therefore an important research area for criminologists which is necessary to understand
how offenders develop their criminal careers in terms of the seriousness of crimes.

Despite the popularity of Nagin’s model for understanding trajectories, there are a num-
ber of alternative statistical terminologies that have also been used. In the psychological
and sociological literature, the terms growth curve model and growth mixture modelling
are commonly found. In addition, alternative terms such as the linear mixed-effects model,
the heterogeneity model, and latent class linear mixed-effect model can also be found. The
terminology is confusing, and sometimes these terms refer to the same underlying model,
whereas others differ in important respects. However, they all are designed to study and
model repeated observations over time, with many of these approaches taking account of
within individual and between individual variation.

The second new development of this paper is to examine the effect of time spent in
prison on crime escalation. We conceptualise this in terms of cumulative custodial sentence
awarded, measuring cumulative sentence length up to the current conviction occasion. In
effect, this means that there are now three types of escalation process—escalation associated
with experience of the criminal justice process, escalation associatedwith age andmaturation,
and escalation associated with time spent in prison.

In Sect. 2, we provide a methodological review, disentangling the multitude of terms used
in this area. We will group the current available statistical approaches on studying develop-
mental trajectory into three main types of methodologies according to the assumptions made.
In Sects. 3 and 4, we briefly discuss the conceptual issues involved in studying escalation,
before introducing the Offenders Index dataset. Then in the following Sect. 5, we firstly
examine the existence of heterogeneity for the distribution of random effects, then we apply
two competing methods: group-based trajectory modelling and growth mixture modelling
to assess the existence of subpopulations in assessing escalation over conviction history. We
compare the results from our earlier study using a linear mixed-effects model with these two
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new approaches. In the last section, we discuss our results reaching some tentative substantive
conclusions.

2 Competing approaches for modelling trajectories

As already mentioned, there are a variety of terminologies that are commonly used by
researchers in studying developmental trajectories and longitudinal data. Indeed, it is often
confusing for researchers from different disciplines to understand the links between these
varying terminologies. Essentially, among these varying terminologies, there are three dis-
tinct statistical methodologies: mixed-effects modelling, mixture modelling, and mixtures of
mixed models.

This section firstly reviews the statistical properties and software implementation options
of each approach, and examines two existing comparison studies which examine these meth-
ods.

We now define the framework for our models. We let Yit represent the response variable,
for observations i = 1, . . . , m at the time points t = 1, . . . , ni . Here m is the total number
of cases, and ni is the number of observations for each case i .

The repeated outcomes for each i can be gathered into an vector of length ni , yi =
(Yi1, . . . , Yini ). The responses for all i are stacked into a long vector of length n; thus
y = ( y1, . . . , ym), with n = ∑m

i=1 ni .

2.1 Mixed-effects modelling

The linear mixed-effects (LME) model [7,19] is a well developed and popular statistical
approach for the analysis of longitudinal data, which is well described in many texts such as
[34] and [45]. Another commonly used term is the growth curve model (GCM) [10,38,46,47].
These two terminologies essentially refer to the same approach and estimate not only the
overall growth or trajectory (fixed-effect) but also the amount of variation across individuals
in the growth parameters (random intercept and random slopes).

The terminology of GCM is commonly used in the disciplines of sociology, psychology,
and criminology and is used by the statistical package MPLUS. The conventional growth
curve model is often in a form of an intercept plus variables representing the time effect
(slopes), such as time and time squared which we refer to as growth factors. The variance of
the intercept and the polynomial time parameters are represented by random effects which
are multivariate normally distributed with means of 0 and an estimated variance–covariance
matrix [7, Chap. 5]. It is commonly used in conjunction with time-constant explanatory
variables to explain the variation in the growth random effects. Hwang and Takane [14]
also pointed out that the conventional GCM assumes that the covariance matrix of repeated
measurements is unstructured. Typically, GCM in the social sciences is normally used with
a relatively small and equal number of time points for each subject.

The linear mixed-effects model represents a broader framework of modelling than the
GCM. Typically, time-varying explanatory variables may also be included to explain within
individual-level variation and the number of time points can vary across each subject. It can
also provide a more flexible structure to define the covariance matrix, such as various forms
of serial correlation within subjects over time. Therefore, GCM can be viewed as one type
of model within linear mixed-effects modelling.

These two models therefore share a common approach to trajectory estimation—a mean
trajectory for all cases is estimated through a polynomial function of time, and variability
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over cases is represented by random effects terms on the intercept, slope and higher order
polynomial terms.

In this paper, the terminology of the linear mixed-effects (LME) model is preferred. The
model can be defined as follows:

Yit = X
′
i tβ + Z

′
i tui + εi t , (1)

where X i t is a p-vector of fixed effects covariates,β = (β1, . . . , βp) is a p-vector of unknown
regression coefficients for the fixed effects. The fixed effects of X i t can include both time
varying and time constant covariates. Zi t is a q-vector of random effects covariates, with
a q-vector of unknown subject-specific coefficients ui = (ui1, . . . , uiq). It is common that
ui = (ui1, ui2), where ui1 is the random intercept and ui2 is the random slope for time;
with ui ∼ MV N (0, V ) and with V a two by two variance–covariance matrix of the ui ,
with diagonal terms var(ui1) = v11, and var(ui2) = v22 , and an off-diagonal covariance
cov(ui1, ui2) = v12 = v21. Hence, the two random terms have a correlation of v12√

v11v22
.

Finally, εi t is the residual error term with εi t ∼ N (0, τ 2).
However, themultivariate normality assumption on the randomeffects needs to be assessed

when applying themixed-effectsmodelling approach. Studies fromVerbeke andLesaffre [44]
and Verbeke and Molenberghs [45] have pointed that lack of multivariate normality for the
random effects can seriously influence estimates of the random effects and is very difficult
to check. However, inference for the fixed effects is shown to be robust to the assumption of
multivariate normally distributed errors, except in the special case when the error variance is
correlatedwith a term representing interaction between a covariate and time [15]. Therefore, it
will be important for us to examinewhether heterogeneity exists in the underlying distribution
of random effects estimated from the model.

2.2 Mixture modelling approach

The second common approach to trajectory estimation is through group-based trajectory
modelling (GBTM) [29,30], which is also known as latent class growth analysis (LCGA).
This approach assumes that the population is composed of a mixture of distinct groups
defined by their developmental trajectories. Thus, instead of assuming a multivariate normal
distribution of random effects in the linear mixed-effects model, this approach uses a finite
number of groups to approximate a continuous distribution of random effects. The groups
can be considered to be latent classes. Each individual will have a probability of belonging
to a specific trajectory class—thus variability between individuals is represented through
the varying individual probabilities of class trajectory membership. Therefore, there is no
specific inclusion of any underlying random effects, and homogeneity is assumed within
each identified trajectory class. The terminology of group-based trajectory model (GBTM)
is preferred in this paper.

An alternative way of thinking about the GBTM approach is to conceptualise it as a
linear mixed-effects model but with a finite number of discrete random effects or mass points
[18]. The unknown mass points interact with the growth factors of time, time-squared etc. to
provide the equivalent of the random slopes in the mixed-effects model. This is sometimes
known as the non-parametric maximum likelihood (NPML) approach to mixture modelling
[1].

Themodel can be generalised from the linear mixed-effects model Eq. (1) in the following
way. Assuming the existence of K classes, and given the latent class k with k = 1, . . . , K ,
the model can be written as:
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Yit |ci =k = X
′
1i tβ + X

′
2i tαk + εi t , (2)

where X1i t is a p-vector of common effect covariates, and β = (β1, . . . , βp) is a p-vector of
unknown regression coefficients that have common effects across all classes. Additionally,
X2i t is a q-vector of class-specific covariates, and αk = (αk1, . . . , αkq) is a q-vector of
unknown regression coefficientswith the coefficients varying across classes. εi t is the residual
error term for each individual i at time t , where εi t ∼ N (0, τ 2). Therefore, the residual
variance τ 2 is assumed to have a common variance across different classes. However, this
assumption can be extended by allowing class-specific residual variances (εi tk).

Thus, conceptually, there are now two types of covariates which can be included in the
model. The first (β) acts at the population level—the same as the fixed effect (β) in Eq. (1),
and assumes the effects are common for all individuals. The second (α) acts at the class-level,
and so the effects here will vary across classes. Thus if time (slope) and powers of time are
treated as class-specific covariates, then the shape of the developmental trajectory among
each latent class of individuals will vary. In summary, the group-based trajectory approach
can be more flexible as it allows risk factors (both time-varying and time-constant variables)
to vary across each latent class of individuals. In the linear mixed-effects model, in contrast,
there are no latent groups, and therefore varying effects of covariates cannot be estimated.

Implementations of this model for balanced data with the same number of time points per
case are available through the SASprocedure PROCTRAJ [16], and via theMPLUSpackage,
where the method is referred to as latent class growth analysis (LCGA). For unbalanced data
(unequal number of repeated measurements within each observation), the lcmm package in R
[37], the LatentGold package [48] (using the latent regression option), andMPLUS (by fitting
a two-level model with a latent factor though the command TWOLEVEL MIXTURE) are
suitable options. The difference in terms ofmodelling assumptions between the lcmm package
with the other two software packages is that both the Latent Gold package andMPLUS allow
a class-specific residual variance (εi tk) if required, in contrast the lcmm package allows only
a class-independent residual variance (εi t ). All of these implementations allow covariates at
both the class level and at the population level.

2.3 Mixtures of mixed models approach

While group-based trajectory modelling provides a framework to identify latent subpopula-
tions and to estimate their distinct trajectories, the model assumes that each class-specific
trajectory is a good representation for all members of its class. In other words, variation
around the expected trajectory within a class is assumed to be zero. Additional models which
we term “mixtures of mixed models” have therefore been proposed to relax this assumption.

The simplest extension is the heterogeneity model [44,45] which is basically a form of
finite mixture model [25,43]. This model assumes that the population distribution of trajecto-
ries is composed of a discrete number of latent subpopulations, each following a conventional
linear mixed-effects model. To avoid numerical convergence issues, their method assumes a
common variance–covariance structure for the random effects in each class. In other words,
the individuals’ variation around the expected trajectories within each class is the same.

Amore flexible extension—the growth mixture model (GMM)—was proposed byMuthèn
and Shedden [28], and relaxes the assumption of a common covariancematrix. For each class,
a unique covariance matrix of growth factors and intercept can be estimated. Proust and
Jacqmin-Gadda [36] have proposed an alternative terminology, the latent class linear mixed-
effect model (LCLMM), which covers both the growth mixture model and the heterogeneity
model when modelling continuous response variables.
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Both methods can be thought either as an extension of the linear mixed-effects model to
handle heterogeneous populations (with the number of classes >1), or as an extension of
group-based trajectory modelling to account for correlation between repeated measures of
the same subject and the variance within each subpopulation. The terminology of growth
mixture model (GMM) is preferred in this paper.

The formal definition for GMM is as follows. Given the latent class k, the trajectory of
the outcome is described using a linear mixed-effects model, and is given by:

Yit |ci =k = X
′
1i tβ + X

′
2i tαk + Z

′
i tui + εi t . (3)

where the vectors of X1i t , X2i t , and Zi t are defined as in Eq. 2. The term ui is a q-vector of
the class-specific random effect coefficients, where the probability density of ui Pr(ui ) =∑K

k=1 πk�(μk, V k), where ui is assumed to follow a mixture of K multivariate Gaussians
with probabilities πk and with different means μk and covariance matrices V k , with e.g.∑K

k=1 πkμk = 0 for identifiability.1 Therefore, when k = 1, this model becomes the linear
mixed-effects model (Eq. 1); alternatively, if the random effects are excluded (uik = 0), it
becomes the group-based trajectory model (Eq. 2).

A further extension to the GMM is to replace the assumption of multivariate normality
of the class specific random effects above with a non-parametric alternative, estimating the
randomeffects distributionswithin each class by a series ofmass pointswith unknownmasses
and locations which are estimated from the data. This model is termed the non-parametric
growth mixture model (NGMM) and has been considered by Kreuter and Muthèn [17] and
Muthèn and Asparouhov [27].

Software implementations of the GMM model can be found in either MPLUS or in
R. In MPLUS, both the MIXTURE and TWOLEVEL MIXTURE commands can be used.
The MIXTURE command is for the analysis of balanced data. In contrast, the TWOLEVEL
MIXTURE command can be used for unbalanced data with no time-dependent covariates.
Additionally, an option to this command allows a single time-dependent covariate (through
the command TWOLEVEL MIXTURE RANDOM). However, the setup of the coding is not
straightforward.As an alternative, amoreflexible implementation ofGMMwhich allowsboth
for unbalanced data and time-dependent covariates is provided by the lcmm package inR [37].

In this paper, R is our preferred software as it is more flexible for dealing with unbalanced
data (see Appendix Table 5), also it allows both time-varying and time-constant variables.
More importantly, the lcmm package provides a single framework for model comparison.

2.4 Other longitudinal latent variable models

Finally, in our review of longitudinal latent variable models for criminology, it is worth
mentioning another class of models known as variously as latent transition [6], or latent
Markov models [2]. These models assume that the profiles of the latent classes are constant
over time, but that offenders will move or transit from one latent state to another at known
points in time. Pennoni [33] has also suggested a local likelihood version of the latent class
model which allows class membership to change at unknown time points. The term ‘hidden
Markov model’ is also sometimes used when the focus is on long time series of observations
and where the number of cases is small and the time sequence is long [2, p. 5]. These models
have commonly been used in criminology to identify patterning in the types of offences
committed and how offenders may transit from one type of offending to another as they age

1 For identifiability,the lcmm package in R estimates the variance–covariance matrix of the last latent class,
and then a set of estimated class-specific proportional parameters is used to multiply the variance–covariance
matrix in order to compute the variances and covariances of each of the other classes.
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[3,11]. Because the nature of these Markov models are rather different in concept to the
models in Sects. 2.1–2.3 (which assume that class membership does not change over time),
they will not be considered further in this paper.

2.5 Comparison studies

In comparing the above three approaches, there are two existing major studies.
Firstly, Kreuter and Muthèn [17] used four mixture modelling alternatives: the growth

curve model, the group-based trajectory model (which they referred as latent class growth
analysis), the growth mixture model (GMM) and the non-parametric GMM, to analyse
conviction histories in two longitudinal criminological datasets (the Cambridge Study in
Delinquent Development data and the Philadelphia cohort study data). They used both BIC
and absolute standardised residuals for each response pattern as criteria for model selection.
Their comparison methods focused on differences in overall fit, such as the average curve on
convictions by age at offence, and significance of the age effects for eachmodelling approach.
For the Cambridge data, they found that the four alternative models suggested no substantial
differences in terms of number of classes, the characteristics of each class, the shape of curves
over age and the proportion in each class. However, the four alternative approaches differed
substantially for the Philadelphia cohort study. Their advice is essentially not to focus on one
strategy, but to consider a variety of approaches before making inferences.

In contrast, the work of Bushway et al. [5] focused on examining and comparing estimates
of the individual trajectories from the growth curve model (GCM) and the group-based
trajectory models (GBTM) based on offending prevalence data from a criminal career and
life course study (CCLS) in the Netherlands. In terms of their comparison method, they
first estimated separate trajectories for each individual offender by a method they called
the individual trajectory model (ITM). ITM simply takes a sequence of observed offences
from each offender as a subsample and estimates the individual trajectory through a cubic
regression function. They then computed Bayesian estimates of the individual trajectories
from both the GCM and GBTMmodels. Finally they compared the Bayesian estimates to the
estimates given by ITM using two statistical measures of bias: the signed difference (SDF) in
the fitted probabilities of prevalence and the absolute value of the signed difference (ADF) of
these probabilities, both of which were computed for each individual and at each age. Their
comparison methods thus do not compare methods to the observed data, but rather assess
bias towards ITM. They conclude that the average trajectories obtained from these three
approaches are quite similar. On the other hand, for any given individual, these approaches
tell very different stories, although GCM and GBTM are far more consistent relative to ITM.

Both of the above comparative studies also warn that care should be taken in assuming the
existence of latent classes where none exist. Debates in this topic have been lively [32,39,40]
and have been followed recently by a simulation study by Skarðhamar [41] suggesting that
evidence for groups can be weak. However, Bushway et al. [5] also warn that GCM and
GBTM may not detect classes with small numbers of cases which do not follow the general
trend. Thus current practice suggests that mixture based models need to be used with care,
but when well applied, can provide insight into underlying structure.

3 Conceptual issues in escalation

Liu et al. [21] reviewed a number of major studies on the topic of escalation from criminolog-
ical literature, and found that mixed-effects models had not hitherto been used for modelling
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crime seriousness. Liu et al. [21] also identified various ways of measuring crime serious-
ness, discussedmethodological approaches in assessing crime seriousness, and indicated that
there were two types of temporal scales in crime escalation. This paper extends the work of
Liu et al. [21], using an enlarged dataset and an additional covariate representing time spent
in custody, but focuses instead on the use of the various forms of mixture models discussed
above. Although themore detailed background information has been provided in our previous
paper, we still need to briefly introduce how we measure escalation in seriousness.

Following Liu et al. [21], we used a recently developed measure of crime seriousness [12]
based on court sentencing to assess escalation. This research developed a continuous score
(score A in the report) for 405 separate offence codes, which, when logged, ranged from a
score of 9.9 for murder down to a score of 0.0 for minor offences such as driving without
lights. Any specific court conviction can consist of a number of offences brought to court at
the same time. We took the seriousness of a court conviction to be the maximum seriousness
score of the convicted offences at that court appearance. Thus we measure court conviction
seriousness as the seriousness of the worst convicted offence rather than the total seriousness
over all convicted offences in the court appearance. Liu et al. [21] makes the case as to why
this is a sensible approach. Conceptually, we view offending history as consisting of major
offences with other minor offences committed at the same time—for example, theft of a
car and driving without insurance. The severity of the court conviction is therefore that of
the major offence rather than the average of the severity of the major and associated minor
offences.

4 Data and variables

4.1 Offenders index

Our dataset was based on that used by Liu et al. [21]. This was a 1 in 13 sample of all England
andWales offenders born in 1953 and followed through to 1999. The dataset contains details
of all standard list offences for which an offender is found guilty and sentenced in a court
in England and Wales—the 1953 birth cohort data will contain offending histories such as
dates of conviction and types of offences, from age 10 (the age of criminal responsibility)
up to age 46. Following Liu et al. [21] we removed offenders who had only a single court
appearance, and also those who were convicted for the first time after age 37. The resulting
dataset was larger than that used in [21] as improved matching of offences to seriousness
scores meant that we discarded fewer unmatched cases. Our final dataset consisted of 4831
offenders with 4288 males (89 %) and 543 females (11 %).

Table 1 shows the characteristics of the final sample by gender and number of court
conviction appearances. While the most common number of court appearances is two for
both males and females, around 20 % of the sample have eight or more convictions.

4.2 Variables

We define a conviction occasion (sometimes shortened to ‘conviction’) to be a distinct court
appearance where an offender has been found guilty of one or more offences. Thus, an
offender with two conviction occasions will have two separate court convictions at different
dates.

As described earlier, we define the seriousness of a conviction to be the maximum seri-
ousness score for all offences at that conviction. We then model the individual sequence of
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Table 1 Offenders index 1953
birth cohort: number of court
conviction appearances by gender
from 1963 to 1999

No. of conviction
appearances

Male Female Total offenders

Frequency %

2 convictions 1368 292 1,660 34

3 convictions 736 88 824 17

4 convictions 493 62 555 12

5 convictions 350 23 373 8

6 convictions 218 23 241 5

7 convictions 187 14 201 4

8+ convictions 936 41 977 20

Total (%) 4288 (89 %) 543 (11 %) 4831 100

seriousness scores over convictions. The observed sequences of seriousness in crime from
the first conviction are longitudinal sequences measured at each conviction number.

We allow for both time varying and time constant covariates in our analysis. We include
the following time varying covariates.

Order of conviction This is the number of current and prior conviction occasions. This
provides a partial indication of the effect of criminal justice experience on escalation.

Age at conviction This is also a time varying covariate, and assesses the effect of maturation
on escalation. It is measured at the date of sentence.

Number of offences This is the number of separate offences at each conviction occasion.
Liu et al. [21] showed that the expected maximum seriousness score for a conviction
occasion increases with the number of offences at that occasion. A log transformation of
this variable was used.

Custodial sentence This is the cumulative custodial sentence length (in years) up but not
including the current conviction occasion for each offender. This is a proxy measure for
the time spent in prison; in general offenders serve between 40 and 50 % of sentences
awarded [42].

We also include two time-constant covariates: gender (coded (1) male and (2) female)
and age at onset (the age at the first conviction occasion).

5 Assessing the nature of heterogeneity among offenders

We now return to the models outlined in Sect. 2, and discuss how we might choose between
the various alternatives. The simplest approach—the linearmixed-effectsmodel—is based on
the assumption of multivariate normality of the random effects, but [44] state that violation of
this assumption may seriously influence the parameter estimates. Therefore, in this section,
prior to any detailed modelling, we will be assessing this assumption through graphical
diagnostics from the fitted of a basic linear mixed-effects model (including both random
intercept and slope as well as controlling for the other variables listed in Sect. 4.22).

In testing the multivariate normality of the estimated random effects (ûi1 and ûi2) we use
a joint test proposed by [13], which combines two graphical methods.

2 Note that age is treated as piecewise linear through a one breakpoint representation as described in Sect. 6.1
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The first graphical method is a correlation scatterplot of means against variances which
are computed from the multivariate data, the second method is a Q–Q plot of Mahalanobis
d2 and Chi-square distribution quantiles. The joint visual examination of the two graphs can
provide a more robust test on detecting non-multivariate normality in situations when one
graph fails to detect but the other does. For example, the correlation scatterplot has power
to detect non-normality which the Q–Q plot cannot detect for simulated skewed normally
distributed data. In contrast, for data which comes from a mixture of normals with the same
mean but heterogeneous variances, the Q–Q plot is likely to detect non-normality, whereas
the correlation scatterplot supports normality. Therefore, the combination of these two tests
are powerful graphical tools to detect non-normality.

We first define the correlation scatterplot. Let X1, . . . , Xn be n i.i.d. random variables,
where X j = (x j1, . . . , x jp) is a p-vector of realisations, with j = 1, . . . , n. In this study,
n is the total number of offenders, and p = 2 representing the estimated random intercept
and estimated random slope for each offender. Let X = (1/n)

∑n
j=1 X j , where X is a p-

vector of means X = (x1, . . . , x p) and S = (1/n)
∑n

j=1
∑

(X j − X)(X j − X)−1, with

S = (s1, . . . , sp). If the n random variables are normally distributed then the value of L
′
X

and L′SL are independent [22]. Normally, either L = 1 (i.e. a sum) or L = 1/ p (i.e. an
average).

The X j aremultivariate normally distributed if and only if L
′
X and L′SL are independent.

Therefore,we can bootstrap M samples of realisations from X1, . . . , Xn to compute M paired
values of L

′
X and L′SL. If X j is normally distributed then the scatterplot of L

′
X against

L′SL should have no pattern of correlation.
The second graphical tool is the Q–Q plot of Mahalanobis distance d2 [23] and is given

by:

d2
j = (X j − X)

′
S−1(X j − X). (4)

Given that X j is i.i.d. normally distributed, then the d2 measures are Chi-square distrib-
uted. Therefore, the basic idea of thisQ–Q plot of the distance d2 is to display the graph of the
Chi-square distribution quantiles Q p(

j
n+1 ) against d2

j which should display a approximately
straight line on the diagonal if the data is multivariate normal.

These two graphical methods are applied to the data in this study, in order to test the
multivariate normality assumption on the distribution of the estimated random slope (the
order of conviction) and the random intercept in the linear mixed-effects model. This model
controls for a range of fixed effect covariates - namely, age with one breakpoint (at ages 18),
gender, number of offences at each conviction occasion (log transformed), and cumulative
sentence length. 400 bootstrapped samples of the estimated random effects (ûi1 and ûi2)
which were obtained from this mixed-effects model, and L

′
X and L′SL were computed,

taking L = 1. The 400 paired statistics are graphed in Fig. 1a. It clearly suggests that there
is a strong linear correlation between the means (L

′
X) and variances (L′SL) of the joint

distribution of estimated random intercept and slope. As the variance is increasing with
the mean, the plot rejects the assumption of multivariate normality. Figure 1b shows the
Malahanobis Q–Q plot. It shows a curvilinear relationship rather than the expected straight
line, which suggests that heterogeneity of the random effects is present with structure arising
from a mixture of normals [13].

In summary, both the scatterplot and the Q–Q plot suggest that the joint distribution of
estimated random intercept and slope does not follow a bivariate normal. However, a note of
warning is needed. Work by Verbeke and Lesaffre [44] states that the test of heterogeneity
on random effects is fundamentally difficult as both the random intercept and slopes are
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Fig. 1 a The scatterplot for L
′
X vs. L′SL of 400 bootstrapping samples from estimated random effects. b

Q–Q plot of Mahalanobis D2 vs. quantiles of χ2
2

already estimated under the multivariate normality assumption. Therefore, the estimates of
the random effects may be biased if this assumption is wrong. In addition, Verbeke and
Molenberghs [45] suggests that Q–Q plots of the type suggested by Lange and Ryan [20]
cannot differentiate a wrong distributional assumption for the random effects or the error
terms from a wrong choice of covariates. However, Eberly and Thacheray [8] suggests that
in the presence of a correctly specified mean model, the normality test of Lange and Ryan
[20] detected non-normal random effect distributions with reasonable power that increased
as the non-normality grew more pronounced. In the presence of a misspecified mean model,
they go on to state that such plots are more useful as a general diagnostic procedure. Our
conclusion is that there is sufficient evidence from these plots to justify the investigation of
heterogeneity in more detail.

Therefore, in the next stage, it is necessary to apply both types of mixture modelling
approaches to investigate the heterogeneity in the population of offenders and to identify
where possible potential latent types of offender in terms of their development of seriousness
in crime.

6 Statistical modelling results

Our model-fitting strategy for mixture models is developed as follows. Firstly, we need to
identify the effect of covariates as either class-specific (with different parameter estimates in
each class) or class independent effects with the same estimates in each class. Our primary
interest in this analysis is in identifying any potential differences in the effects of age at
conviction and criminal justice experience between classes, and we therefore make the age
and the order of conviction class-specific covariates, andmake the number of offences, gender
and custodial sentence length all class-independent covariates.

Secondly, the three statistical models described in Sect. 2 are applied, using the covari-
ates described previously, trying two, three and four class models for the mixture based
approaches. In terms of their goodness-of-fit, the three statistical models of their AIC/BIC
are compared. The result of three-class GMM model which is preferred as the final model
will be described.

6.1 Choice of non-linear effect

We propose that the effect of age or conviction order may be non-linear. For the effect of
conviction order, a quadratic term is examined through the three statistical models. However,
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Table 2 AIC and BIC values for
various models by the LME
model, the GBTM with two/three
classes and the GMM with
two/three classes

BIC AIC

LME 51,079.28 50,989.34

GBTM-2CLASS 49,251.88 49,167.61

GBTM-3CLASS 48,604.29 48,487.60

GMM-2CLASS 48,515.76 48,405.55

GMM-3CLASS 48,126.13 47,977.03

the quadratic term of conviction order is not significant (with p value >0.05) in any of the
three statistical models. Therefore, there is no evidence of non-linearity over convictions.

For the effect of age, we used a breakpoint model with one breakpoint. This will give a
flexible form of non-linearity for age which is consistent with earlier work on this dataset
[21]. The breakpoint model for age assumes that the effect of age has different slopes for
different values of age, with the age effect piece-wise linear and continuous. Such modelling
terms are sometimes known as segmented regression model terms [26]. We estimate the
breakpoint by a grid-point search, taking values of the breakpoint from 12 to 45 at 1 year
intervals and taking that value of the breakpoint that minimises AIC or BIC. For the one
breakpoint, the break was estimated at age 18.

6.2 Three statistical models for criminal career escalation

The three types of trajectory model each controlled for the class-independent covariates of
gender, sentence length and the log of the number of offences at each conviction occasion, and
the class-specific effects of order of conviction and age at conviction with one breakpoint (at
age 18). The AIC and BIC values of the LME model, the GBTM with two and three classes,
and the GMM with two and three class solutions are compared in Table 2.

Table 2 clearly shows that both the GBTM and the GMM with two or three classes
have smaller BICs/AICs than the LME model, indicating better goodness-of-fit by using a
mixture approach than the straightforward LMEmodel. Moreover, in terms of the difference
between the two mixture modelling approaches, the GMM two-class model has smaller
BIC/AIC (48,515.76/48,405.55) than the GBTM two-class model (49,251.88/49,167.61),
and similarly the GMM three-class model also has smaller BIC/AIC (48,126.13/47,977.03)
than the GBTM three-class model (48,604.29/48,487.60).

A model with a four-class solution has also been attempted by both GMM and GBTM.
Although both the AIC and BIC are smaller, suggesting a better goodness-of-fit, the interpre-
tation of the class-specific parameter estimates are far less clear. As we are concerned about
interpretability, we do not consider the four-class solutions further.

Table 3 shows the parameter estimates of the final growthmixturemodel for the three-class
solution, which was computed through the lcmm package in R. In this particular package,
Proust-Lima and Liquet [37] directly maximise the observed log-likelihood using a modified
Marquardt optimisation algorithm [24], and the standard errors of the covariates are directly
computed using the inverse of the observed Hessian matrix.

In Table 3, the class-independent effects show that females have a significantly lower
crime seriousness score compared to males (−0.123) and that the effect of time spent in
custody is small and non-significant (−0.002). The larger the number of offences within
each conviction occasion the more likely the conviction is to be serious.

There are three classes of offenders, consisting of a large first class with 92 % of offenders
(class one), and two smaller classes each with 4 % of offenders. Note that the percentages of

123



Latent variable approaches in crime escalation 289

Table 3 Growth mixture model with three-class solution

Class 1 (92 %) Class 2 (4 %) Class 3 (4 %)

Coef. SE Coef. SE Coef. SE

Intercept 3.926 0.052* 7.688 0.271* 14.050 0.445*

Order of conviction 0.010 0.002* 0.027 0.008* −0.039 0.087

Age at conviction

≤18 −0.002 0.003 −0.216 0.017* −0.584 0.028*

18+ −0.012 <0.001* −0.027 0.005* 0.041 0.008*

Random effects

Intercept (v11) 0.039 0.130 3.990

Order of conviction (v22) 0.012 0.041 1.261

Common effect Coef. SE

Sex (female) −0.123 0.015*

Log (offences) 0.252 0.007*

Custodial sentence −0.002 0.003

Residual Var (τ2) 0.558

BIC (AIC) 48,126.13 (47,977.03)

* Significance at the 5 % level

class membership which are presented in this table are the averages of the estimated posterior
class probabilities3 of each individual.

Class one consists of the majority of offenders. The intercept of 3.926 lies below the other
two intercepts. Members of this class are generally de-escalating with age and escalating
with their experience, although the age effect before age 18 (−0.002) is not statistically
significant. The coefficients of the order of conviction (0.010) and the age at conviction
after age 17 (−0.012) are very similar but with different signs. Therefore, the contradictory
effects highlight that offenders with one conviction a year on averagewill show de-escalation,
whereas those with a large number of convictions a year will show escalation. The variances
of the random effects in this class are also small (0.039 and 0.012 for the intercept and slope
respectively).

The second class is formed of a small subset of offenders (4 %). The estimate for the
intercept lies between the other two intercepts, which gives the mean seriousness level at age
10 is 5.532. De-escalation with age dominates the effect of escalating with their experience,
especially before age 18. For those aged 18 and older, again the coefficients of age (−0.027)
and order of conviction (0.027) are having the same effect size but with different signs,
showing increasing escalation with the number of distinct convictions. The variation among
individual’s intercepts (0.130) and slopes (0.041) is larger than the first class.

The third class contains another 4 % of offenders, this small subset of offenders who have
a very high estimate of seriousness at age 10 (8.210). The de-escalation is strongest up to age
17 (−0.584), and then becomes relative smaller but positive (0.041) for those aged 18 and
older. However, the overall effect of age shows a strong de-escalation effect. The effect of

3 The posterior probability is the probability of each individual belongs to certain class k given data X ,
P(ci = k | X i t ).
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experience (the order of conviction) is not significant. The model estimates for the third class
show very interesting findings. Although class three contains 4 % of offenders, this group
of offenders shows substantial variation within offenders, with variances of 3.990 and 1.261
for the random intercept and random slope respectively.

It is worth highlighting that a model with a four-class solution is basically splitting class
three into two even smaller groups with very similar directional effects of the class-specific
estimates in the two new groups, but with different magnitudes. Since the dataset used in this
study is sizeable, then the AIC and BIC may not reach their minima until a large number of
classes have been fitted. Recent guidance suggests that it is important to stop at a meaningful
model with a smaller number of classes rather than searching for the best AIC/BIC with
larger number of classes which is less interpretable [32]. Therefore, the GMM three-class
model is preferred in this paper.

7 Comparison of the three statistical models

In this section, further examination of differences among the three statistical methodologies
in terms of their goodness-of-fit are needed. Firstly, the goodness-of-fit of the three models
(the LMEmodel, the GBTM three-class model, the GMM three-classmodel) will be assessed
through graphical tools by comparing the differences between the observed scores and the
estimated scores at both marginal-level and individual cases. Then diagnostic measures such
as AIC/BIC, and the Euclidean distance are used to compare the three models.

7.1 Graphical goodness-of-fit at marginal-level

We focus first of all on the marginal goodness-of-fit for all three statistical models within
each class. The class membership which has been estimated from the three-class GMM
model (Table 3) is assigned to each individual offender. The marginal means of observed
seriousness scores and predicted scores from the LME model, the GBTM approach, the
GMM approach are computed for each age of conviction and for each of the three classes.
The reason to look at the marginal seriousness scores by age at conviction is to be able to
present graphs of the marginal crime seriousness effects within the three groups by age, as
the age escalation effects differ strongly between the groups. The plots of the observed scores
and the fitted scores against age at conviction are shown in Fig. 2. It is important to clarify
that in Fig. 2 different offenders will contribute to each observedmean point, as each offender
has a different set of conviction ages.

Firstly, the character of each class is examined by looking at the observed mean scores.
It is clearly shown that class 1—Plot (a)—indicates that the majority (92 %) of offenders
appear to stay relatively constant in their crime severity, but with a small tendency to de-
escalate with increasing age. Class two consists of 4 % of offenders who, if they offend in
early adolescence, will start with a high serious offence, then de-escalate quickly between
the ages of 14–16 followed by a gentle de-escalation at later ages. In contrast, class three
shows remarkable diversity in crime seriousness especially between age 10–16 and from age
35 onwards. This group seems to consist of groups of offenders either involved with serious
crimes at earlier age (between age 10–15), or late onset offenders with quite serious offences,
or even those offenders who were most delinquent with high serious crimes at both an early
age and from the late 30s onwards.

Secondly, the differences in fitted marginal means among the fitted three models are
examined for each class. There is hardly any difference in class one between the threemodels.
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Fig. 2 Comparison of the observed marginal seriousness scores and the estimated mean scores for the three
models plotted against age at conviction. Offenders have been grouped into three classes by assigned class
membership according to Table 3. Plot a for offenders who are classified in class 1; plot b for offenders who
are classified in class 2; plot c for offenders who are classified in class 3

However, for the more complex offending patterns found in class two and class three, the
differences among the three methods are starting to show. On average, for both class two
and class three, estimates from the GMM appear to capture the more serious crimes more
accurately and also can fit the observed mean more smoothly than the GBTM, and certainly
better than the LME model, although the estimates from the GBTM also follow the mean
observed trajectories well compared with the mean estimated scores from the LME model.

7.2 Graphical goodness-of-fit for individual cases

From looking at Fig. 2, a clear story of the characteristics of each class has been observed,
and some general marginal goodness-of-fit diagnostics have been presented. Therefore, the
next step is to examine the individual offenders’ trajectories in crime seriousness and their
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Fig. 3 Comparison of the observed seriousness scores and estimated scores for the three models for two
individual offenders with varying number of convictions (labelled with offenders’ identification number) in
class 1 (plots a, b), 2 (plots c, d) and 3 (plots e, f) (Table 3), plotted against order of conviction but labelled
with age at conviction

fitted values over conviction occasions. The plots are prepared as follows. First a random
sample of around 100 individuals within each class is taken. Then, within each class, two
offenders were selected who represent some common offending patterns from these samples,
and also represent the range of total number of convictions. For an individual offender, the
sequence of seriousness score in crimes is presented by the order of conviction but labelled
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with the age at conviction (on the x-axis). Graphical output from class one is shown in Fig. 3
plots (a) and (b), plots (c) and (d) show cases from class two, and plots (e) and (f) show cases
from class three.

First, examination of the two individual offenders from class one is undertaken (plots
(a) and (b) in Fig. 3). As described before, class one consists of the majority of offenders
who are relatively stable in their seriousness in crime. In comparing the fitted models for
the two offenders, similar findings are found to those given by the marginal plot diagnostics
in Fig. 2a—namely that the three models give very similar estimates. The plot (b) (offender
771101) indicates that complex offending patterns will cause difficulty for any model.
Basically, offender 771101 is active in offending from age 12 to 40, with the seriousness
of most of the offending at about 4.0 but with a few irregular episodes of high seriousness
offending in between. The sudden changes of severity in such a case cannot be captured
accurately by any of the three models. It is possible that this type of offending may need its
own small latent class which is not represented in the three group solution.

Two individual offenders from the second class (class two) are now shown in plots (c)
and (d) in Fig. 3. As mentioned previously, class two consists of offenders with median
seriousness at early ages but de-escalating with increasing age, and also escalating with
increasing experience. For this class, estimates from both the GMM and the GBTM are a
better fit than the LME model.

Finally, two offenders from class three are examined in plots (e) and (f). Offenders in
this class are general with high seriousness at early ages and also more diverse in terms
of their range of crime seriousness. In particular, the GMM captures the high seriousness
at the beginning of each trajectory better than the other two models, and adjusts better for
changing crime severity. Thus, the conclusion is the same as for class two, with the GMM
method performing more sensitively than the other two models. For this particular group
of offenders, the common analytical issue is the sudden occurrence of the occasional high
serious crime as part of the criminal history which occur more often in this class than for the
offenders in the other two classes. This is represented in the model by the high estimates of
v11 and v22.

7.3 Comparison of goodness-of-fit by diagnostic measures

The diagnostic measure which is used to examine the goodness-of-fit is the Euclidean dis-
tance. The Euclidean distance is amathematical termwhich is used tomeasure the “ordinary”
distance between two points or sequences, and is defined as follows:

Dik( yik, ŷik) =
√

(yik1 − ŷik1)2 + · · · + (yikni − ŷikni )
2, (5)

where yik is a vector of an observed sequence of seriousness scores for offender i assigned
to class k, with length ni , and the vector of estimated scores is given by ŷik . The average
Euclidean distances by class (assigned membership according to Table 3) for each fitted
model are then shown in Table 4.

Table 4 The average Euclidean
distance measures for the LME
model, the GBTM with three
classes and the GMM with three
classes

Class 1 Class 2 Class 3

LME 0.800 3.228 3.195

GBTM-3CLASS 0.808 3.089 2.381

GMM-3CLASS 0.788 2.933 1.600
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Firstly, class one shows that the Euclidean distance measurements from LME and GBTM
models are very similar. In fact, the GBTM three-class model has a slightly greater average
distance than the LME model, indicating the LME model fits the data slightly better the
GBTM for class one. In general, out of the three models, the GMM three-class model fits all
three classes the best, with the smallest distance for class one (0.788), class two (2.933), and
class three (1.600). In addition, the twomixturemodelling approaches (theGBTM three-class
and the GMM three-class) have improved the goodness-of-fit substantially for class three.

8 Conclusions

This studyhas attempted to assess the existence of heterogeneity in the population of offenders
in terms of their seriousness of crimes. Three modelling approaches are used; the linear
mixed effect model, the group-based trajectory model and the growth mixture model. These
approaches all suggest that male offenders on average are more likely to be convicted of
more serious offences than female offenders; in addition the larger the number of offences
involvedwithin a single conviction occasion the higher the seriousness level in this conviction
occasion will be. In contrast, the effect of custodial sentence varies from model to model.
However, models with a statistically significant custodial sentence effect all show a small
and positive effect, indicating that offenders escalate with increasing time spent in prison,
but the effects are small, with changes of 0.01 of a seriousness score point per year or less.
For the preferred GMM three-class model the effect of length of custodial sentence is not
significant.

This work contributes to some important policy implications on how to identify and
selectively target a small group of potentially dangerous offenders. In general, most offenders
in this sample are more likely to be involved with similar types of crimes with similar crime
seriousness as this study showed. Moreover, offenders who started with a relatively high
seriousness crime at an early age have a tendency to de-escalate with age. For those offenders,
policy implications are clear: it is important for criminal justice professionals to focus on
persistent offenders—those with large numbers of convictions in a short period of time—as
these individuals are most likely to escalate. This work importantly also identifies a group
of offenders (around 4 %) with high diversity and high seriousness in crime. For this type of
offender, monitoring could be worthwhile as they are generalists in offending andmore likely
to be involved in occasional high seriousness crimes in between other offences compared to
the other two types of offenders. They can be identified by early offending which escalates
rapidly in seriousness at young age.

There is still some future work needed to be carried out based on this current study.
For example, this work compared the three modelling approaches statistically and identified
three types of offender according to their offending patterns. Offenders belonging to each
class may share some common crime patterns in terms of the specific types of offences
involved. Therefore, a future study can focus on the examination of each class of offender by
considering various features of their criminal career, such as age at onset, type of first crime,
sequence of crimes, length of criminal career, and diversity of offending. The other potential
area of development would be the need to develop better searching methods for a model with
a larger number of classes (perhaps allowing the detection of classes with a small number of
cases).
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Appendix

See Table 5.

Table 5 List of terminologies in mixed-effects and mixture modelling, and the available software for the
analysis of a continuous response variable

Terminology Software Package or option Type of data

Linear mixed-effects modelling

GCM MPLUS TYPE=RANDOM Balanced data

LME R nlme, lme4, lcmm Unbalanced data

Mixture modelling

GBTM SAS PROC TRAJ Balanced data

LCGA MPLUS TYPE=MIXTURE Balanced data

LatentGold Latent class regression Unbalanced data

R lcmm Unbalanced data

Mixture of mixed modelling

Heterogeneity MPLUS TYPE=TWOLEVEL MIXTURE Unbalanced data

GMM MPLUS TYPE=MIXTURE Balanced data

R lcmm Unbalanced data

LCLMM R lcmm Unbalanced data
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