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Abstract Marshall and Olkin (Biometrika 641–652, 1997) introduced a new way of incor-
porating a parameter to expand a family of distributions. In this paper we adopt the Marshall-
Olkin approach to introduce an extra shape parameter to the two-parameter generalized
exponential distribution. It is observed that the new three-parameter distribution is very flexi-
ble. The probability density functions can be either a decreasing or an unimodal function. The
hazard function of the proposedmodel, can have all the fourmajor shapes, namely increasing,
decreasing, bathtub or inverted bathtub types. Different properties of the proposed distrib-
ution have been established. The new family of distributions is analytically quite tractable,
and it can be used quite effectively, to analyze censored data also. Maximum likelihood
method is used to compute the estimators of the unknown parameters. Two data sets have
been analyzed, and the results are quite satisfactory.

Keywords Generalized exponential distribution · Hazard function · Probability density
function · Maximum likelihood estimator · Fisher information matrix

1 Introduction

Exponential distribution has been used quite effectively to analyze lifetime data,mainly due to
its analytical tractability. Although, one parameter exponential distribution has several inter-
esting such as ‘lack of memory property, one of the major disadvantages of the exponential
distribution is that it has a constant hazard function. Moreover, the probability density func-
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tion (PDF) of the exponential distribution is always a decreasing function. Due to this reason
several generalizations of the exponential distribution have been suggested in the literature.
For example, Weibull, gamma, generalized exponential (GE) distribution as considered by
Gupta and Kundu [11] are different extensions of the exponential distribution, which contain
exponential distribution as a special case. All the three distributions can have increasing or
unimodal PDFs, and monotone hazard functions. Unfortunately, none of them can have non-
monotone hazard functions. In many practical situations, one might observe non-monotone
hazard functions, and clearly in those cases, none of these distribution functions can be used.

In the last decadeMarshall andOlkin [16] introduced a generalmethod to introduce a shape
parameter mainly to expand a family of distributions. They have used their method to the
one-parameter exponential distribution and created a two-parameter exponential distribution.
They have also indicated to apply their method to the two-parameter Weibull distribution,
but did not pursue further.

The main aim of this paper, is to apply the Marshall-Olkin method to the two-parameter
generalized exponential distribution. In this paper, we introduce a new distribution function
for α > 0, λ > 0, θ > 0,

G(x; λ, α, θ) = (1 − e−λx )α

θ + (1 − θ)(1 − e−λx )α
, for x > 0, (1)

and 0 otherwise. Clearly, (1) is a proper distribution function, and it generalizes the gen-
eralized exponential distribution. From now on a random variable X with the distribution
function (1) will be denoted by MOGE(α, λ, θ).

It may be observed that several special cases can be obtained from (1). For example, if
we set θ = 1 in (1), then we obtain the generalized exponential distribution as introduced by
Gupta and Kundu [11]. It will be denoted by GE(α, λ). For α = 1 we obtain the Marshall-
Olkin exponential distribution introduced by Marshall and Olkin [16]. For α = 1 and θ = 1
we obtain the exponential distribution with parameter λ. Now we provide some physical
justification of the proposed model, see also Marshall and Olkin [16] in this respect.

First, let us consider a series system with N independent components. Suppose that a
random variable N has the probability mass function P(N = n) = θ(1−θ)n−1, n = 1, 2, . . .
and 0 < θ < 1. Let X1, X2, . . . represent the lifetimes of each component and suppose they
are independent and identically distributed (i.i.d.) GE random variables with parameters λ

and α. Then a random variable Y = min(X1, . . . , XN ) represents the time to the first failure
with distribution function

G(x) = 1 −
∞∑

n=1

P(min(X1, . . . , Xn) > x)θ(1 − θ)n−1

= 1 − θ(1 − (1 − e−λx )α)

∞∑

n=1

(
(1 − θ)(1 − (1 − e−λx )α)

)n−1

= (1 − e−λx )α

θ + (1 − θ)(1 − e−λx )α
, for x > 0.

Thus we obtain the distribution function given by (1).
Second, let us consider nowaparallel systemwith N independent components and suppose

that a random variable N has the probability mass function P(N = n) = θ−1(1− θ−1)n−1,
n = 1, 2, . . . and θ > 1. Let X1, X2, . . . represent the lifetimes of each component and
suppose they are generalized exponential distributed with parameters λ and α. Then a random
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variable Z = max(X1, . . . , XN ) represents the lifetime of the system. The distribution
function of the random variable Z is given as (1).

Third, let θ > 1/2. Using the series expansion

(θ + (1 − θ)(1 − e−λx )α)−1 = θ−1
∞∑

k=0

(
1 − θ−1)k (1 − e−λx )αk,

we obtain that the distribution function (1) can be rewritten as

G(x; λ, α, θ) = θ−1
∞∑

k=0

(1 − θ−1)k FGE(α(k+1),λ)(x).

On the other hand, if 0 < θ < 2, by using the series expansion

(θ + (1 − θ)(1 − e−λx )α)−1 = θ−1
∞∑

k=0

(1 − θ)k
(
1 − (1 − e−λx )α

)k
,

we obtain that (1) can be rewritten as

G(x; λ, α, θ) =
∞∑

k=0

(k + 1)(1 − θ)k
k∑

j=0

(
k

j

)
(−1) j (1 − e−λx )α j .

Thus it follows that the distribution function given by (1) can be represented as a generalized
mixture of generalized exponential distribution function. Itmaybementioned that generalized
mixture distribution has received some attention recently, see for example [9]. Since it allows
negative weights also, it has more flexibility than the mixture models.

We call this new three-parameter extension of the GE distribution as the Marshall-Olkin
generalized exponential (MOGE) distribution. As expected this new three parameter distri-
bution has two shape parameters and one scale parameter. It is observed that the proposed
MOGE distribution can have decreasing or unimodal PDFs. It is interesting to observe that
the hazard function can take four different major shapes. It can have increasing, decreasing,
bathtub or inverted tub shaped. Therefore it can be used quite extensively to analyze life time
data. Since it has only three unknown parameters, the estimation of the unknown parameter
is also not very difficult. It may be mentioned that not too many three parameter distributions
can have all the three possible hazard functions, therefore, the introduction of the proposed
three-parameterMOGE distribution will be quite useful.Moreover, sinceMOGE distribution
has a compact distribution function, it can be used very effectively to analyze censored data,
and the generation from a MOGE distribution is also very straight forward.

We have derived several properties of the MOGE distribution. The PDF of the proposed
MOGE is either a decreasing or an unimodal function. Interestingly, because of the introduc-
tion of a new shape parameter, the MOGE can have an increasing, decreasing, unimodal or
bathtub shaped hazard functions. The median and mode can be obtained in explicit forms.
The moments cannot be obtained explicitly, we have obtained the moments in terms of infi-
nite series. A small table is provided indicating the first four moments of MOGE distribution
for different values of the shape parameters. We have obtained the density function of the
i-th order statistics, and it is observed that it can be represented as an infinite mixture of the
beta generalized exponential density function. We have also provided the Renyi’s entropy,
which measures the uncertainty of variation. Since MOGE distribution has been obtained as
a geometric maxima or minima of i.i.d. GE distributions, several ordering properties can be
easily established.
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The maximum likelihood estimators (MLEs) cannot be obtained in explicit form. Three
dimensional optimization procedure is needed to compute the MLEs. We propose to use the
EM algorithm, see [8], to compute the MLEs of the unknown parameters. Two data analysis
are performed for illustrative purposes.

The paper is organized as follows. In Sect. 2 we derive the probability density function
and discuss its shapes. The hazard function is considered in Sect. 3. In Sect. 4 we give some
expressions for the moments. The order statistics and the limiting distribution of sample
extremes are considered in Sect. 5. In Sect. 6 we derive two entropies, the Rényi’s and the
Shannon’s entropy. We have derived several ordering relations of MOGE in Sect. 7. The
maximum likelihood estimation and an EM algorithm are provided in Sect. 8. Analysis of
two data sets are provided in Sect. 9, and finally we conclude the paper in Sect. 10.

2 The probability density function

If the random variable X has a distribution function (1), the corresponding probability density
function (PDF) for α > 0, λ > 0 and θ > 0, is

g(x;α, λ, θ) = αλθe−λx (1 − e−λx )α−1

(θ + (1 − θ)(1 − e−λx )α)2
, x > 0, (2)

see also [3]. Suppose that 0 < θ < 2. Then the denominator in (2) can be expressed as

(θ + (1 − θ)(1 − e−λx )α)−2 =
∞∑

k=0

(k + 1)(1 − θ)k(1 − (1 − e−λx )α)k

=
∞∑

k=0

(k + 1)(1 − θ)k
k∑

j=0

(
k

j

)
(−1) j (1 − e−λx )α j .

Using this result, we obtain that the pdf given by (2) can be expressed in the generalized
mixture form as

g(x;α, λ, θ) = θ

∞∑

k=0

k∑

j=0

(−1) j (1 − θ)k
(
k + 1

j + 1

)
fGE(α( j+1),λ)(x), (3)

where fGE(α( j+1),λ)(x) denotes the pdf of a random variable with generalized expo-
nential distribution with parameters α( j + 1) and λ, see also [3]. Note that the den-
sity g(x;α, λ, θ) can be represented in the generalized mixture form of beta general-
ized exponential probability density functions, Barreto-Souza et al. [4], as g(x;α, λ, θ) =
θ

∞∑

k=0

(1 − θ)k fBGE(1,k+1,λ,α)(x).

Similarly, if θ > 1/2 and using the expansion

(θ + (1 − θ)(1 − e−λx )α)−2 = θ−2
∞∑

k=0

(k + 1)

(
1 − 1

θ

)k

(1 − e−λx )αk,

we obtain the expression

g(x;α, λ, θ) = θ−1
∞∑

k=0

(
1 − 1

θ

)k

fGE(α(k+1),λ)(x). (4)
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Fig. 1 The PDF of the MOGE distribution for different values of α and θ when λ = 1. (i) α = 0.8, θ = 2.0,
(ii) α = 0.4, θ = 4.0, (iii) α = 2.0, θ = 2.0

Let us consider the shape of the PDF of MOGE distribution. Since λ is the scale parameter,
the shape of the PDF of MOGE distribution does not depend on λ. It can be easily shown
that for (i) 0 < α ≤ 1 and 0 < θ ≤ 1, the PDF of MOGE decreases with g(0) = ∞ and
g(∞) = 0, (ii) 0 < α ≤ 1 and θ > 1, for some x1 < x2, the probability density function
g(x;α, θ) decreases on (0, x1) ∪ (x2,∞) and increases on [x1, x2]. Furthermore, g(0) = ∞
and g(∞) = 0. (iii) For α > 1, it follows that the PDF g(x;α, θ) has a single mode and
g(0) = g(∞) = 0.

We can conclude that the shape of the PDF of the MOGE is different than the shape of
the PDF of the GE distribution. The PDF of the GE distribution is a decreasing function
for 0 < α < 1, while for α > 1 is an increasing function. Some possible shapes of the
probability density function g(x;α, θ) are presented in Fig. 1.

3 The hazard rate function

Now we study the shapes of the hazard function of MOGE distribution for different values
of α and θ . Since λ is the scale parameter, the shape of the hazard function does not depend
on λ. So without loss of generality we assume that λ = 1. Therefore, the hazard function of
the MOGE is of the form

h(x;α, θ) = αe−x (1 − e−x )α−1

(θ + (1 − θ)(1 − e−x )α)(1 − (1 − e−x )α)
, for x > 0.

Since the shape of h(x;α, θ) is same as the shape of ln h(x;α, θ), we study the shape of
ln h(x;α, θ) only. The first derivative of ln h(x;α, λ) is

d log h(x;α, λ)

dx
= s(x)

(1 − e−x )(θ + (1 − θ)(1 − e−x )α)(1 − (1 − e−x )α)
,

where

s(x) = −θ + (2θ − 1)(1 − e−x )α + αθe−x + (1 − θ)(1 − e−x )2α(1 + αe−x ) .
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Four shapes of the hazard rate function are possible:

• If 0 < α < 1 and 0 < θ < (1 + α)/(2α), then the function s(x) is negative for x > 0
and it follows that the hazard function is a decreasing function with h(0) = ∞ and
h(∞) = 1.

• If 0 < α < 1 and θ > (1 + α)/(2α), then the function s has one root x0 with s(0) =
θ(α−1) < 0 and s(∞) = 0. Thus we obtain that the hazard rate function h(x) decreases
on (0, x0) and increases on (x0,∞) with h(0) = ∞ and h(∞) = 1.

• If α > 1 and θ > (1+α)/(2α), then the function s(x) is positive for x > 0 and it follows
that the hazard function is an increasing function with h(0) = 0 and h(∞) = 1.

• If α > 1 and 0 < θ < (1 + α)/(2α), then the function s(x) has one root x0 with
s(0) = θ(α − 1) > 0 and s(∞) = 0. Thus we obtain that the hazard function h(x)
increases on (0, x0) and decreases on (x0,∞) with h(0) = 0 and h(∞) = 1.

In comparison with the hazard rate function of the Weibull, gamma or GE distributions,
the hazard rate function of the proposed MOGE distribution has two more possible shapes.
Therefore it becomes more flexible for analyzing lifetime data. Some possible shapes of the
hazard function h(x;α, θ) for different values of α and θ , are presented in Fig. 2.

Let us derive now the reverse hazard rate function. Aswas noted in [19], the reverse hazard
rate function is useful in constructing the information matrix and in estimating the survival
function for censored data. The reverse hazard function of MOGE distribution is given as

r(x) = g(x)

G(x)
= αθe−x

(1 − e−x )(θ + (1 − θ)(1 − e−x )α)
, x, α, λ, θ > 0.

The reverse hazard rate function decreases on (0,∞) with r(0) = ∞ and r(∞) = 0. We
can see that the reverse hazard function for θ �= 1 is not a linear function of α as the reverse
hazard function of GE distribution.

(i)

(ii)

(iii)

(iv)

 0
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 0  1  2  3  4  5  6

Fig. 2 The hazard function of the MOGE distribution for different values of α and θ when λ = 1. (i) α = 0.5,
θ = 0.5, (ii) α = 0.5, θ = 2.0, (iii) α = 1.5, θ = 0.5, (iv) α = 1.5, θ = 2.0
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4 Moments

In this section we derive the n-th moments of a random variable X ∼ MOGE(α, λ, θ). Let
Yα,λ ∼ GE(α, λ). We will first consider the case 0 < θ < 2. By using (3), we obtain that the
n-th moment of a random variable X as

E(Xn) = θ

∞∑

k=0

k∑

j=0

(−1) j (1 − θ)k
(
k + 1

j + 1

)
E(Yn

α( j+1),λ). (5)

Nadarajah and Kotz [17] derived the n-th moment of a random variable Yα,λ as

E
(
Yn

α,λ

) = α(−1)n

λn

∂n

∂pn
B(α, p)

∣∣∣
p=1

. (6)

Here for u > 0 and v > 0, B(u, v) is the beta function defined as follows: B(u, v) =∫ 1
0 xu−1(1− x)v−1dx . Now by combining (5) and (6), the n-th moment of a random variable
X can be calculated as

E(Xn) = αθ(−1)n

λn

∞∑

k=0

k∑

j=0

(−1) j (1 − θ)k(k + 1)!
j !(k − j)!

∂n

∂pn
B(α( j + 1), p)

∣∣∣
p=1

.

In particular, the expectation is

E(X) = θ

λ

∞∑

k=0

k∑

j=0

(−1)k(1 − θ)k
(
k + 1

j + 1

)
[�(α( j + 1) + 1) − �(1)] ,

and the second moment is

E(X2) = θ

λ2

∞∑

k=0

k∑

j=0

(−1)k(1 − θ)k
(
k + 1

j + 1

) [
�2(1) + � ′(1)

−2�(1)�(α( j + 1) + 1) − � ′(α( j + 1) + 1) + �2(α( j + 1) + 1)
]
,

where �(x) = d log�(x)
dx is the Euler’s psi function.

Similarly for the case θ > 1/2, it can be shown in this case that the n-th moment of a
random variable X can be calculated as

E(Xn) = α(−1)n

θλn

∞∑

k=0

(
1 − 1

θ

)k

(k + 1)
∂n

∂pn
B(α(k + 1), p)

∣∣∣
p=1

,

see [3]. The first two moments can be written as

E(X) = 1

θλ

∞∑

k=0

(1 − θ−1)k [�(α(k + 1) + 1) − �(1)] ,

and the second moment is

E(X2) = 1

θλ2

∞∑

k=0

(1 − θ−1)k
[
�2(1) + � ′(1) − 2�(1)�(α(k + 1) + 1)

−� ′(α(k + 1) + 1) + �2(α(k + 1) + 1)
]
.
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5 Order statistics

In this section we consider the order statistics X1:n , X2:n , . . ., Xn:n , from a random sample
X1, X2, . . ., Xn from the MOGE distribution. Let us derive the density function of the i-th
order statistics Xi :n , 1 ≤ i ≤ n. We have that

gi :n(x) = n!
(i − 1)!(n − i)! · g(x)(G(x))i−1(1 − G(x))n−i

= n!
(i − 1)!(n − i)! · αλθn−i+1e−λx (1 − e−λx )αi−1(1 − (1 − e−λx )α)n−i

(θ + (1 − θ)(1 − e−λx )α)n+1 .

This density function can be represented as an infinite weighted sum of beta generalized
exponential density function. Consider the case when θ > 1/2. Using the series expansion
(1 − z)−k = ∑∞

j=0
�(k+ j)
j !�(k) z j , k > 0, we obtain the representation

gi :n(x) = 1

θ i

∞∑

j=0

(
i + j − 1

j

) (
1 − 1

θ

) j

fBGE (x; i + j, n − i + 1, λ, α).

Similarly, in the case 0 < θ < 2, we obtain the representation

gi :n(x) = θn−i+1
∞∑

j=0

(
n + j − i

j

)
(1 − θ) j fBGE (x; i, n + j − i + 1, λ, α).

Barreto-Souza et al. [4] derived the moments of the i-th order statistics from beta gener-
alized exponential distribution. Let μr

i :n(a, b) represents the r -th moment of the i-th order
statistics from the BGE(a, b, λ, α) distribution. Then the r -th moment of the i-th order sta-
tistics from the MOGE distribution can be derived as

E(Xr
i :n) =

⎧
⎨

⎩

1
θ i

∑∞
j=0

(i+ j−1
j

) (
1 − 1

θ

) j
μr
i :n(i + j, n − i + 1), θ > 1/2,

θn−i+1 ∑∞
j=0

(n+ j−i
j

)
(1 − θ) jμr

i :n(i, n + j − i + 1), 0 < θ < 2,

see Barreto-Souza et al. [3].
Now we discuss the asymptotic distributions of the order statistics. First we consider the

sample maxima Xn:n . Since G−1(1) = ∞, limx→∞ h(x) = λ and limx→∞ g′(x)
g(x) = −λ, the

vonMises’ condition (iii) fromArnold et al. [2, Theorem 8.3.3] is satisfied. This implies that

Xn:n − an
bn

d→ e−e−x
, x ∈ R,

where the normalizing constants an and bn can be derived by Arnold et al. [2, Theorem 8.3.4
(iii)].

Second we consider the sample minimum X1:n . Since G−1(0) = 0 and limε→0+
G(εx)
G(ε)

=
xα , we obtain from Arnold et al. [2, Theorem 8.3.6 (ii)] that

X1:n − a∗
n

b∗
n

d→ 1 − e−(−x)α , x < 0, α > 0,

where a∗
n = 0 and b∗

n = G−1(1/n).
Finally, the asymptotic distribution of the order statistics Xn−i+1:n follows from the asymp-

totic distribution of the sample maxima. Thus
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Xn−i+1:n − an
bn

d→ e−e−x
i−1∑

j=0

e− j x

j ! , x ∈ R,

where an and bn are the normalizing constants derived by Arnold et al. [2, Theorem 8.3.4
(iii)].

6 Rényi entropy

The entropy is a measure of diversity, uncertainty or randomness of a system. A popular
entropy is the Rényi entropy, see [20], which generalizes the well known Shannon entropy.

The Rényi entropy is given by IR(ξ) = 1
1−ξ

log ∫∞
0 gξ (x)dx , where ξ > 0 and ξ �= 1.

For θ > 1/2 the function gξ (x) can be expanded as

gξ (x) = λξαξ

θξ

∞∑

j=0

�(2ξ + j)

�(2ξ) j !
(
1 − 1

θ

) j

e−λξ x (1 − e−λx )ξ(α−1)+α j .

Now using the fact that
∫ ∞
0 e−λξ x (1 − e−λx )ξ(α−1)+α j dx = λ−1B(ξ, ξ(α − 1) + α j + 1),

we obtain that for θ > 1/2 the Rényi entropy is

IR(ξ) = 1

1 − ξ
log

⎧
⎨

⎩
λξ−1αξ

θξ

∞∑

j=0

�(2ξ + j)

�(2ξ) j !
(
1 − 1

θ

) j

B(ξ, ξ(α − 1) + α j + 1)

⎫
⎬

⎭ .

Let us consider the case when 0 < θ < 2. The the function gξ (x) can be expanded as

gξ (x) = λξαξ θξ
∞∑

j=0

j∑

k=0

�(2ξ + j)

�(2ξ) j !
(
j

k

)
(−1)k (1 − θ) j e−λξ x (1 − e−λx )ξ(α−1)+αk ,

which implies that the Rényi entropy for 0 < θ < 1 is

IR(ξ) = 1

1 − ξ
log

⎧
⎨

⎩λξ−1αξ θξ

∞∑

j=0

j∑

k=0

�(2ξ + j)

�(2ξ) j !
(
j

k

)
(−1)k (1 − θ) j B(ξ, ξ(α − 1) + αk + 1)

⎫
⎬

⎭.

Aspecial case of theRényi entropy is theShannon entropydefined as E(− log g(X)),where X
is a randomvariable. TheShannon entropy represents the limit of IR(ξ)when ξ ↑ 1. Ifwe sup-
pose that a random variable X has theMOGE, then the Shannon entropy is E(− log g(X)) =
− log(αλθ)+λE(X)−(α−1)E(log(1−e−λX )+2E(log(θ+(1−θ)(1−e−λX )α). Replacing
E(log(1−e−λX ) = log θ/(2(1−θ)) and E(log(θ +(1−θ)(1−e−λX )α) = 1+ log θ/(1−θ)

in the last equation, we obtain that the Shannon entropy is

E(− log g(X)) = 2 − log(αλ) + λE(X) + (αθ + 1) log θ

α(1 − θ)
.

7 Random minima, maxima and different ordering relations

In reliability and survival analysis the occurrence of a series or parallel system with random
number of components is very common, see for example [12]. In many agricultural and
biological experiments it is impossible to have a fixed sample size as some of the observations
often get lost due to different reasons. In many situations the sample size may depend on
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the occurrence of some specific event, which makes the sample size random. For example, a
common dose of radiation is given to a group of animals, often the interest is in the times that
the first and last expire, see [7]. In actuarial science, the claims received by an insurer in a
certain time interval often make up of a sample of random size, and the largest claim amount
is of chief interest there, see [15]. It has already been observed that the proposed MOGE
distribution can be obtained as the randomminima or randommaxima of the GE distributions
depending on 0 < θ < 1 or 1 < θ < ∞. Therefore, the proposed model may be used quite
effectively in these cases. In this section we establish different results based on this property.

Let us recall the following definitions. Suppose U and V be two continuous random
variables with PDFs fU and fV , respectively. The corresponding cumulative distribution
functions (CDF) will be denoted by FU and FV , respectively. The random variable U is
said to be smaller than the random variable V in the likelihood ratio ordering (denoted
by U ≤lr V ) if fU (x) fV (y) ≥ fU (y) fV (x), for all 0 < x ≤ y < ∞. The random
variable U is said to be smaller than the random variable V in stochastic order (denoted
by U ≤st V ) if P(U ≥ x) ≤ P(V ≥ x), for all x > 0. The random variable U is said
to be smaller than the random variable V in dispersive order (denoted by U ≤disp V ) if
F−1
U (β) − F−1

U (α) ≤ F−1
V (β) − F−1

V (α), for all 0 < α ≤ β < 1. The random variable U is
said to be smaller than the random variable V in hazard rate order (denoted by U ≤hr V ),
if P(V > x)/P(U > x) is an increasing function of x . The random variable U is said to
be smaller than the random variable V in the convex transform order (denoted by U ≤c V ),
if F−1

V FU is a convex function in (0,∞). Further, the random variable U is said to be
smaller than the random variable V in star order (denoted by U ≤∗ V ), if F−1

V FU (x)/x is
an increasing function of x ∈ (0,∞). We have the following results.

Result 1 Let X ∼ GE(α, λ), Y ∼ MOGE(α, λ, θ), Z ∼ MOGE(α, λ, 1/θ), where α > 0,
λ > 0 and 0 < θ < 1, then

Y ≤lr X ≤lr Z .

Proof The result mainly follows from Corollary 2.5 of [21]. ��
Result 2 (a) If Y1 ∼ MOGE(α1, λ, θ) and Y2 ∼ MOGE(α2, λ, θ), where 0 < α1 < α2,

θ > 0 and λ > 0, then Y1 ≤st Y2.
(b) If Y1 ∼ MOGE(α, λ1, θ) and Y2 ∼ MOGE(α, λ2, θ), where 0 < λ1 < λ2, θ > 0 and

α > 0, then Y2 ≤st Y1.

Proof Note that ifU ∼GE(α1, λ) andV ∼GE(α2, λ), then forα1 ≤ α2,U ≤st V . Similarly,
if U ∼ GE(α, λ1) and V ∼ GE(α, λ2), then for λ1 ≤ λ2, V ≤st U . Hence both (a) and (b)
follow using Theorem 3.1 of [21]. ��
Result 3 (a) If Y1 ∼ MOGE(α1, λ, θ) and Y2 ∼ MOGE(α2, λ, θ), where 0 < α1 < α2,

θ > 0 and λ > 0, then Y1 ≤disp Y2.
(b) If Y1 ∼ MOGE(α1, λ, θ) and Y2 ∼ MOGE(α2, λ, θ), where 0 < α1 < α2, θ > 0 and

λ > 0, then Y1 ≤hr Y2.

Proof Suppose U ∼ GE(α1, λ) and V ∼ GE(α2, λ), then for α1 ≤ α2, U ≤disp V and
U ≤hr V , see [11].Hence (a) and (b) followusingTheorem3.2 andTheorem3.3, respectively
of [21]. ��
Result 4 (a) If Y1 ∼ MOGE(α1, λ, θ) and Y2 ∼ MOGE(α2, λ, θ), where 0 < α1 < α2,

θ > 0 and λ > 0, then Y1 ≤c Y2.
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(b) If Y1 ∼ MOGE(α1, λ, θ) and Y2 ∼ MOGE(α2, λ, θ), where 0 < α1 < α2, θ > 0 and
λ > 0, then Y1 ≤∗ Y2.

Proof Suppose U ∼ GE(α1, λ) and V ∼ GE(α2, λ), then for α1 ≤ α2, U ≤c V , see [11].
Hence (a) follows using Theorem 2 (a) of [5]. Since convex ordering implies start ordering,
(b) follows from (a). ��

8 Estimation

In this section we consider the maximum likelihood estimation of the unknown parame-
ters based on a complete sample. Let us assume that we have a sample of size n, namely
{x1, . . . , xn} from MOGE(α, λ, θ) distribution. The log-likelihood function is given by

l(α, θ, λ|Data) = log L(α, θ, λ)

= n log(αλθ) − λ

n∑

i=1

xi + (α − 1)
n∑

i=1

log(1 − e−λxi )

−2
n∑

i=1

log(θ + (1 − θ)(1 − e−λxi )α).

Normal equations can be obtained by taking the first derivatives of the log-likelihood function
with respect to λ, α and θ are equate them to zeros as follows;

∂ log L(α, θ, λ)

∂λ
= n

λ
−

n∑

i=1

xi + (α − 1)
n∑

i=1

xi e−λxi

1 − e−λxi

−2α(1 − θ)

n∑

i=1

xi e−λxi (1 − e−λxi )α−1

θ + (1 − θ)(1 − e−λxi )α

∂ log L(α, θ, λ)

∂α
= n

α
−

n∑

i=1

log(1 − e−λxi ) + 2θ
n∑

i=1

log(1 − e−λxi )

θ + (1 − θ)(1 − e−λxi )α

∂ log L(α, θ, λ)

∂θ
= n

θ
− 2

n∑

i=1

1 − (1 − e−λxi )α

θ + (1 − θ)(1 − e−λxi )α
.

It is clear that the MLEs do not have explicit solutions, and the MLEs can be obtained by
solving a three dimensional optimization process. We may use the standard Gauss-Newton
or Newton-Raphson methods, but they have their usual problem of convergence. If the initial
guesses are not close to the optimal value, the iteration may not converge, see for example
[18] for a recent reference on this issue on a related problem. Moreover, choosing a three
dimensional initial guesses may not very simple in most of the practical situations. Before
progressing further we present the following result related to the MLE.

If the parameters λ and θ are known, the properties of the MLE of the parameter α follow
from the following theorem.

Theorem 1 Let α be the true value of the parameter. If 0 < θ < 1, then the equation
∂ log L(α,θ,λ)

∂α
= 0 has exactly one root. If θ > 1, then the root of equation ∂ log L(α,θ,λ)

∂α
= 0

lies in the interval [(2θ − 1)−1ψ−1
λ , ψ−1

λ ], where ψλ = −n−1 ∑n
i=1 log(1 − e−λxi ).
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Proof Let us first consider the case 0 < θ < 1. Then the function ∂ log L(α,θ,λ)
∂α

is decreasing

with limα→0
∂ log L(α,θ,λ)

∂α
= ∞ and limα→∞ ∂ log L(α,θ,λ)

∂α
= −nψλ < 0. Thus it follows

that exists exactly one root. Now consider the case θ > 1 and let w(α; λ, θ) = 2θ
∑n

i=1
log(1−e−λxi )

θ+(1−θ)(1−e−λxi )α
. The functionw is increasing.Wecan see that limα→0 w=2θ

∑n
i=1 log(1−

e−λxi ) and limα→∞ w = 2
∑n

i=1 log(1 − e−λxi ). This implies that

n

α
+ (2θ − 1)

n∑

i=1

log(1 − e−λxi ) <
∂ log L(α, θ, λ)

∂α
<

n

α
+

n∑

i=1

log(1 − e−λxi ).

Then we obtain that ∂ log L(α,θ,λ)
∂α

> 0 for α < (2θ − 1)−1ψ−1
λ and ∂ log L(α,θ,λ)

∂α
< 0 for

α > ψ−1
λ . This proves the theorem. ��

As it has been mentioned before that it is possible to use the standard three dimensional
optimization algorithm to maximize the log-likelihood function (7). We propose a simple
iterative technique to compute the MLEs of the unknown parameters, which avoids solving
a three dimensional optimization process directly, it needs solving three one dimensional
optimization problems. The idea comes from the following observations;

Let us consider the random variables X and Z with the following joint PDF

f (x, z; α, λ, θ) = αλθ ze−λx (1 − e−λx )α−1

(1 − (1 − e−λx )α)2
e−z(θ−1+(1−(1−exp(−λx))α)−1), (7)

It can be easily observed that the random variable X follows the Marshall-Olkin Generalized
exponential distribution. Based on a random sample of size n, say {xi , zi } from (7), the
log-likelihood function can be written as;

ln l(α, λ, θ; Data, z1, . . . , zn) = n ln α + n ln λ + n ln θ +
n∑

i=1

ln zi − λ

n∑

i=1

xi

+(α − 1)
n∑

i=1

log(1 − e−λxi ) − 2
n∑

i=1

log(1 − (1 − e−λxi )α)

−
n∑

i=1

zi
(
θ − 1 + (1 − (1 − e−λxi )α)−1

)
. (8)

Note that the maximization of (8) with respect to α, λ and θ can be decoupled. The maxi-

mization of (8) with respect to θ can be obtained as θ̂ = n∑n
i=1 zi

, and the maximization of

(8) with respect to α and λ can be obtained by maximizing g(α, λ), where

g(α, λ) = n ln α + n ln λ − λ

n∑

i=1

xi + (α − 1)
n∑

i=1

log(1 − e−λxi )

−2
n∑

i=1

log(1 − (1 − e−λxi )α) −
n∑

i=1

zi (1 − (1 − e−λxi )α)−1. (9)

The method proposed by Song et al. [22] can be used to maximize (9). The method was used
by Kannan et al. [13] in a similar problem, and it can be described as follows. Let us write
g(α, λ) as;

g(α, λ) = g1(α, λ) + g2(α, λ), (10)
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where

g1(α, λ) = n ln α + n ln λ − λ

n∑

i=1

xi + (α − 1)
n∑

i=1

log(1 − e−λxi ), (11)

and

g2(α, λ) = −2
n∑

i=1

log(1 − (1 − e−λxi )α) −
n∑

i=1

zi (1 − (1 − e−λxi )α)−1. (12)

We need to solve

g′(α, λ) = g′
1(α, λ) + g′

2(α, λ) = 0 ⇔ g′
1(α, λ) = −g′

2(α, λ), (13)

Here g′(α, λ) =
(

∂g(α, λ)

∂α
,
∂g(α, λ)

∂λ

)
. First solve

g′
1(α, λ) = 0. (14)

using the following fixed point type non-linear equation iteratively

λ =
(
1

n

n∑

i=1

xi e−λxi

(1 − e−λxi )

(
1 + n∑n

i=1 ln(1 − e−λxi )

)
+ 1

n

n∑

i=1

xi

)−1

. (15)

If λ(0) is the solution of (15), then obtain

α(0) = − n
∑n

i=1 ln(1 − e−λ(0)xi )
. (16)

Now α(1) and λ(1) can be obtained as the solution of the following

g′
1(α, λ) = −g2(α

(0), λ(0)), (17)

similarly, α(2) and λ(2) can be obtained as the solution of the following

g′
1(α, λ) = −g2(α

(1), λ(1)), (18)

The iteration continues until converges.Note that the solution (̃α, λ̃)of the following equation,
for any arbitrary c1 and c2

g′
1(α, λ) = (c1, c2) (19)

can be obtained as follows. First solve the non-linear equation iteratively

λ =
[
c2
n

+ 1

n

n∑

i=1

xi +
(
1 − n

c1 − ∑n
i=1 ln(1 − e−λxi )

)
×

(
1

n

n∑

i=1

xi e−λxi

1 − e−λxi

)]−1

(20)
to obtain λ̃, and then obtain

α̃ =
[
c1 − ∑n

i=1 ln(1 − e−λxi )

n

]−1

, (21)

see Kannan et al. [13]. Finally for implementation of the EM algorithmwe need the following
result. The conditional expectation of Z given X = x , is

E(Z |X = x; α, λ, θ) = 2(1 − (1 − e−λx )α)

θ + (1 − θ)(1 − e−λx )α
. (22)
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Now we are ready to provide the EM algorithm. Suppose at the k-th stage the value of α, λ
and θ are α(k), λ(k) and θ(k) respectively.

E-step’: In the E-step obtain the ‘pseudo log-likelihood function’ (8) replacing zi by z(k)i ,
where

z(k)i = E(Z |X = xi ; α(k), λ(k), θ (k)); i = 1, . . . , n. (23)

M-step: At the k-th stage, in the M-step, we maximize the ‘pseudo-log-likelihood’ function
with respect to α, λ and θ , to compute the α(k+1), λ(k+1) and θ(k+1). The maximization can
be performed, as it has been described before.

9 Data Analysis

For illustrative purposes, in this section we present the analysis of two data sets to show how
our proposed model works in practice.

Guina Pig Data:This data set has beenobtained fromBjerkedal [6]. This data set represents
the survival times (in days) of guinea pigs injected with different doses of tuber bacilli. It
may be mentioned that guinea pigs have high susceptibility to human tuberculosis, and that
is why they are usually used in this kind of study. The data set consists of survival times of 72
animals whowere under the regimen 4.342. The regimen number is the common logarithm of
the number of bacillary units in 0.5 ml., of challenge solution, i.e. regimen 4.342 corresponds
to 2.2 × 104 bacillary units per 0.5 ml. (log(2.2 × 104) = 4.342), see Gupta et al. [10].

This data set is available in Gupta et al. [10], and it has been analyzed by them also. The
preliminary data analysis by Gupta et al. [10] indicated that the data are right hand skewed,
and the empirical hazard function is unimodal. Due to this reason Gupta et al. [10] analyzed
the data using the log-normal model. The MLEs of the log-normal parameters are 5.0043
(μ) and 0.6290 (σ ) respectively, the associated log-likelihood value is −429.0945. Based on
the Kolmogorov-Statistic (KS) distance 0.1298, and the associated p value (0.1765) and also
from the quantile plot they claimed that the log-normal model provides a good fit to the data.

Since the proposed MOGE model can have a unimodal hazard function, we analyze
the data using the MOGE model also. The MLEs of α, θ and λ are 3.6050, 1.0287 and
0.0113 respectively. The associated 95% bootstrap confidence intervals are (0.7288, 6.4930),
(0.1734, 4.2919), (0.0075, 0.0223) respectively. The corresponding log-likelihood value is
−425.8080. The KS distance between the fitted and empirical distribution function is 0.0917,
and the associated p values is 0.5803.

For comparison purposes, we have also fitted the Birnbaum-Saunders distribution, which
also has unimodal hazard function, see for example Kundu et al. [14]. The MLEs of the
unknownBirnbaum-Saunders parameters are 0.7038 (α) and 141.7175 (β), and the associated
log-likelihood value is −434.0186. The KS distance between the fitted and the empirical
distribution functions is 0.1569 and the associated p value is 0.0576.

If we want to perform the following test:

H0 : log-normal vs. H1 : MOGE

then based on the likelihood ratio test statistic (6.573) the corresponding p value is <0.05,
based on the χ2

1 distribution. Since the p value is quite small we reject the null hypothesis.
Similarly, we also reject null hypothesis of the following test:

H0 : Birnbaum-Saunders vs. + H1 : MOGE
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Fig. 3 The histogram of the strength data set

Therefore, based on the KS distance and also based on the likelihood ratio test, we prefer
MOGE distribution than log-normal or Birnbaum-Saunders distribution.

Strength Data

Now we present the analysis of a data set obtained from Prof. R.G. Surles. It is a strength
data measured in GPA, the single carbon fibers, and impregnated 1,000-carbon fiber tows.
Single fibers were tested under tension at gauge length 1 mm. The data are provided below:

2.247 2.64 2.908 3.099 3.126 3.245 3.328 3.355 3.383 3.572 3.581 3.681 3.726 3.727
3.728 3.783 3.785 3.786 3.896 3.912 3.964 4.05 4.063 4.082 4.111 4.118 4.141 4.246
4.251 4.262 4.326 4.402 4.457 4.466 4.519 4.542 4.555 4.614 4.632 4.634 4.636 4.678
4.698 4.738 4.832 4.924 5.043 5.099 5.134 5.359 5.473 5.571 5.684 5.721 5.998 6.06

Before progressing further first we provide the histogram of the strength data in Fig. 3. It
is immediate that the data are unimodal. We further provide the the scaled TTT transform,
see [1], of the data set in Fig. 4.

Since the scaled TTT plot is concave, it indicates that the empirical hazard function is
an increasing function. We have subtracted 2.0 from all the data points before analyzing the
data set. We have used the proposed MOGE model and estimates of α, θ and λ are 1.5759,
67.6793 and 2.0866 respectively. The associated 95% bootstrap confidence intervals are
(0.4821, 2.6123), (55.2345, 82.5123) and (1.6041, 2.6704) respectively. The corresponding
log-likelihood value is −67.8507. The KS distance between the fitted and the empirical
distribution functions is 0.0474 and the associated p value is 0.9996.

For comparison purposes we have fitted two-parameter Weibull, gamma and GE distri-
butions. The MLEs, the corresponding log-likelihood values, the KS distances between the
fitted and the empirical distribution functions and the associated p values are reported in
Table 1. From the table values

it is clear that between Weibull, gamma and GE distributions Weibull provides the best
fit. Now if we want to test the hypothesis

H0 : Weibull vs. H1 : MOGE
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Fig. 4 The scaled TTT transform of the strength data set

Table 1 Maximum likelihood estimates, maximized log-likelihood values, K-S statistics and the associated
p-values for Weibull, gamma and GE distributions while fitting to the strength data

Distribution Estimates Log-likelihood K-S distance p value

Shape Scale

Gamma 5.9685 2.6401 −71.8824 0.0973 0.6410

Weibull 3.0045 0.3961 −70.3395 0.0648 0.9726

GE 6.9634 1.1193 −74.6607 0.1221 0.3735

then based on the likelihood ratio test, the p value is less than 0.05. Therefore, we reject the
null hypothesis. Similarly, if we want to test H0 : GE or H0 : Gamma and the alternative
in both the cases in H1 : MOGE, we reject the null hypothesis in both the cases. Therefore,
in this case also based on the KS distances, and also based on the likelihood ratio tests, we
prefer MOGE distribution, than Weibull, gamma or GE distributions.

10 Conclusions

In this paper we have introduced a new three-parameter distribution by incorporating the
Marshall-Olkinmethod to the generalized exponential distribution. This new three-parameter
distribution has an explicit distribution function and the PDF is also in a compact form. It
is a very flexible three-parameter distribution, and it can have all possible four different
hazard functions depending on the two shape parameters. Finally it should be mentioned that
although we have incorporated only the generalized exponential distribution, but many of the
properties are valid for amore general class of distributions, namely the proportional reversed
hazard class. It will be interesting to see different properties of the general Marshall-Olkin
proportional reversed hazard class. More work is needed in that direction.
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