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Abstract In this paper, we introduce a new class of distributions generated by an integral
transform of the probability density function of the Lindley distribution which results in
a model that is more flexible in the sense that the derived model spans distributions with
increasing failure rate, decreasing failure rate and upside down bathtub shaped hazard rate
functions for different choices of parametric values. For this new model, various distribu-
tional properties including limiting distribution of extreme order statistics are established.
Maximum likelihood estimators and the marginal confidence intervals of the parameters are
obtained. The applicability of the proposed distribution is shown through application to real
data sets. Through application to two real datasets, it is demonstrated that the proposedmodel
fits better as compared to some other competing models. Further, the model is shown to be
useful for analysing stress–strength model.

Keywords Lindley distribution · Integral transform · IFR · DFR · Upside down bath-tub
shaped hazard · Entropy · Stress–strength reliability model · Maximum likelihood estimator
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1 Introduction

Lifetime distribution represents an attempt to describe, statistically, the length of the life of
a system, a device, and in general, time-to-event data. Lifetime distributions are frequently
used in fields like medicine, biology, engineering, insurance etc. Many parametric models
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such as exponential, gamma, weibull have been frequently used in statistical literature to
analyse lifetime data.

Recently, one parameter Lindley distribution has attracted researchers for its potential
in modelling lifetime data, and it has been observed that this distribution has performed
excellently inmany applications. TheLindley distributionwas originally proposed byLindley
[19] in the context of Bayesian statistics, as a counter example to fiducial statistics. The
distributon can also be derived as a mixture of exp(θ ) and gamma(2, θ ). More details on the
Lindley distribution can be found in Ghitany et al. [7].

A random variable X is said to have the Lindley distribution with parameter θ if its
probability density is defined as:

fX (x; θ) = θ2

(θ + 1)
(1 + x)e−θx ; x > 0, θ > 0. (1)

The corresponding cumulative distribution function is

F(x) = 1 − e−θx (1 + θ + θx)

1 + θ
; x ∈ R

+, θ > 0,

Ghitany et al. [6,7] have introduced a two-parameter weighted Lindley distribution and have
pointed out its usefulness, in particular, in modelling biological data from mortality studies.
Bakouch et al. [4] have come up with extended Lindley (EL) distribution, Adamidis and
Loukas [1] have introduced a new lifetime distribution with decreasing failure rate. Shanker
et al. [23] have introduced a two-parameter Lindley distribution. Zakerzadeh andMahmoudi
[24] have proposed a new two parameter lifetime distribution: model and properties. Hassan
[11] has introduced convolution of Lindley distribution. Ghitany et al. [8] worked on the
estimation of the reliability of a stress-strength system frompower lindley distribution. Elbatal
et al. [5] has proposed a new generalized Lindley distribution by considering the mixture of
two gamma distribution.

Ristić and Balakrishnan [22] have introduced a new family of distributions generated by
gamma pdf with survival function given by

F̄X (x) = 1

�(α)

− log(G(x))∫

0

tα−1e−t dt, x ∈ R
+, α > 0,

where G(x) is a chosen distribution function, called the parent distribution function (df).
In this paper, we introduce a new family of distribution generated by an integral transform

of the pdf of a random variable T which follows one parameter Lindley distribution. The
survival function of this new family is given as:

F̄X (x) = θ2

1 + θ

− log(G(x))∫

0

(1 + t)e−θ t dt, x ∈ R
+, θ > 0 (2)

where θ > 0 ,the corresponding probability density function (pdf) is given by

f (x) = θ2

1 + θ
(1 − logG(x))G(x)θ−1g(x), (3)

In this formation, we consider G(x) corresponding to exponential distribution with cdf (1−
e−λx ) which yields the survival function of the new distribution is as
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F̄(x) = 1 −
(
1 − e−λx

)θ (
1 + θ − θ log

(
1 − e−λx

))
1 + θ

, (4)

with corresponding density

f (x) = θ2λe−λx
(
1 − e−λx

)θ−1 (
1 − log

(
1 − e−λx

))
(1 + θ)

. (5)

In this paper, we refer to random variable with survival function (4) as Lindley–Exponential
(L–E) distribution with parameters θ and λ and denote it by L–E(θ, λ). Motivation for this
paper arose from the following observation.

In modelling time-to-event data arising from a new application, the monotonicity nature
of the hazard rate function is uncertain and hence an a priori choice of a model becomes
challenging. In such cases, one usually resorts to nonparametricmethods in general. However,
if a parametric model fits the particular application well, it is preferable to choose one such
model. There is thus a need to develop a distributional model which would span various
monotonicity properties of the hazard rate function, and this paper is an attempt to develop
a new model with two parameters model ensuring flexibility of hazard function to posses
increasing, decreasing and upside down shapes. Having developed one such distribution, we
observe the following properties that connect the new model to known distributions.

1. Let U be a random variable with the Log-lindley distribution LL(θ, 1) proposed by
Goméz et al. [10]. Then the random variable V = G−1(U ) has distribution with pdf as
in (3).

2. If U be Lindley distributed random variable, then the random variable X = G−1(e−U )

has pdf (3).

We now study properties of the L–E distribution and illustrate its applicability. The contents
of the proposed work are organized as follows. Various distributional properties like shape
of the pdf, quantile function, moment generating function, limiting distribution of sample
statistics like maximum and minimum and entropy of L–E distribution are present in Sect.
2. The maximum likelihood estimation is presented in Sect. 3. Performance of the maximum
likelihood estimators for small samples is assessed by simulation in Sect. 4. Applicability
of the new distribution is shown in Sect. 5. Section 6, gives estimation of stress–strength
parameter (R) by using maximum likelihood estimation method.

2 Distributional properties of L–E distribution

2.1 Shape of the density

Theorem 1 The probability density function of the L–E distribution is decreasing for 0 <

θ < 1 and uni-modal for θ > 1. In the latter case, the mode is the root of the following
equation:

(1 − θe−λx )
(
1 − log(1 − e−λx )

) + e−λx = 0

Proof The first order derivative of log( f (x)) is

d log( f (x))

dx
= λ r(x)(

1 − e−λx
) (
1 − log

(
1 − e−λx

)) . (6)

where, r(x) = (
θe−λx + (

1 − θe−λx
)
log

(
1 − e−λx

) − e−λx − 1
)
. For 0 < θ < 1, the

function r(x) is negative. So f ′(x) < 0 for all x > 0. This implies that f is decreasing for
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Fig. 1 PDF plot for various values of λ and θ

0 < θ < 1. Also note that, (log f )′(0) = ∞ and (log f )′(∞) < 0. This implies that for
θ > 1, g(x) has a unique mode at x0 such that r(x) > 0 for x < x0 and r(x) < 0 for x > x0.
So, g is uni-modal function with mode at x = x0. The pdf for various values of λ and θ are
plotted in Fig. 1. ��

Theorem 2 The hazard function of L–E distribution is decreasing, increasing or upside
down according as 0 < θ ≤ 1, θ > 2 and 1 < θ < 2 respectively.

Proof Considering the hazard rate function (hrf) of the L–E distribution given by

h(x) = θ2λeλ−x
(
1 − e−λx

)θ−1 (
1 − log

(
1 − e−λx

))
1 + θ − (

1 − e−λx
)θ (

1 + θ − θ log
(
1 − e−λx

)) , (7)
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Lindley–Exponential distribution 339

Fig. 2 Hazard function plot for various values of λ and θ

and using theorems of Glaser [9], we can discuss the shape characteristics of the hrf of L–E
distribution. The function η(x) = − f

′
(x)/ f (x) for L–E distribution is given by

η(x) = λ

(
1 − θe−λx

1 − e−λx
+ e−λx(

1 − e−λx
)
log

(
1 − e−λx

)
)

and

η
′
(x) = λ2e−λx

(
(θ − 2) + (θ − 1)Log2

(
1 − e−λx

) − (2θ − 3) log
(
1 − e−λx

) + e−λx
)

(
1 − e−λx

)2 (
1 − log

(
1 − e−λx

))2 .

If 0 < θ ≤ 1, then η
′
(x) < 0 ∀ x > 0. It follows from Theorem (b) of Glaser [9] that the

failure rate is decreasing. Whereas, for θ > 2, η
′
(x) > 0 ∀ x > 0 which indicate increasing

failure rate (see Theorem (b) of Glaser [9]. Furthermore, we note that the failure rate can be
upside-down bathtub for 1 < θ < 2. Moreover, for θ > 0 the hazard rate function follows
relation limx→∞ h(x) = λ. These different failure rate for different values of parameters θ

and λ are shown in Fig. 2. ��

2.2 The quantile function of L–E distribution

The cdf, FX (x) = 1− F̄(x), can be obtained by using Eq. (4). Further, it can be noted that FX

is continuous and strictly increasing so that the quantile function of X is QX (γ ) = F−1
X (γ ),

0 < γ < 1. In the following theorem, we give an explicit expression for QX in terms of the
Lambert W function. For more details on Lambert W function we refer the reader to Joŕda
[12] and also to Nair et al. [20] for discussion on quantile functions.
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Theorem 3 For any θ, λ > 0, the quantile function of the L–E distribution X is

xγ = F−1(γ ) = −1

λ
log

⎛
⎝1 −

(
−W−1

(−e−θ−1(θ + 1)γ
)

(θ + 1)γ

)−1/θ
⎞
⎠ , (8)

where W−1 denotes the negative branch of the Lambert W function.

Proof By assume p = 1 − e−λx the cdf can be written as

FX (x) = pθ (1 + θ − θ log(p))

1 + θ

for fixed θ, λ > 0 and γ ∈ (0, 1), the γ th quantile function is obtained by solving FX (x) = γ .
By re-arranging the above, we obtain

log(p−θ ) − γ p−θ (1 + θ) = −(1 + θ)

it can be further written as

− p−θ (1 + θ)γ e−p−θ (1+θ)γ = −(1 + θ)γ e−(1+θ). (9)

We see that −p−θ (1+ θ)γ is the Lambert-W function of real argument −(1+ θ)γ e−(1+θ) .
Thus, we have

W
(
−(1 + θ)γ e−(1+θ)

)
= −p−θ (1 + θ)γ (10)

Moreover, for any θ and λ > 0 it is immediate that p−θ (1 + θ)γ > 1, and it can also be
checked that (1+θ)γ e−(1+θ) ∈ (−1/e, 0) since γ ∈ (0, 1). Therefore, by taking into account
the properties of the negative branch of the Lambert W function, we deduce the following.

W−1

(
−(1 + θ)γ e−(1+θ)

)
= −p−θ (1 + θ)γ

Again,solving for x by using p = 1 − e−λx , we get

xγ = F−1(γ ) = − 1

λ
log

⎛
⎝1 −

(
−W−1

(−e−θ−1(θ + 1)γ
)

(θ + 1)γ

)−1/θ
⎞
⎠ . (11)

��
Further the first three quantiles can be obtained by substituting γ = 1

4 ,
1
2 ,

3
4 in (11).

Q1 = F−1(1/4) = − 1

λ
log

⎛
⎜⎜⎝1 −

⎛
⎝−

4W−1

(−e−θ−1(1+θ)
4

)

(1 + θ)

⎞
⎠

− 1
θ

⎞
⎟⎟⎠

Median(Md) = Q2 = F−1(1/2) = − 1

λ
log

⎛
⎜⎜⎝1 −

⎛
⎝−

2W−1

(−e−θ−1(1+θ)
2

)

(1 + θ)

⎞
⎠

− 1
θ

⎞
⎟⎟⎠

Q3 = F−1(3/4) = − 1

λ
log

⎛
⎜⎜⎝1 −

⎛
⎝−

4W−1

(−3e−θ−1(1+θ)
4

)

3(1 + θ)

⎞
⎠

− 1
θ

⎞
⎟⎟⎠ (12)
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Lindley–Exponential distribution 341

2.3 Moments

The Moment Generating function of L–E random variable is given as

MX (t) = E(eXt ) =
∫ ∞

0

θ2λe−x(λ−t)
(
1 − e−λx

)θ−1 (
1 − log

(
1 − e−λx

))
θ + 1

dx

=θ�(θ + 1)�
(
1 − t

λ

) (−ψ(0)(θ) + ψ(0)
(− t

λ
+ θ + 1

) + 1
)

(θ + 1)�
(− t

λ
+ θ + 1

) (13)

where, ψ(n)(z) = dnψ(z)
dzn and ψ(z) = �′(z)

�(z) known as digamma function.
Hence the first and second raw moments can be obtained by differentiating the MGF(

dMX (t)
dt

)
t=0

and
(
d2MX (t)

dt2

)
t=0

respectively.

E(X) = γθ + 1
θ

+ θ(−ψ(1)(θ + 1)) + (θ + 1)ψ(0)(θ) + γ + 1

(θ + 1)λ
(14)

E(X2) = 1

θ2(θ + 1)λ2

(
(θ + 1)

((
γ2 + π2

6

)
θ2 + 2γθ + 1

)

+θ(θ + 1)ψ(0)(θ)(2γθ + θψ(0)(θ) + 2)

−θ2(θ + 2θ(ψ(0)(θ) + γ + 3)ψ(1)(θ + 1) + θ3ψ(2)(θ + 1)

)
(15)

where γ is Eulergamma constant=0.577216.
Table 1 displays the mode, mean and median for L–E distribution for different choices of

parameter λ and θ . It can be noted from the table that all three measures of central tendency
decrease as λ increases, and the measures increase as θ increase. Also for any choice of λ

and θ Mean > Median > Mode which is an indication of positive skewness.

2.4 Limiting distribution of sample minimum and maximum

We can derive the asymptotic distribution of the sample minima X1:n by using Theorem 8.3.6
of Arnold et al. [3], it follows that the asymptotic distribution of X1:n is Weibull type with
shape parameter θ > 0 if

lim
t→0+

F(t x)

F(t)
= xθ , ∀x > 0

From (4), F(X) = 1 − F̄(X), using the identities

lim
t→0+

(1 − e−λt x )θ−1

(1 − e−λt )θ−1 = xθ−1

and

lim
t→0+

(1 − log(1 − e−λt x ))

(1 − log(1 − e−λt ))
= 1

Thus,we get

lim
t→0+

F(t x)

F(t)
= x lim

t→0+
f (t x)

f (t)
= x lim

t→0+
(1 − e−λt x )θ−1(1 − log(1 − e−λt x ))

(1 − e−λt )θ−1(1 − log(1 − e−λt ))
= xθ
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342 D. Bhati et al.

Table 1 Mode, mean and median for various value of parameter

θ ↓ λ → 0.1 0.5 1 1.5 2 2.5

1.1 Mode 0.001219 0.000244 0.000122 0.000081 0.000061 0.000049

Mean 7.446760 1.489350 0.744676 0.496451 0.372330 0.297871

Median 4.478034 0.895607 0.447803 0.298536 0.223902 0.179121

1.5 Mode 1.508590 0.301719 0.150850 0.100573 0.075429 0.060344

Mean 9.861580 1.972300 0.986158 0.657438 0.493079 0.394463

Median 6.920488 1.384098 0.692048 0.461366 0.346024 0.276820

2 Mode 4.174510 0.834902 0.417451 0.278300 0.208725 0.166980

Mean 12.367100 2.473421 1.236710 0.824470 0.618350 0.494680

Median 9.528006 1.905601 0.952801 0.635200 0.476400 0.381120

2.5 Mode 6.540190 1.308040 0.654019 0.436013 0.327010 0.261608

Mean 14.444000 2.888800 1.444400 0.962930 0.722200 0.577761

Median 11.704978 2.340996 1.170498 0.780332 0.585249 0.468199

3 Mode 8.569080 1.713820 0.856908 0.571272 0.428454 0.342763

Mean 16.204700 3.240930 1.620470 1.080310 0.810233 0.648186

Median 13.549240 2.709848 1.354924 0.903283 0.677462 0.541970

3.5 Mode 10.317200 2.063400 1.031720 0.687811 0.515858 0.412687

Mean 17.726300 3.545200 1.772630 1.181760 0.886310 0.709053

Median 15.138649 3.027730 1.513865 1.009243 0.756932 0.605546

4 Mode 11.840500 2.368100 1.184050 0.789366 0.592025 0.473620

Mean 19.062700 3.812500 1.906270 1.270850 0.953130 0.762510

Median 16.529903 3.305981 1.652990 1.101994 0.826495 0.661196

Similarly, using the following identity

lim
t→∞

(
1 − e−λ(t+x)

)θ−1

(
1 − e−λt

)θ−1 = e−λx(θ−1)

and

lim
t→∞

1 − log
(
1 − e−λ(t+x)

)
1 − log

(
1 − e−λt

) = 1

It can be seen that

lim
t→∞

1 − F(t + x)

1 − F(t)
= lim

t→∞
(1 + θ) − (1 − e−λ(x+t))θ (1 + θ − θ log(1 − e−λ(x+t)))

(1 + θ) − (1 − e−λt )θ (1 + θ − θ log(1 − e−λt ))

by using L-Hópitals rule,

lim
t→∞

e−λx
(
1 − e−λ(t+x)

)θ−1 (
1 − log

(
1 − e−λ(t+x)

))
(
1 − e−λt

)θ−1 (
1 − log

(
1 − e−λt

)) = e−λθx

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. [17] that there must be norming
constants an > 0, bn, cn > 0 and dn such that

Pr{an(Mn − bn) ≤ x} → e−e−θλx
(16)
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Lindley–Exponential distribution 343

and
Pr{cn(mn − dn) ≤ x} → 1 − e−xθ

(17)

as n → ∞. By following Corollary 1.6.3 in Leadbetter et al. [17], we can determine the form
of the norming constants. As an illustration, one can see that an = θ and bn = F−1(1−1/n),
where F−1(.) denotes the inverse function of F(.).

2.5 Entropy

In many fields of science such as communication, physics and probability, entropy is an
important concept to measure the amount of uncertainty associated with a random variable
X . Several entropy measures and information indices are available but among them the most
popular entropy called Rényi entropy defined as

J(ζ ) = 1

1 − ζ
log

⎛
⎝

∫

R+
f ζ (x)dx

⎞
⎠ , for ζ > 1 and ζ �= 1 (18)

In our case

∫

R+
f ζ dx =

∫

R+

(
θ2λ

θ + 1

)ζ

e−xλζ
(
1 − e−xλ)ζ(θ−1) (

1 − log
(
1 − e−xλ))ζ

dx

substituting x = − 1
λ
log(1 − e−u) and using power series expansion (1 − z)α =∑∞

j=0(−1) j
(
α
j

)
z j , the above expression reduces to

∫

R+
f ζ dx = θ2ζ λζ−1

(θ + 1)ζ

∫ ∞

0
(u + 1)ζ

(
1 − e−u)ζ−1

eu(−(ζ(θ−1)+1)) du

= θ2ζ λζ−1

(θ + 1)ζ

∫ ∞

0

∞∑
j=0

(−1) j
(

ζ − 1

j

)
eu(−(ζ(θ−1)+ j+1))(u + 1)ζ du

= θ2ζ λζ−1

(θ + 1)ζ

∞∑
j=0

(−1) j
(

ζ − 1

j

) ∫ ∞

0
(u + 1)ζ eu(−(ζ(θ−1)+ j+1)) du

= θ2ζ λζ−1

(θ + 1)ζ

∞∑
j=0

(−1) j eζ(θ−1)+ j+1E−ζ [( j + (θ − 1)ζ + 1)] (19)

where En(z) = ∫ ∞
1 e−zt t−ndt known as exponential integral function. For more details see

http://functions.wolfram.com/06.34.02.0001.01.
Thus according to (18) the Rényi entropy of L–E(θ, λ) distribution given as

J(ζ ) = 1

1 − ζ
log

⎛
⎝ θ2ζ λζ−1

(θ + 1)ζ

∞∑
j=0

(−1) j eζ(θ−1)+ j+1E−ζ [( j + (θ − 1)ζ + 1)]

⎞
⎠. (20)

Moreover, The Shannon entropy defined by E[log( f (x))] is a special case derived from
limζ→1 J(ζ )
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3 Maximum likelihood estimators

In this section we shall discuss the point and interval estimation of the parameters of L–
E(θ, λ). The log-likelihood function l(�) of single observation (say xi ) for the vector of
parameter � = (θ, λ)� is

ln(x,�) = 2 log(θ) + log(λ) − log(θ + 1) + (θ − 1) log(1 − e−λx )

+ log(1 − log(1 − e−λx )) − λx

The associated score function is given by Un =
(

∂ln
∂θ

, ∂ln
∂λ

)�
, where

∂ln
∂θ

= 2

θ
− 1

θ + 1
+ log

(
1 − e−λx) (21)

∂ln
∂λ

= 1

λ
− x + (θ − 1)

xe−λx

1 − e−λx
+ xe−λx(

1 − e−λx
)
(1 − log

(
1 − e−λx

)
)
. (22)

As we know th expected value of score function equals zero, i.e. E(U (�)), which implies
E

(
log

(
1 − e−λx

)) = 1
θ+1 − 2

θ
.

The total log-likelihood of the random sample x = (x1, . . . , xn)� of size n from X is given
by ln = ∑n

1 l
(i) and th total score function is given by Un = ∑n

i=1U
(i), where l(i) is the

log-likelihood of i th observation andU (i) as given above. Themaximum likelihood estimator
�̂ of � is obtained by solving Eqs. (21) and (22) numerically or this can also obtained easily
by using nlm() function in R. The initial guess for the estimators were obtained from the
inner region of 3D contour plot of log-likelihood function for a given sample. For example,
in Fig. 3, the contour plot of log-likelihood function for different θ and λ, the initial estimates
were taken from interior. The associated Fisher information matrix is given by

K = Kn(�) = n

[
κθ,θ κθ,λ

κλ,θ κλ,λ

]
(23)

Fig. 3 Contour plot of log-likelihood surface for different values of θ and λ
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where

κθ,θ = n

(θ + 1)2
− 2n

θ2

κλ,θ = κθ,λ = E

(
Xe−λX

1 − e−λX

)

κλ,λ = 1

λ2
+ E

(
(θ − 1)

(
X2e−λX

)
(
1 − e−λX

)2
)

− E

(
X2e−λX

(−e−λX − log
(
1 − e−λX

) + 1
)

(
1 − e−λX

)2 (
1 − log

(
1 − e−λX

))2
)

(24)

The above expressions depend on some expectations which can be easily computed using
numerical integration. Under the usual regularity conditions, the asymptotic distribution of

√
n

(
�̂ − �

)
is N2(0, K (�)−1) (25)

where limn→∞ Kn(�)−1 = K (�)−1. The asymptotic multivariate normal N2(0, K (�)−1)

distribution of �̂ can be used to construct approximate confidence intervals. An asymptotic
confidence interval with significance level α for each parameter θ and λ is

ACI (θ, 100(1 − α)%) ≡ (θ̂ − zα/2
√

κ(θ,θ), θ̂ + zα/2
√

κ(θ,θ))

ACI (λ, 100(1 − α)%) ≡ (λ̂ − zα/2
√

κ(λ,λ), λ̂ + zα/2
√

κ(λ,λ)) (26)

where z1−α/2 denotes 1 − α/2 quantile of standard normal random variable.

4 Simulation

In this section, we investigate the behaviour of the ML estimators in finite sample sizes
through a simulation study based on different L–E(θ, λ). The observations are generated
using cdf technique presented in Sect. 4 from L–E(θ, λ) and in the following Sects. 4.1 and
4.2, we investigate the performance of maximum likelihood estimators (θ̂ , λ̂) for various
combinations of parameters (θ, λ) and also with respect to sample size n respectively.

4.1 Performance of estimators for different parametric values

A simulation study consisting of following steps is carried out for each triplet (θ, λ, n), where
θ = 0.5, 1, 2, λ = 0.5, 1, 2, 3 and n = 25, 50, 75, 100.

1. Choose the values θ◦, λ◦ for the corresponding elements of the parameter vector � =
(θ, λ), to specify L–E(θ, λ) distribution;

2. choose sample size n;
3. generate N independent samples of size n from L–E(θ, λ);
4. compute the ML estimate �̂n of �◦ for each of the N samples;
5. compute the average bias = 1

N

∑N
i=1(�i − �◦), the average mean square error MSE

(�) = 1
N

∑N
i=1(�i − �◦)2 and average width (AW) of 95% of confidence limit of the

obtained estimates over all N samples.

In all three Tables, Tables 2, 3 and 4, it can be clear seen that the value of average bias,
MSE and average width decreases with increase in sample size n.
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Table 2 Average bias of the simulated estimates

n λ = 0.5 λ = 1 λ = 2 λ = 3

bais (θ) bais (λ) bais (θ) bais (λ) bais (θ) bais (λ) bais (θ) bais (λ)

θ = 0.5 25 0.0448 0.1836 0.0476 0.4173 0.0519 0.8777 0.0534 1.1682

50 0.0187 0.0673 0.0196 0.1596 0.0164 0.2694 0.0148 0.3427

75 0.0092 0.0403 0.0131 0.0792 0.0136 0.2166 0.0120 0.2608

100 0.0067 0.0267 0.0091 0.0728 0.0074 0.1318 0.0095 0.1988

θ = 1 25 0.1200 0.1012 0.1073 0.1873 0.1158 0.3884 0.1085 0.5350

50 0.0478 0.0405 0.0412 0.0655 0.0507 0.1723 0.0522 0.2444

75 0.0364 0.0268 0.0265 0.0370 0.0286 0.1091 0.0285 0.1415

100 0.0150 0.0136 0.0198 0.0315 0.0183 0.0548 0.0244 0.1266

θ = 2 25 0.3599 0.0650 0.3270 0.1268 0.3628 0.2334 0.3401 0.3451

50 0.1003 0.0204 0.1100 0.0460 0.1200 0.1021 0.1209 0.1324

75 0.0686 0.0136 0.0654 0.0312 0.0803 0.0653 0.0955 0.1173

100 0.0562 0.0136 0.0457 0.0234 0.0511 0.0417 0.0588 0.0922

Table 3 Average MSE of the simulated estimates

n λ = 0.5 λ = 1 λ = 2 λ = 3

MSE (θ) MSE (λ) MSE (θ) MSE (λ) MSE (θ) MSE (λ) MSE (θ) MSE (λ)

θ = 0.5 25 0.0164 0.1988 0.0177 1.0549 0.0204 5.3140 0.0200 8.3846

50 0.0051 0.0459 0.0055 0.2089 0.0053 0.7757 0.0051 1.5790

75 0.0032 0.0270 0.0031 0.1047 0.0033 0.4656 0.0032 0.9631

100 0.0024 0.0161 0.0022 0.0763 0.0022 0.2870 0.0024 0.7081

θ = 1 25 0.1313 0.0802 0.0998 0.2457 0.1012 1.1482 0.1067 2.2693

50 0.0314 0.0200 0.0283 0.0716 0.0302 0.3081 0.0316 0.7259

75 0.0195 0.0119 0.0163 0.0431 0.0178 0.1875 0.0171 0.3556

100 0.0112 0.0078 0.0128 0.0331 0.0111 0.1131 0.0125 0.3082

θ = 2 25 0.8890 0.0344 0.7999 0.1393 0.9890 0.5046 0.9142 1.1439

50 0.1733 0.0097 0.1815 0.0425 0.1633 0.1597 0.1857 0.3790

75 0.1131 0.0063 0.1008 0.0244 0.1075 0.1069 0.1028 0.2132

100 0.0730 0.0046 0.0712 0.0185 0.0730 0.0785 0.0625 0.1586

4.2 Performance of estimators with respect to sample size n

In this subsection, we assess the performance of ML estimators of θ̂ and λ̂ as sample size n,
varies from n = 10, 11, . . . , 100, for θ = 1 and α = 0.5. For each of these sample sizes, we
generate one thousand samples by using inversion method discussed in Sect. 4 and obtain
maximum likelihood estimators and standard errors of ML estimates, (θ̂ , λ̂) and (si,θ̂ , si,λ̂)
for i = 1, 2, . . . , 1,000 respectively. For each repetition we comput bias, mean squared error
and Coverage Lengths (CL):
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Table 4 Average Width of 95% confidence limit

n λ = 0.5 λ = 1 λ = 2

AWλ AWθ AWλ AWθ AWλ AWθ

θ = 0.5 25 1.1446 0.3930 2.3347 0.3926 4.6154 0.3934

50 0.7317 0.2663 1.4689 0.2648 2.9775 0.2661

75 0.5770 0.2143 1.1683 0.2143 2.3471 0.2156

100 0.4947 0.1837 0.9945 0.1831 1.9738 0.1834

θ = 1 25 0.7434 0.9113 1.4803 0.9132 2.9303 0.9259

50 0.4935 0.6117 0.9907 0.6234 1.9692 0.6125

75 0.3971 0.4899 0.7893 0.4921 1.5998 0.4913

100 0.3404 0.4199 0.6846 0.4230 1.3461 0.4207

θ = 2 25 0.5391 2.2947 1.0864 2.2898 2.1495 2.2439

50 0.3675 1.4861 0.7424 1.4952 1.4827 1.4946

75 0.2983 1.1865 0.5941 1.1697 1.1866 1.1877

100 0.2585 1.0143 0.5129 1.0119 1.0383 1.0147

θ = 3 25 0.4773 4.2754 0.9515 4.0969 1.8912 3.9875

50 0.3237 2.5275 0.6533 2.5749 1.3011 2.5913

75 0.2637 1.9924 0.5269 1.9904 1.0539 2.0121

100 0.2268 1.7051 0.4549 1.7273 0.9148 1.7245

Fig. 4 Bias for θ̂ and λ̂ versus n

bias�(n) = 1

1,000

1,000∑
i=1

(
�̂i − �

)
,MSE�(n) = 1

1,000

1,000∑
i=1

(
�̂i − �

)2
,

CL�(n) = 2 · 1.956
1,000

1,000∑
i=1

si,�̂

The coverage probabilities (CP) are given by

CP�(n) = 1

1,000

1,000∑
i=1

I

(
�̂ − 1.96si,�̂ < � < �̂ − 1.96si,�̂

)

for � = (θ, λ) and I is an indicator function.
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Fig. 5 MSE for θ̂ and λ̂ versus n

Fig. 6 Converge length for θ̂ and
λ̂ versus n

Fig. 7 Converge probabilities
for θ̂ and λ̂ versus n

Figures 4, 5, 6 and 7 shows behaviour of bias, mean squared error, coverage length and
coverage probability of parameter (θ and λ) as one varies vary n. The horizontal lines in
Fig. 7 correspond to the coverage probabilities being 0.95.

The following observations can be drawn from thefigures: the biases for both the parameter
appear generally positive and approach to zero with increasing n; the mean squared errors
and coverage lengths of (θ and λ) decrease with n. The coverage probabilities for λ appear
generally less than the nominal level but reach the nominal level as sample size increases
whereas the coverage probabilities for θ appear generally closer than the nominal level. These
observations are for θ = 1 and α = 0.5 and similar observations were noted for other values
of parameters.
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Table 5 The estimates of parameters and goodness-of-fit statistics for Illustration 1

Model Parameter −LL AIC BIC K–S statistic

L–E λ̂ = 0.0962, θ̂ =1.229 401.78 807.564 807.780 0.0454

PL θ̂ = 0.385, β̂ =0.744 402.24 808.474 808.688 0.0446

L θ̂ = 0.196 419.52 841.040 843.892 0.0740

NGLD θ̂ = 0.180, α̂ =4.679, β̂ =1.324 412.75 831.501 840.057 0.1160

5 Application to real datasets

In this section, we illustrate, the applicability of L–E Distribution by considering two dif-
ferent datasets used by different researchers. We also fit L–E distribution, Power–Lindley
distribution [8], New Generalized Lindley Distribution [5], Lindley Distribution [19], and
Exponential distribution. Namely
(i) Power–Lindley distribution (PL(α, β)):

f1(x) = αβ2

1 + β
(1 + xα)xα−1e−βxα

, x, α, β > 0.

(ii) New Generalized Lindley distribution (NGLD(α, β, θ )):

f2(x) = e−θx

1 + θ

(
θα+1xα−1

�(α)
+ θβxβ−1

�(β)

)
, x, α, θ, β > 0.

(iii) Lindley Distribution (L(θ))

f3(x) = θ2

1 + θ
(1 + x)e−θx , x, α, β > 0.

For each of these distributions, the parameters are estimated by using the maximum likeli-
hoodmethod, and for comparison we use Negative LogLikelihood values (−LL), the Akaike
information criterion (AIC) and Bayesian information criterion (BIC) which are defined by
−2LL+2q and−2LL+q log(n), respectively,whereq is the number of parameters estimated
and n is the sample size. Further Kolmogorov–Smirnov test (K–S)=supx |Fn(x) − F(x)|,
where Fn(x) = 1

n

∑n
i=1 Ixi≤x is empirical distribution function and F(x) is cumulative

distribution function is calculated and shown for all the datasets.

5.1 Illustration 1: Application to bladder cancer patients

We consider an uncensored data set corresponding to remission times (inmonths) of a random
sample of 128 bladder cancer patients (Lee and Wang [18]) as presented in Appendix A.1
in Table 9. The results for these data are presented in Table 5. We observe that the L–E
distribution is a competitive distribution compared with other distributions. In fact, based
on the values of the AIC and BIC criteria and K–S test statistic, we observe that the L–E
distribution provides the best for these data among all the models considered. The probability
density function and empirical distribution function are presented in Fig. 8 for all considered
distributions for these data.
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Fig. 8 PDF plot for various values of λ and θ

Table 6 The estimates of parameters and goodness-of-fit statistics for Illustration 2

Model Parameter LL AIC BIC K–S

L–E θ̂ = 2.650, λ̂ =0.1520 317.005 638.01 638.1337 0.0360

PL θ̂ = 0.1530; β̂ =1.0832 318.319 640.64 640.64 0.0520

L θ̂ = 0.187 319.00 640.00 640.00 0.0680

E θ̂ = 0.101 329.00 660.00 660.00 0.1624

NGLD θ̂ = 0.2033; β̂ =2.008; α̂ =2.008 317.3 640.60 640.60 0.0425

5.2 Illustration 2: Application to waiting times in a queue

As second example, we consider 100 observations on waiting time (in minutes) before the
customer received service in a bank (see Ghitany et al. [7]). The data sets are presented in
Appendix A.2 as Table 10. The results for these data are presented in Table 6. From these
results we can observe that L–E distribution provide smallest AIC and BIC values as compare
to Power lindley, new generalized Lindley distribution, Lindley and exponential and hence
best fits the data among all the models considered. The results are presented in Table 6 and
probability density function and empirical distribution function are shown in Fig. 9.

6 Estimation of the reliability of a stress–strength system

The stress–strength parameter (R), defined as R = P (X > Y ), plays an important role in the
reliability analysis as it measures the system performance. Some of the significant work on
the stress–strength model can be seen in Kundu and Gupta [14,15], Raqab and Kundu [21],
Kundu and Raqab [16], Krishnamoorthy et al. [13], and the references cited therein. Recently
Al-Mutairi et al. [2] have presented the estimation of the stress–strength parameterwhere both
strength and stress of the system follow lindley distribution with different shape parameters.
In this section, we consider a situation where X ∼ L–E(θ1, λ) and Y ∼L–E(θ2, λ) and are
independent of each other. In our case, the stress–strength parameter R is given by
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Fig. 9 PDF plot for various values of λ and θ

R = P (X > Y ) =
∞∫

0

P (X > Y |Y = y) fY (y)dy

=
∞∫

0

SX (y) fY (y)dy

= 1 −
∫ ∞

0

θ22λ
(
1−e−λy

)θ1+θ2−1
e−λy

(
1− log

(
1−e−λy

)) (
1+θ1(1− log

(
1−e−λy)

))
(1+θ1) (1+θ2)

dy

= 1 − θ22

(
θ31 + (2θ2 + 3) θ21 + (θ2 + 1) (θ2 + 3) θ1 + θ22 + θ2

)
(θ1 + 1) (θ2 + 1) (θ1 + θ2) 3

(27)

Remarks:

(i) R is independent of λ

(ii) When θ1 = θ2, R=0.5. This is intuitive that X and Y are i.i.d. and there is an equal
chance that X is bigger than Y .

Since R in Eq. (27) is a function of stress–strength parameters θ1 and θ2, we need to obtain the
maximum likelihood estimators (MLEs) of θ1 and θ2 to compute the MLE of R under invari-
ance property of theMLE. Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent
random samples from L–E (θ1, λ) and L–E (θ2, λ) respectively, then likelihood function is
given by

L(θ1, θ2) = θ2m2 θ2n1 λm+n

(θ1 + 1) (θ2 + 1)

n∏
i=1

e−λxi
(
1 − e−λxi

)θ1−1 (
1 − log

(
1 − e−λxi

))

·
m∏
j=1

e−λy j
(
1 − e−λy j

)θ2−1 (
1 − log

(
1 − e−λy j

))
.
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The log-likelihood function is given by

log L(θ1, θ2)= 2n log (θ1) +2m log (θ2) +(m + n) log(λ) − n log (θ1 + 1) − m log (θ2 + 1)

− (θ1 − 1) s1 − λ

n∑
i=1

xi +
n∑

i=1

log(1 − log(1 − e−λxi )) − (θ2 − 1) s2

− λ

m∑
j=1

y j +
m∑
j=1

log(1 − log(1 − e−λy j )),

where s1(λ) = −∑n
i=1 log

(
1 − e−λxi

)
and s2(λ) = −∑m

j=1 log
(
1 − e−λy j

)
.

The MLE of �̂ of � is solution of the following non linear equations:

∂logL

∂α
= n + m

λ
+(θ1 − 1)

n∑
i=1

xi e−λxi(
1 − e−λxi

) +(θ2 − 1)
m∑
j=1

y j e−λy j(
1 − e−λy j

) −
n∑

i=1

xi −
m∑
j=1

y j

−
n∑

i=1

xi e−xiλ(
1 − e−xiλ

) (
1 − log

(
1 − e−xiλ

))

−
m∑
j=1

y j e−y jλ(
1 − e−y jλ

) (
1 − log

(
1 − e−y jλ

))
∂logL

∂θ1
= 2n

θ1
− n

θ1 + 1
− s1

∂logL

∂θ2
= 2m

θ2
− m

θ2 + 1
− s2 (28)

from above equations, it follows that

θ̂1 = θ1(λ̂) =
(
s1(λ̂) − n

)
+

√(
s1(λ̂) − n

)2 + 8ns1(λ̂)

2s1(λ̂)

θ̂2 = θ2(λ̂) =
(
s2(λ̂) − m

)
+

√(
s2(λ̂) − m

)2 + 8ms2(λ̂)

2s2(λ̂)
(29)

where λ̂ is the solution of the non-linear equation:

H(λ) = n + m

λ
+ (θ1(λ) − 1)

n∑
i=1

xi e−λxi(
1 − e−λxi

) + (θ2(λ) − 1)

×
m∑
j=1

y j e−λy j(
1 − e−λy j

) −
n∑

i=1

xi −
m∑
j=1

y j

−
n∑

i=1

xi e−xiλ(
1 − e−xiλ

) (
1−log

(
1 − e−xiλ

)) −
m∑
j=1

y j e−y jλ(
1 − e−y jλ

) (
1 − log

(
1 − e−y jλ

)) .

(30)

The value of λ̂ can be substituted in (29) to get θ̂1 and θ̂2.
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Hence, using the invariance property of theMLE, the maximum likelihood estimator R̂mle

of R can be obtained by substituting θ̂k for k=1,2 in Eq. (27).

R̂mle = 1 − θ22

(
θ31 + (2θ2 + 3) θ21 + (θ2 + 1) (θ2 + 3) θ1 + θ22 + θ2

)
(θ1 + 1) (θ2 + 1) (θ1 + θ2)

3

∣∣∣∣
θ1=θ̂1,θ2=θ̂2

. (31)

6.1 Asymptotic confidence interval

For an estimator θ̂k to be asymptotically efficient for estimating θk for large sample, we

should have
√
nk

(
θ̂k − θk

) D−→ N
(
0, I (θk)−1

)

I (θk) = −E

(
∂2logL

∂θ2k

)
= −E

(
nk

(θk + 1) 2
− 2nk

θ2k

)
= 2nk

θ21
− nk

(θ1 + 1) 2

I1 = I (θ1) = −E

(
n

(θ1 + 1) 2
− 2n

θ21

)
= 2n

θ21
− n

(θ1 + 1) 2

I2 = I (θ2) = −E

(
m

(θ2 + 1) 2
− 2m

θ22

)
= 2m

θ22
− m

(θ2 + 1) 2

where n1 = n and n2 = m.
Therefore, as easily follows it n → ∞ and m → ∞

R̂ − R√
d22
mI2

+ d21
nI1

D−→ N (0, 1)

where

d1 = ∂R

∂θ1
= θ1θ

2
2

(
θ31 + 2 (θ2 + 3) θ21 + (

θ22 + 8θ2 + 12
)
θ1 + 2

(
θ22 + 3θ2 + 3

))
(θ1 + 1)2 (θ2 + 1) (θ1 + θ2) 4

d2 = ∂R

∂θ2
= −θ21 θ2

(
θ32 + 6θ22 + 12θ2 + θ21 (θ2 + 2) + 2θ1

(
θ22 + 4θ2 + 3

) + 6
)

(θ1 + 1) (θ2 + 1)2 (θ1 + θ2)
4

Interval Using the asymptotic distribution of R̂, 100(1 − α)% confidence interval for R
can be easily obtained as

R̂ ∓ Z α
2

√√√√ d̂22
mÎ2

+ d̂21
n Î1

.

6.2 Illustration 3: Application to stress–strength data

In illustration 3, we present the results obtained from estimation methods of R proposed in
Sect. 6,we consider two datasets, reported inGhitany et al. [7],Al-Mutairi et al. [2], represents
the waiting times (in minutes) before customer service in two different banks having 100(n)
and 60(m) number of observations respectively. Q–Q plot in Fig. 10 and KS value in Table 7
indicate that LE Distribution fits better than Lindley Distribution (L). Thus, R̂MLE and 95%
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Fig. 10 Q–Q plot of the fitted LE and Lindley distribution for Bank A and Bank B data set

Table 7 Kolmogorov–Smirnov
distances value for Bank A and
Bank B data set

Data set Model Parameter KS value

Bank A LE λ̂ = 0.152, θ̂ = 2.650 0.0360

L θ̂ = 0.187 0.0680

Bank B LE λ̂ = 0.1758,θ̂ = 1.767 0.0496

L θ̂ = 0.2797 0.0797

confidence interval were computed and presented in Table 8. It is clear that, from the Table 8
that the estimated value of stress–strength parameter obtained from L–E distribution is lower
than the one obtained from Lindley distribution. Moreover, standard error of R is also lower
for LE distribution compared to Lindley distribution. Hence we recommend, LE distribution
for stress-strength analysis also.
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Table 8 The maximum likelihood estimator of R for LE and Lindley model

Model Parameter R̂MLE 95% confidence limit

LE θ̂1 = 1.3982, θ̂2 = 1.5023, λ̂ = 0.1096 0.476 (0.4684, 0.4840)

L θ̂1 = 0.187, θ̂2 = 0.280 0.645 (0.565, 0.720)

Conclusion

We have proposed a new two parameter class of distribution called Lindley–Exponential (L–
E) distribution generated by Lindley distribution possess increasing, decreasing or upside
down hazard function for different choices of the parameters. We have derived important
properties of the L–E distribution like moments, entropy, asymptotic distribution of sample
maximum and sample Minimum.Maximum likelihood of the parameters are obtained which
can be used to get asymptotic confidence intervals. We have also illustrated the application
of L–E distribution to two real data sets used by researchers earlier and compare it with other
popular models. Further the stress–strength analysis were carried out and compared with
that of Lindley distribution. Our application to real data set indicate that L–E distribution
performs satisfactorily or better than its competitors and can be recommended for lifetime
modelling the encountered in engineering, medical science, biological science and other
applied sciences.

Appendix

Appendix A.1: Dataset used in illustration 1

See Table 9.

Table 9 The remission times (in months) of bladder cancer patients

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23 0.26 0.31 0.73

0.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57 5.06 7.09 11.98 4.51 2.07

0.22 13.8 25.74 0.5 2.46 3.64 5.09 7.26 9.47 14.24 19.13 6.54 3.36

0.82 0.51 2.54 3.7 5.17 7.28 9.74 14.76 26.31 0.81 1.76 8.53 6.93

0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 3.25 12.03 8.65

0.39 10.34 14.83 34.26 0.9 2.69 4.18 5.34 7.59 10.66 4.5 20.28 12.63

0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 6.25 2.02 22.69

0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 8.37 3.36 5.49

0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36 12.02 6.76

0.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4 5.85 2.02 12.07
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Appendix A.2: Dataset used in illustration 2

See Table 10.

Table 10 Waiting times (min) of 100 bank customers

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7

2.9 3.1 3.2 3.3 3.5 3.6 4 4.1 4.2 4.2

4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8

8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5

11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9

14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0

19.9 20.6 21.3 21.4 21.9 23 27 31.6 33.1 38.5
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