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Abstract We provide an overview of linear quantile regression models for continuous
responses repeatedly measured over time. We distinguish between marginal approaches,
that explicitly model the data association structure, and conditional approaches, that con-
sider individual-specific parameters to describe dependence among data and overdispersion.
General estimation schemes are discussed and available software options are listed. We
also mention methods to deal with non-ignorable missing values, with spatially dependent
observations and nonparametric and semiparametric models. The paper is concluded by an
overview of open issues in longitudinal quantile regression.

Keywords Quantile regression · Longitudinal data · Marginal models · Conditional
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1 Introduction

Quantile regression has been introduced by Koenker and Bassett [64] as an extension of
standard mean regression to model the conditional quantiles of a continuous response and
to provide a thorough overview of its distribution. It has become a very popular and con-
solidated approach in the statistical literature and is nowadays applied in a wide range of
fields, including econometrics, finance, biomedicine, ecology. Comprehensive reviews can
be found, among others, in [54,63,67,118]. Specific examples are provided by Machado and
Mata [88] in econometrics, by Austin and Schull [4] in epidemiology, by Cade et al. [15] in
ecology.

The literature on quantile regression methods is now extremely vast. In this work we will
review a specific area of application; in particular, we will focus on linear quantile regression
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models for longitudinal observations. In the last two decades, longitudinal study designs
have raised considerable attention. Obtaining additional information from a unit already in
the study is cheaper than adding a new one; also, longitudinal studies allow to monitor the
evolution of individual trajectories over time. Weiss [113] lists a number of other benefits
of collecting longitudinal in place of cross-sectional data. Additional issues have to be faced
when dealing with longitudinal studies, though. Observations from the same individual are
naturally dependent and this has to be taken into consideration to avoid potential bias in
parameter estimates; moreover, individuals may leave the study before the planned end, thus,
presenting incomplete data records. In such a context, standard regression models can not be
directly used, and need to be extended to avoid misleading inferential conclusions.

We will not propose a unifying framework, but rather try to discuss the available options
in a logically sound sequence, discussing advantages and limitations of each of them. We
will approach both the model specification and the estimation of model parameters mainly
from a statistical perspective. Quantile regression is indeed a popular methodology also in
the econometric framework; however, in some cases, a clash does exist between the two
contexts, with rationale, language and problems to be faced that can be quite different.
We will also try to underline that longitudinal quantile regression has some similar (e.g.,
dependence) and some different challenges with respect to standard longitudinal regression.
Quantile regression is more appropriate than mean regression in a number of situations.
In some cases, the researcher’s interest may not rely on the center of the distribution, but
rather in its tails; furthermore, covariates may have different effects on different quantiles.
In HIV research, for instance, the effect of the treatment is more important on the left tail
of the CD4 count distribution, where individuals are at higher risk. Additionally, a treatment
might be beneficial for patients at lower risk but detrimental (due to complications or side
effects) for those in the left tail. Other examples include longitudinal fetal growth studies
(e.g., [25]), which usually focus on low/high quantiles of key anthropometric measurements
and, more in general, growth curves [111,112]. An example regarding monitoring physical
activity in children is given in [47]. Another crucial point is that outliers may be present in
the observed data, and this poses questions on the reliability of mean regression estimates.
In these cases, one could use robust regression approaches (see [34,35,57], for reviews) or
focus on the median of the outcome distribution. Quantile regression, additionally, allows
the user to avoid transformations of the outcome in many cases, making parameter estimates
more readily interpretable. While in cross-sectional designs a satisfactory transformation to
normality might be often found, in longitudinal studies the outcome distribution may change
in shape (e.g., skewness) at each time occasion. Thus, a global transformation may make
time-specific distributions far from Gaussian, and time-specific transformations may lead to
parameter estimates that are quite hard to be interpreted.

The rest of the paper is structured as follows: in the next section, we briefly review the
essentials of cross-sectional linear quantile regression. In Sect. 3, we provide an overview
of modelling specifications for longitudinal quantile regression, while estimation strategies
are presented in Sect. 4. In Sect. 5, we discuss several extensions and open issues; available
software is briefly listed in Sect. 6.

2 Quantile regression for independent observations

Let y1, . . . , yn be the realizations of n independent and identically distributed random
variables, Y1, . . . , Yn , denoting n copies of a continuous outcome of interest. Let also
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xi = (xi1, . . . , xip) be a p-dimensional vector of explanatory variables, recorded for unit
i = 1, . . . , n. In this section, we deal with a cross-sectional experiment based on independent
data.

A possible way to characterize the distribution of Yi is in terms of quantiles. The τ -th
quantile Qτ (y) of a variable Y is conveniently defined as

Qτ (y) = argmin
c

n∑

i=1

E[ρτ (yi − c)],

where ρτ (u) = u[τ − I(u < 0)] is an asymmetric absolute loss function that assigns weights
τ and (τ − 1) to positive and negative deviations, respectively, and is usually referred to as
the quantile loss function.

Now, suppose we want to estimate a conditional quantile, that is, the quantile of Yi con-
ditional on a given covariate configuration xi . For a fixed τ ∈ (0, 1), the following quantile
regression model can be specified

Qτ (yi | β, xi ) = x′
iβτ , (1)

where βτ ∈ R
p denotes a vector of unknown, fixed, parameters summarizing the effects of xi

on the τ -th (conditional) response quantile. Expression (1) can be, alternatively, formulated
through the linear model

yi = x′
iβτ + εi , (2)

where εi is a random error term. The assumption

Qτ (εi | β, xi ) = 0

is introduced to guarantee that the random errors are centred on the τ -th quantile.
Interpretation of βτ is straightforward: the intercept term simply represents the baseline

predicted quantile, while each slope can be interpreted as the rate of change of the τ -th
response quantile per unit change in the value of the corresponding covariate (the others
being fixed). Estimation of βτ in (1) or (2) proceeds by solving

β̂τ = argmin
βτ

∑

i :yi≥x′
iβτ

τ | yi − x′
iβτ | +

∑

i :yi<x′
iβτ

(1 − τ) | yi − x′
iβτ | . (3)

As suggested by Koenker and Bassett [64], optimal solutions can be derived by setting
appropriate linear programming algorithms. The most common is a modified version of the
Barrodale and Roberts algorithm for L1-regression, as described by Koenker and d’Orey
[65,66]. For large dimensional problems, the Frisch–Newton interior point method (possibly
after preprocessing) is a better option, as illustrated by Portnoy and Koenker [97]. Newey and
Powell [95] show that asymmetric least square estimators have properties similar to those of
the solutions obtained from (3).

A natural link betweenminimization of the quantile loss function andmaximum likelihood
theory is given by the assumption that the error term in Eq. (2) follows an asymmetric Laplace
distribution (ALD), see, among others, [68,119]. An ALD random variable has density

fy(y | μ, σ, τ) = τ(1 − τ)

σ
exp

{
−ρτ

(
y − μ

σ

)}
, (4)

where ρτ (u) is the quantile loss function we have previously defined and μ, σ and τ are the
location, the scale and the skewness parameter, respectively. By assuming that y1, . . . , yn are
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independent realizations of random variables Yi ∼ ALD(μi , σ, τ ), where μi = x′
iβτ , i =

1, . . . , n, the following likelihood function can be derived

L(β, σ, τ ) =
[

τ(1 − τ)

σ

]n
exp

{
−

n∑

i=1

ρτ

(
yi − x′

iβτ

σ

)}
. (5)

It is worth to notice that the assumption of ALD errors is only introduced as a convenient
computational trick that allows to recast quantile regression optimization in a maximum
likelihood framework.Maximizing the likelihood (5) is equivalent tominimize expression (3)
with respect to βτ . Furthermore, such a distributional assumption allows several extensions
of the basic framework, including modelling dependent observations.

3 Quantile regression for longitudinal observations

When data are repeatedly collected on a sample of individuals across time, the independence
assumption may no longer hold. Three different sources of variability can influence the
dependence between observations from the same individual: between-individual variability
(reflecting individual propensities to the event which are shared by all the repeated measures
coming from the same unit), within-individual variability (that is serial correlation between
measurements from the same individual taken at different time points) and random error.
Diggle et al. [30] and Fitzmaurice et al. [39], among others, give a detailed discussion on
the topic. If dependence is not properly taken into consideration, model parameter estimates
may be severely biased. Two main approaches to deal with dependent observations can be
distinguished, essentially with reference to the families of marginal and conditional models.
In the first case, the association structure is explicitly specified together with themodel for the
response quantiles.Here,model parameters have apopulation-averaged interpretation as they
describe changes in the response values between separated groups of individuals (in the study
population), as distinguished by their covariates. In the second case, the response quantiles
and the dependence between repeatedmeasurements are jointly specified. Individual-specific
(fixed or random) parameters are introduced in the model specification; these are shared
by all the responses coming from the same sample unit and allow to describe sources of
unobserved heterogeneity that influence the dependence between longitudinal observations.
In this context, model parameters have an individual-specific interpretation, that is they
reflect variations in the individual response values over time associated with a change in that
individual’s covariates [38].

An approach which is in-between the marginal and the conditional approach is discussed
in [98]. The author considers individual-specific fixed effects for identification purposes only.
Parameters associated to the observed covariates are, instead, defined as a function of the
“total disturbance”, that is the individual-specific effect plus the random error, thus having a
population-averaged interpretation.

We introduce marginal and conditional models in Sects. 3.1 and 3.2, respectively. Differ-
ences between the two approaches are discussed in Sect. 3.3.

3.1 Marginal models

Let Yit denote a continuous longitudinal response recorded on i = 1, . . . , n individuals at
time occasions t = 1, . . . , Ti and let xi t be a p-dimensional vector of explanatory variables
associated with the parameter vector βτ . Marginal models are specified like cross-sectional
ones, that is
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Qτ (yit | β, xi t ) = x′
i tβτ . (6)

The resulting error terms εi t = yit − x′
i tβτ must fulfil the following assumptions: first,

Pr(εi t ≤ 0 | xi t ) = τ , secondly, the vector of error terms is made by independent compo-
nents over different individuals but dependent components over repeated measurements on
the same individual.

Themodel is completed by an assumption on the association structure formeasures coming
from the same individual. This clearly represents an approximation of the true underlying
dependence between repeated measurements and is treated as a nuisance parameter. As it is
well known since [110], consistent estimates for the βτ parameters can be obtained also if
the covariance matrix is misspecified. Even an independence assumption, albeit obviously
incorrect, allows to obtain consistent estimates. On the other hand, a good approximation of
the true association substantially decreases theMSE of parameter estimates.When compared
to mean regression, the identification of a reasonable covariance structure in the quantile
regression framework is more challenging. For example, if the random noise vector for
the repeated measures from an individual follows an AR(1) structure, the corresponding
noise vector for the quantile regression is no longer AR(1) [75]. This makes any assumption
difficult to bemotivated; based on these considerations, He et al. [56] recommend theworking
independence assumption.

Despite these difficulties, some proposals besides such an assumption can be found in
the literature. Assuming Pr(εi t ≤ 0, εi t ′ ≤ 0 | xi t ) = δ, t �= t ′ = 1, . . . , Ti , Fu and
Wang [40] define an exchangeable covariance matrix for Si = (Si1, . . . , SiTi ), with Sit =
τ − I(yit − x′

i tβτ ≤ 0), as

Vi = τ(1 − τ)[(1 − c)ITi + cJTi ]. (7)

In the expression above, c = Cor(Sit , Sit ′) = (δ − τ 2)/(τ − τ 2),∀t �= t ′, while ITi and
JTi represent an identity matrix and a square matrix of ones, respectively (both of dimension
Ti ). Simulation results in [40] show that assuming an exchangeable structure in place of
independence results in a higher efficiency when strong within-subject correlation does exist,
at the price of a larger bias in the parameter estimates. A general stationary autocorrelation
structure has been proposed by Lu and Fan [84]; here, the covariance matrix of Si is given by

Vi (r) = A1/2
i Ci (r)A

1/2
i , (8)

where Ai = diag{Var(Si1), . . . ,Var(SiTi )} and Ci (r) is an autocorrelation matrix indexed
by the parameter vector r = (r1, . . . , rTi−1) and defined as

Ci (r) =

⎛

⎜⎜⎜⎝

1 r1 . . . rTi−1

r1 1 . . . rTi−2
...

...
...

...

rTi−1 rTi−2 . . . 1

⎞

⎟⎟⎟⎠ .

Estimates for the autocorrelation parameters rn−l , l = 1, . . . , Ti − 1 are obtained by
exploiting the method of moments. A homogeneous unstructured covariance matrix may be
also assumed; see [56].

3.2 Conditional models

An alternative approach to account for the dependence between longitudinal observations is
based on the inclusion in the linear predictor of sources of unobserved heterogeneity. This

123



234 M. F. Marino, A. Farcomeni

heterogeneity comes either from omitted covariates or from a different effect of measured
covariates on the response due to genetic, environmental, social and/or economic factors.
Individual-specific parameters fruitfully describe these individual features. For a given τ ∈
(0, 1), a conditional quantile regression model is defined by

Qτ (yit | bi ,β, xi t ) = bi + x′
i tβτ , (9)

which may be, equivalently, written as

yit = bi + x′
i tβτ + εi t . (10)

In the equation above, εi t is an error term whose τ -th conditional quantile is identically
null, that is Qτ (εi t | bi ,β, xi t ) = 0, while βτ summarizes the relation between the covariates
in x and the τ -th response quantile for an individual whose baseline level is equal to bi . The
dependence between observations from the same individual i = 1, . . . , n arises since they
share the same bi : conditional on this parameter, repeated measures are no longer dependent.

Two different approaches to (conditional) quantile regression may be distinguished, refer-
ring to distribution free and likelihood based methods [46]. Within the former approach,
fixed individual-specific intercepts are considered and treated as pure location shift parame-
ters common to all conditional quantiles. This implies that the conditional distribution for
each individual has the same shape, but different locations as long as the bi ’s are different.
Fixed effect quantile regression for longitudinal data has been introduced by Koenker [62]
and it has been subsequently extended to allow for general endogenous covariates [55] and
lagged responses [41,42].

On the other hand, in the likelihood framework, individual-specific parameters bi ’s are
assumed to be independent and identically distributed random variables; the corresponding
distribution allows to explain differences in the response quantiles across individuals [45].
General random parameters have been considered by Liu and Bottai [83] and Geraci and
Bottai [46]. Let bi = (bi1, . . . , biq) represent a q-dimensional vector of individual random
parameters, with density fb(·;Dτ ). Usually,Dτ is a τ -dependent covariance matrix. A linear
quantile mixed model is, therefore, defined by

yit = x′
i tβτ + z′

i tbi + εi t , (11)

where zi t denotes a subset of xi t and, as before, Qτ (εi t | bi ,β, xi t , zi t ) = 0.
As it has been pointed out by Geraci and Bottai [46], the random structure above allows

to account for between-individual heterogeneity associated with given explanatory variables
and does not require orthogonality between the observed and the omitted covariates. We
mention that, when the error terms in Eq. (11) are Gaussian random variables, a standard
(mean) mixed model for longitudinal observations [72] is straightforwardly obtained.

When sources of unobserved heterogeneity are time-varying, the time-constant random
parameters we have described so far may not properly recover the true value of the parameter
estimates, especially on quantiles that are far from the median. The assumption that bi is
time fixed has been relaxed by Farcomeni [33] through the specification of a latent Markov
model for conditional quantiles. Along these lines, Marino et al. [89] describe a mixed
latent Markov model for quantiles where both time-constant and time-varying sources of
unobserved heterogeneity are taken into consideration. In Sect. 3.2.1 alternative distributions
for the random parameters are discussed.
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3.2.1 The random parameter distribution

When unobserved heterogeneity is captured by individual-specific random parameters,
the specification of the corresponding distribution requires some caution. Time-constant
individual-specific parameters distributed according to a (zero-mean) Gaussian, a symmetric
Laplace or a multivariate t random variable have been considered by Geraci and Bottai [45],
Liu and Bottai [83], Geraci and Bottai [46] and Farcomeni and Viviani [36]. The last two
distributions represent robust alternatives to the more typical Gaussian assumption.

Farcomeni [33] considers random intercepts that vary over time according to a homo-
geneous, first order, latent Markov (LM) chain. The resulting model represents a semi-
parametric alternative to the models we have discussed so far; it allows to account for
time-varying unobserved heterogeneity and avoids the potential bias deriving from a mis-
specification of the random parameter distribution. When adopting this approach, the model
in Eq. (10) becomes

yit = bit + x′
i tβτ + εi t , (12)

where bit varies according to the states of a (quantile-specific) latent Markov chain and
Qτ (εi t | bit ,β, xi t ). Under the assumption of Gaussian random errors, Eq. (12) reduces to
the standard latent Markov model for longitudinal data; see [7] for a detailed discussion on
this class of models. By assuming that the hidden transition matrix is diagonal, the random
intercepts are time-constant and a parsimonious (quantile) latent classmodel is obtained. This
comes at the price of loosing some goodness of fit, so that this assumption should tentatively
be tested [5].

The choice of a specific random parameter distribution should be data driven; models
based on different specifications might be fit and compared according to penalized likelihood
criteria, like the AIC [2] or the BIC [103]. Few additional guidelines follow. First of all,
since linear quantile mixed models are essentially a specific kind of standard mixed models,
when we focus on the center of the distribution and the number of repeated measurements
per unit is large, the modelling structure is rather robust with respect to random parameter
misspecification [101]. Even with small maxi Ti , a negligible bias is often observed and it
is essentially related to covariate effects associated to random parameters [94]. Serious bias
might be expected when focusing on quantiles corresponding to low density regions of the
conditional outcome distribution, as well as when the covariates associated with random
slopes are misspecified. A related matter is the use of random slopes and similar polynomial
models to describe time-varying unobserved heterogeneity: the latent Markov framework
naturally adapts to the true underlying dynamic heterogeneity. It is therefore resistant to
misspecification of the random parameter distribution (as the discrete support approximates
a possibly continuous underlying distribution), and the time-dynamics do not need to be
parametrically specified. Of course, there are limitations to these statements, and we point
the reader to the discussion in [8] for more details.

3.3 Marginal vs conditional models

To better highlight differences between the two families of models, we conclude this section
by contrasting conditional and marginal approaches. In the mean regression context, Zeger
et al. [123] state that marginal models describe the dependence among repeated observations;
in this setting, the target population is considered as composed by homogeneous individuals
with dependent repeated measurements and, therefore, population quantiles can be directly
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modelled as a function of the observed covariates. Due to these features, marginal models
are often referred to as population-averaged models.

On the other hand, conditional models try to describe the potential sources of this depen-
dence. They include in the model specification individual-specific parameters that account
for unobserved factors which, once known, would make longitudinal observations from the
same individual independent. In this perspective, individual characteristics play a central
role: the target population is considered as composed by heterogeneous individuals and the
effect of covariates on individual quantiles is analysed.

The choice between marginal and conditional model is always context-specific and has to
be related to the analysed outcome; see e.g. [38,74,79,93]. The most important thing to keep
in mind is that interpretation of parameter estimates is different. In the marginal formulation,
parameters βτ describe the effect of covariates on the τ -th population response quantile.
On the other hand, in the conditional framework, regression coefficients have an individual-
specific interpretation. In fact, βτ j represents the change in the τ -th quantile of the outcome
distribution (associated to a unit increment in the corresponding covariate) for a unit with
individual-specific parameter equals to bi .

Therefore, the applied researcher must choose the fitting strategy according to the research
aims. The use ofmarginal models for repeatedmeasurements is often discouraged [24,74,79]
as predictions correspond to hypothetical individuals only. In almost all cases, therefore,
one should fit conditional models. However, population averaged models may be useful in
epidemiological or ecological studies, for instance, if the key questions involve a comparison
between disjoint groups. When the central questions entail evaluation of changes for any
given individual (e.g., what happens if a treatment instead of another is used on a individual,
what happens after t time-units, etc.) conditional models are the only sensible choice.

It shall be noticed that conditionalmodels can be specified in conjunctionwith the assump-
tion that subject-specific parameters are fixed or random.Choosing between fixed and random
effects is often a delicatematter.Here,we do not get into toomuch details about the former and
point the interested reader to the econometric literature (see e.g. [17] and references therein).

We only mention some general considerations that may help decide which approach is
more appropriate for a given problem. First, random intercept models rely on the indepen-
dence assumption between sources of observed and unobserved heterogeneity, while such
an assumption is not used in the fixed effect counterpart. Therefore, if one thinks that unob-
served features are related to the observables (xi t ), then conditional models with fixed effects
should be preferred. However, when general random coefficients are considered, one can
let any of the model parameters vary from individual to individual, not just the intercept.
This allows to relax the aforementioned independence assumption and leads to a more gen-
eral model formulation. On the other hand, in the context of conditional models with fixed
effects, only individual-specific intercepts can be considered and, although one is able to
control for unobserved characteristics, their effect can not be directly estimated. Secondly,
time-constant covariates can not be accommodated in conditional models with fixed effects
as there would be overlapping between the two components; such a constraint does not exist
in the random parameter framework. Last, conditional models with fixed individual-specific
parameters require complex identifiability constraints, and in general can not be estimated
when the available number of repeated measures per individual is small. Furthermore, the
consistency of parameter estimates is ensured only when Ti diverges. This is another strong
limitation in many common applications, where Ti is generally small and only n is large.
A consequence is that, in many practical situations in the area of applications of statistics,
random parameter models are the only viable choice.
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We conclude this discussion by mentioning few examples. A benchmark dataset in longi-
tudinal quantile regression is the labor pain data [26], which involves evaluation of pain levels
at different stages of labor. A psychological component intuitivelymakes treatment less effec-
tivewhenwe look at high quantiles of the distribution. In this application, population averaged
effects would be misleading as we are interested in how pain evolves for each woman.

Fabrizi et al. [32] evaluate wage dynamics in the Italian labor market, where the differ-
ences, for instance, among qualifications might be evaluated through marginal models. A
longitudinal study on child obesity is described by Fenske et al. [37], and the effects of fast-
food prices on adult obesity are explored in [52]. Obesity is simply studied by focusing on
high quantiles. Bottai et al. [11] discuss data related to depression in adolescents. In all these
cases, conditional quantile regression has been exploited to analyse the effect of observed
covariates on the evolution of individual trajectories over time. These data can probably be
tackled from different perspectives, with a more descriptive approach, based on marginal
modelling, in order to highlight differences between separate groups (e.g., males vs females)
and conditional modelling in order to provide “individual” estimates of risk factors.

4 Estimation

In this section, we discuss estimation of model parameters for both the marginal and the
conditional formulations. Generally, it has to be noticed that the former are computationally
much simpler than the latter, as the same (weighted) routines used for cross-sectional data can
be used for parameter estimation. On the other hand, when a working covariance structure is
assumed, the covariance matrix of the estimates needs to be adjusted by the usual sandwich
formula [59,78]. For general expressions of the sandwich formula in longitudinal quantile
regression see, for instance [40,75].

4.1 Marginal models

Marginal models proposed by He et al. [56], Chen et al. [19] and Yin and Cai [116] use gener-
alized estimating equations [78] based on an independence working model; these are simple
and have desirable properties but could lead to loss of efficiency when strong correlation does
exist. For simplicity, we focus on the estimation of single quantiles, but a generalization to
simultaneous estimation of several quantiles (as in the next section) is quite straightforward.

Obtaining estimates under an independence working model simply involves a system of
estimating equations of the kind

n∑

i=1

Ti∑

t=1

xi t (τ − I(yit − x′
i tβτ ≤ 0)) = 0.

As it is clear, results derived from the expression above are equivalent to those obtained
from the minimization of the quantile loss function presented in Sect. 2 for cross-sectional
data. As remarked above, the only difference is the robustification of the covariance matrix
for parameter estimates.

Obviously, when a given covariance matrix, Vi , is used for the error terms, estimating
equations above need to be properly extended. In the context of median regression models,
Jung [60] suggests a quasi likelihood-type approach [110] based on the following set of
weighted estimating equations
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n∑

i=1

X′
i�iV

−1
i (τ − I(yi − Xiβτ ≤ 0)) = 0. (13)

Here, the matrix �i = diag( fi1(0), . . . , fiTi (0)), with fi t being the probability density
function of εi t , is introduced to account for possible overdispersion in the error distribution.
Clearly, Jung’s estimator requires this matrix to be known. Only in the case of identically
distributed errors such quantity can be ignored and the resulting estimating functions can be
shown to be optimal if Vi is correctly specified.

Lipsitz et al. [80] extend the previous approach by proposing a weighted GEE model for
longitudinal data affected by non-informative drop-out (MAR data). Karlsson [61] devel-
ops a quantile weighted version of regression models for non-linear longitudinal data. Tang
and Leng [105] suggest to derive parameter estimates via an empirical maximum likelihood
approach, in which a working model for the conditional mean is specified to enhance effi-
ciency. Fu and Wang [40] split the weighted estimating Eq. (13) into two components, the
within-group and between-group estimating equations. The resulting estimator minimizes
the combination of these two functions in a way similar to that of the generalized method
of moments [53]. The method suggested by Fu and Wang [40] is robust to the choice of the
error correlation structure and leads to parameters that have a higher efficiency than those
derived under the independence assumption.

A different approach is proposed by Leng and Zang [75]. To circumvent the problem of
correctly specifying the error covariance matrix, the authors suggest to combine multiple sets
of estimating equations as those defined in (13), that is

1

n

n∑

i=1

⎛

⎜⎜⎝

∑Ti
t=1 x

′
i t�iM

−1
i1 (τ − I(yit − x′

i tβτ ≤ 0))
...∑Ti

t=1 x
′
i t�iM

−1
i K (τ − I(yit − x′

i tβτ ≤ 0))

⎞

⎟⎟⎠ = 0, (14)

whereMik, k = 1, . . . , K , are known matrices (e.g. the identity matrix, the matrix with 0 on
the diagonal and 1 off-diagonal, etc...). The last two proposals, as well as that of [84], extend
the induced smoothing method [12] to quantile regression. The corresponding (smoothed)
estimating equations can be solved via a standard Newton–Raphson algorithm.

Within the context of marginal quantile regression for longitudinal data, asymptotic nor-
mality of parameter estimators is guaranteed and a closed form expression for the asymptotic
covariance matrix is available. In most of the cases, resampling and perturbing methods are
used to estimate this latter quantity [116].

4.2 Conditional models

Parameter estimation in the conditional quantile regression framework is closely related to
the assumptions postulated for the individual-specific parameters. In Sects. 4.2.1–4.2.2, we
discuss estimation procedures for conditional models with fixed and random parameters,
respectively.

4.2.1 Fixed effect models

Following the proposal by Koenker [62], when fixed individual-specific parameters account
for dependence between longitudinal data, conditional quantiles are estimated simultaneously
by minimizing a weighted piecewise linear quantile loss function. Let τ = (τ1, . . . , τq) be
the set of quantiles of interest; parameter estimates are obtained by solving
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argmin
β,b

q∑

k=1

n∑

i=1

Ti∑

t=1

ωkρτk [yit − bi − x′
i tβτk

], (15)

where ρτk , k = 1, . . . , q, is the quantile loss function introduced by Koenker and Bassett
[64] and the weights ωk are introduced to control the influence of the different quantiles
on the estimation of individual parameters. The author shows that, under some regularity
conditions, parameter estimates obtained by (15) are consistent and asymptotically Gaussian.
However, when n is large relatively to Ti , a penalized approach is suggested. In this case,
a 
1 penalty term is considered to shrink individual-specific intercepts towards a common
value and parameter estimates are computed via

argmin
β,b

q∑

k=1

n∑

i=1

Ti∑

t=1

ωkρτk [yit − bi − x′
i tβτk

] − λ

n∑

i=1

|bi |. (16)

Koenker [62] shows that fixed parameter estimators obtained under this approach are
asymptotically unbiased and Gaussian; an asymptotic approximation for the optimal value
of the tuning parameter λ can be found in [73]. Harding and Lamarche [55], Galvao and
Montes-Rojas [42] and Galvao [41] build on the proposal by Chernozhukov and Hansen
[23] to develop a two step procedure that exploits instrumental variables to derive parameter
estimates. In the first step, a weighted quantile loss function is minimized with respect
to model parameters, keeping individual-specific effects constant. In the second step, this
latter are estimated by minimizing a weighted distance function defined on the basis of the
instrumental variable coefficients. A simpler two step procedure is used by Canay [17]. A
transformation of the data is first applied to eliminate individual-specific terms, as in the
first-difference approach to mean regression; then, the remaining parameters are estimated.
The resulting estimators are shown to be consistent and asymptotically Gaussian when both
n and Ti go to infinity.

Identifiability of conditional quantile regression models with fixed effects has been exten-
sively discussed in the econometric literature. When the number of repeated measurements
is small, fixed effects can not be directly estimated. In the context of pure location shift
effects (that is, when bi is common to all quantiles), Canay [17] proves identifiability of
model parameters under the assumption of independence between random errors and indi-
vidual parameters, and the existence of first order moments. Under these conditions, model
parameters are identified as long as at least two observations are available for each unit.
Rosen [102] focuses on the identification of model parameters outside the pure location shift
context; here, identification of model parameters holds if one assumes support conditions
and conditional independence between the random errors εi t . We point the interested reader
to these works and references therein.

4.2.2 Random parameter models

When individual-specific parameters are considered as random and the conditional assump-
tion of asymmetric Laplace errors holds, parameter estimates can be obtained by exploiting
a maximum likelihood approach. In the case of time-constant random parameters bi =
(bi1, . . . , biq), the marginal likelihood function is defined by:

L(β, σ,D; τ) =
n∏

i=1

∫ Ti∏

t=1

fy(yit | bi ;β, σ, τ ) fb(bi ;Dτ )dbi . (17)
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The integral in the expression above does not have a closed form solution and numerical
integration methods are required. Geraci and Bottai [45] and Liu and Bottai [83] describe the
use of aMCEM algorithm [122] derived from the context of generalized linear mixed models
[10]. Because of the computational inefficiency of such an approach, Geraci and Bottai [46]
suggest the use of Gaussian quadrature methods to directly maximize the likelihood in (17).

The marginal likelihood function for the case of time-varying random intercepts with a
Markovian distribution, as in [33], can be expressed as

L(β, σ, δ,Q; τ) =
n∏

i=1

∑

bi

f y(yi | bi ;β, σ, τ ) fb(bi ; δτ ,Qτ ), (18)

where bi = (bi1, . . . , biTi ) is the vector of individual and time-dependent intercepts evolv-
ing according to the latent Markov chain described by δτ and Qτ ; these represent the
τ -dependent initial probability vector and transition probability matrix, respectively. Far-
comeni [33] adapts the Baum–Welch algorithm [9] to estimate model parameters. It shall be
noticed that this algorithm is a particular specification of a general EM algorithm [28], so that
the two names may be used interchangeably. Marino et al. [89] adopt a nonparametric distri-
bution for time-constant and time-varying random parameters and exploit a nonparametric
maximum likelihood approach to derive parameter estimates.

The description of a general EM algorithm in the context of quantile regression models
follows. Starting from the definition of the complete data log-likelihood, the following two
steps are repeatedly alternated until convergence.

• In the E-step, the expected value of the complete data log-likelihood, given the observed
data and the current parameter estimates, is computed.MonteCarlo integration or quadra-
ture methods are needed, while a closed form expression is available when a discrete
distribution is assumed for the random parameters.

• In theM-step, the expected complete data log-likelihood ismaximized. The parameters in
the longitudinal data model are usually updated through a block algorithm, that is, fixed
and random parameters are updated separately. Under the latent Markov formulation
[33], closed form expressions for initial and transition probabilities can be derived; under
the the mixed latent Markov formulation [89], closed form expression for the mixture
component probabilities are available as well. Fixed parameters are updated by using
an algorithm for cross-sectional quantile regression with an offset given by the (current)
random predictor. Finally, the scale parameter of the ALD and the random parameter
covariance matrix (if present) are updated through moment matching.

In the conditionalmixedmodel formulation, standard errors are usually obtained bymeans
of bootstrap routines; an excellent discussion about resampling in quantile regression is
provided by Buchinsky [13]. Given that for each bootstrap sample we must run an algorithm
which relies on non-convex optimization, resampling is often cumbersome. For this reason,
the number of replicates (number of bootstrap samples) may be tuned as in [3]. An additional
issue regards the fact that we are bootstrapping longitudinal data, which is often a delicate
matter. We do not get into details here on a comparison between the methods available and
simply mention that the usual strategy is to resample individuals, rather than measurements
trying to preserve the dependence structure between repeated measures. See also Parzen et al.
[96] and Yin and Cai [116].

Weconclude this section bymentioningBayesian approaches tomixedquantile regression.
Reich et al. [99] discuss a quasi distribution-free Bayesian approach; the error distribution is
assumed to arise from an infinite mixture of Gaussian densities subject to a stochastic con-
straint which enables inference on the quantile of interest. Luo and Lian [87] considers ALD
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errors and propose to use a Metropolis–Hastings algorithm or a Gibbs sampling approach to
derive parameter estimates.

5 Extensions and open issues

In this section, we briefly review some extensions and generalizations of linear longitudinal
quantile regression models described in the previous sections and list some open issues. All
paragraphs refer to longitudinal data analysis. We report many results for the cross-sectional
case only as a preamble to longitudinal data, or only when they can be directly extended to
the longitudinal setting.

5.1 Missing values

Missing data are ubiquitous in all statistical applications and, especially, in longitudinal
studies. Missing values may be ignorable (non-informative) or non-ignorable (informative).
We refer the reader to [29,81,82] for a detailed treatment of the topic. In the ignorable case,
standard estimation routines might be used simply discarding the missing values. Use of
(multiple) imputation may possibly improve efficiency of the estimators, as suggested by
Geraci [43], who does not focus specifically on longitudinal data but rather on potentially
clustered data. A situation where it is often difficult to assume missing values are ignorable
is in longitudinal studies with monotone missing data patterns, that is, when there is a drop-
out from the study. Drop-out may occur due to reasons that are linked to the unobserved
values of the outcome; for instance, in HIV studies patients may die before the last scheduled
follow-up, in wage studies individuals may lose their job or retire, and so on. There are very
few approaches to quantile regression in the presence of informative drop-out. Lipsitz et al.
[80] and Yi and He [115] discuss the extension of the estimating equation approach to handle
missing data, in a MAR context; the observed values are weighted by the inverse of the
probability of drop-out. In a Bayesian framework, Yuan and Yin [120] model missingness
as a binary time series sharing a random parameters with the quantile regression process,
as in shared parameter models (see e.g. [114]). A joint model for a right-censored time-to-
event and the quantile of a continuous longitudinal response is proposed by Farcomeni and
Viviani [36]. Marino et al. [89] define a latent drop-out class approach to handle potentially
informative drop-out in the context of linear quantile latent Markov models.

5.2 Spatial quantile regression

Spatial data arise when measurements are taken at different sites on a geographical territory.
In general, data are dependent and this dependence may be expressed as a function of the
distance between locations on a multidimensional (usually, two or three dimensional) space.
This kind of data comes from various areas of research, including econometrics, epidemiol-
ogy, environmental science. Spatial quantile regressionmethods deal with the peculiar spatial
dependence structure, while modelling conditional quantiles of the outcome of interest. They
can be thought of as a direct extension of longitudinal quantile regression methods, where
dependence arises according to distance in a one dimensional space (i.e. the time). Hallin et
al. [50] introduce a nonparametric conditional spatial quantile regression model; asymptotic
behaviours of the local linear quantile regression estimates are derived through asymptotic
methods that are typically used when dealing with time series. Kostov [71] uses a spatial
quantile regression model in the context of hedonic models for agricultural land prices to
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ensure robustness against the possible presence of outliers in the data. Dependence between
adjacent sites is modelled by considering lagged responses in the linear predictor and an
instrumental quantile regression approach is exploited to compute parameter estimates. Reich
et al. [100] develop a spatial quantile model that incorporates spatial dependence through
spatially varying regression parameters. These are expressed as a weighted sum of Bernstein
basis polynomials, where the weights are constrained spatial Gaussian processes. Lum and
Gelfand [86] specify a spatial quantile regression model for all quantiles of a response vari-
able. Starting from the asymmetric Laplace distribution, a process for quantile regression
with spatially dependent errors is defined and exploited to model the dependence between
observations coming from neighbouring sites. Finally, under a robust semi-parametric frame-
work, Lu et al. [85] propose a spatial quantile regression model with functional coefficients
to deal with the curse of dimensionality when there are more than three covariates. For a
general overview on quantile regression models for spatial data, we refer to the monograph
by McMillen [90].

5.3 Nonparametric models

The literature on nonparametric quantile regression models is very rich.We only brieflymen-
tion the approaches that are tailored (or that can be tailored) to longitudinal studies. Koenker
et al. [70] and Koenker and Mizera [69] use a total variation regularization approach to
estimate possible univariate and bivariate nonparametric terms; De Gooijer and Zerom [27],
Yu and Lu [117], Horowitz and Lee [58], Cai and Xu [16] base their estimation on local
polynomial fitting; Takeuchi et al. [104] and Li et al. [77] explore reproducing kernel Hilbert
space (RKHS) norms for nonparametric quantile estimation. Fenske et al. [37] use a boosting
algorithm to allow for data-driven determination of the amount of smoothness required for
nonlinear effects and combine model selection with an automatic variable selection property.
Bayesian approaches are available, including Yue and Rue [121] who use integrated nested
Laplace approximation and MCMC methods. Finally, Mu and Wei [92] propose a varying
parameter model for conditional quantiles in longitudinal studies. Censored data are consid-
ered by Wang and Fygenson [107], while Wang et al. [109] deal with partially linear varying
parameter models.

5.4 Open issues

Longitudinal quantile regression is still a relatively recent field. There are many open issues
and many of them would require an extension of methods that have already been established
for cross-sectional quantile regression.

First, some works deal with outcome transformations in order to move from non-
linear to linear relationships when bounded outcomes have to be handled. These include
[11,14,48,91]; all these works are focused on cross-sectional models and, as outlined before,
transformations are more delicate when there are repeated measurements.

A further issue that has been almost completely overlooked in longitudinal quantile regres-
sion is the joint modelling of more than one outcome. Methods for independent data have
been proposed in [49,51]. In the longitudinal setting, this situation is easier to work with as
additional random parameters can be used in conjunction with a conditional independence
assumption. An example can be found for instance in [18]. A similar issue is the simultaneous
modelling of more than one quantile. A rare problem that arises when separately modelling
response quantiles (as in conditional mixed quantile regression) is that predictions may cross,
that is, for certain covariate combinations a low quantile might be predicted to be larger than
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a higher one. There is a lot of literature on simultaneous modelling for independent data [63].
The problem is also closely linked to density regression; see e.g. [31]. In the longitudinal
setting, we are only aware of the Bayesian approach proposed by Todkar and Kadane [106].

A specific issue is related to extremal quantiles: while estimation far in the tails may be
extremely useful in many cases, tails are often associated with low density regions. Impor-
tant contributions to the cross-sectional context include [20,22]. Traditional approaches break
down as standard errors are inflated and parameter estimates (excluding the intercepts) shrunk
towards zero. To tackle these issues, Wang et al. [108] propose a two step approach: first
quantile regression is focused on intermediate conditional quantiles yielding to reliable esti-
mates, then parameters are extrapolated to the tails based on assumptions on tail behaviours;
see also Li et al. [76]. To the best of our knowledge, the issue of dealing with extremal
quantiles in longitudinal studies has not been considered so far.

A further issue is that of planning the sample size, with the only exception, to our knowl-
edge, of [21].Wefinallymention thatmany results and properties of quantile regressionwhich
arewell known and established in the cross-sectional framework have not been assessed yet in
the longitudinal one. Work has still to be done in this area to give more substantial theoretical
support to procedures and methods discussed throughout.

6 Software

We briefly mention in this section the readily available software to fit longitudinal quantile
regression models. We report only on software which can be directly used for conditional
or marginal modelling (with sandwich estimators) in the longitudinal quantile regression
framework.

Conditional models with Gaussian and AL random parameters can be fit using the R
package lqmm [44]. Linear quantile mixed models with a latent Markov random intercept
can be fit using the R function lmqr [33]. A non-optimized version is currently available at
http://www.afarcome.altervista.org/lmqr.r, while a refined version will be soon included in
the R package LMest [6]. The lmqr function can be used both for latent Markov (using
option lm=T) and latent class (lm=F) models. Conditional models with fixed individual-
specific parameters can be fit using methods in package rqpd, available from R-Forge. In
rqpd, one can obtain both the penalized longitudinal quantile regression byKoenker [62] and
the corresponding generalization based on correlated random effects [1]. Finally, wemention
the qreg procedure in Stata, which provides sandwich estimates of the covariance matrix.

Acknowledgments The authors are grateful to two referees for several suggestions.
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