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Abstract In this paper, we discuss the problem of regression analysis in a fuzzy domain. By
considering an iterative Weighted Least Squares estimation approach, we propose a general
linear regression model for studying the dependence of a general class of fuzzy response
variable, i.e., L R2 fuzzy variable or trapezoidal fuzzy variable,on a set of crisp or L R2 fuzzy
explanatory variables. We also show some theoretical properties and a suitable generalization
of the determination coefficient in order to investigate the goodness of fit of the regression
model. Furthermore, we discuss some theoretical issues and an assessment of imprecision of
the regression function. Finally, we suggest a robust version of the fuzzy regression model
based on the Least Median Squares estimation approach which is able to neutralize and/or
smooth the disruptive effects of possible crisp or fuzzy outliers in the estimation process.
A simulation study and two empirical applications are presented.

Keywords Fuzzy input/output data · Fuzzy linear regression analysis ·
Robust fuzzy linear regression · Weighted Least Squares (WLS) ·
Least Median Squares (LMS)

1 Introduction

Linear regression model is a widely used statistics tool to evaluate the linear relationship
between a quantitative dependent variable (output, or response variable), and one or more
explanatory variables (inputs).

In linear regression modeling, two main issues have to be dealt with in practical problems:

1. imprecision or vagueness in the definition and/or observation of output and/or of inputs
(see [10] for a more detailed discussion about the overall sources of uncertainty which
may affect regression analysis);
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2. presence of outliers, which could cause the estimates of the regression coefficients to be
bias.

As for the first issue, data imprecision may be due to several causes: (i) imprecision in
measuring the empirical phenomena observed; (ii) vagueness of the variables of interest
(inputs and/or outputs) when they are expressed in linguistic terms; (iii) partial or total
ignorance about the variables’ values on specific instances; (iv) granularity (categorization)
of the variables of interest. When dealing with one or more of these situations, a fuzzification
of the inputs and/or the output could suitably exploit the available information. Converting
imprecise data into fuzzy data could be more effective than replacing them with a single
value.

In this paper, imprecise data are then represented by fuzzy statistical variables.
The second issue regards the robustness of the estimates in a noisy environment. The Least

Squares (LS) approach is one of the most popular methods for estimating linear regression
coefficients, due to its theoretical and applicative advantages. However, the LS approach is
not robust to the presence of outliers. This shortcoming of the LS approach undermines its
application, even in presence of a small percentage of anomalous observations. In this paper,
we cope with this issue by considering a robust estimation method, which is effective in
reducing the distorting effect of outliers.

Following an iterative Weighted Least Squares (WLS) estimation approach, we propose
a linear regression model for studying the dependence of a general class of fuzzy linear
variables on a set of crisp or fuzzy explanatory variables (see Sect. 2). The proposed model
represents a generalization of the fuzzy regression model suggested by Coppi et al. [10].

In order to investigate the goodness of fit of the regression model, some theoretical prop-
erties and a suitable generalization of the determination coefficient are described (Sect. 2).

Furthermore, we illustrate an assessment of the imprecision associated with the estimates
of the regression coefficients of the proposed regression model (Sect. 3).

We then suggest a robust version of the fuzzy regression model based on the Least Median
Squares (LMS) estimation approach, that is able to neutralize and/or smooth disruptive effects
of possible crisp or fuzzy outliers in the estimation process (Sect. 4). The proposed robust
model is a generalization of the robust model proposed by D’Urso et al. [20].

In order to illustrate the good performance of our model a simulation study and two
empirical applications are presented (Sects. 5 and 6).

Some final remarks conclude the paper.

2 The linear regression model for LR2 fuzzy inputs and output

Consider a fuzzy regression model with fuzzy/crisp output and fuzzy/crisp input.
Based on the traditional inferential approach, the expected value of the fuzzy/crisp output

should be reparameterized in terms of a linear model involving the “regression effects” of p
fuzzy/crisp explanatory variables. In literature, different theoretical contributions have been
proposed for the fuzzy regression analysis based on a conjoint approach (inferential and
fuzzy) (see, e.g., [2,3,22,23,25,26,29,32,36]).

The methodological approach considered in our paper is to select, among a class of possible
linear models (expressing the relationship between the fuzzy/crisp output and the fuzzy/crisp
inputs), the “best” linear model according to some specific criteria.

Following this approach, two main lines of research could be pursued in literature, the
Possibilistic approach firstly introduced by Tanaka et al. [34], and the Least Squares (LS)
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approach, based on suitable extensions of the well-known least squares criterion to the fuzzy
setting (see, among others, [4,6,9–11,14–16,18,20,28,35]).

In the possibilistic framework, the fuzzy regression coefficients of a regression model are
estimated by minimizing the fuzziness of the estimated response variable, conditionally on
obtaining fuzzy response values which contain (to a certain possibility degree 0 ≤ h ≤ 1)
the observed fuzzy responses (see, for instance, [33]; and, in a comparative perspective,
[5,12,24]).

In the LS approach the objective is to find the linear model which “best approximates”
the observed data in a given metric space. The LS criterion is then conditional on the chosen
metric.

Two main features characterize the adopted line of research, i.e., (a) the definition of the
linear regression model, and (b) the specific metric space introduced for applying the LS
criterion.

As for the first aspect, we will extend the linear regression models proposed by Coppi
et al. [10] and D’Urso et al. [20] to the case when both the output and the inputs are fuzzy,
in particular, fuzzy L R2 variables (see the following Sect. 2.1), by setting up a procedure for
estimating the two centers and the spreads of the regression coefficients. As for the second
aspect, we will extend the distance function introduced by Coppi et al. [10] in our framework.
Notice that our fuzzy regression models, which are explained in the following sections, are
based on an exploratory approach.

2.1 Fuzzy data

We formalize imprecise data as L R2 fuzzy data. In particular, L R2 fuzzy data can be repre-
sented as ỹ ≡ (m1, m2, l, r)L R2 , where m1, m2 ∈ R (m1 ≤ m2) denotes the centers, or the
“modes”, of the fuzzy data, while l, r ∈ R

+ are the left and right spread, respectively, with
the following membership functions [13,37]:

μỹ(ω) =

⎧
⎪⎨

⎪⎩

L
(m1−ω

l

)
ω ≤ m1 (l > 0)

1 m1 ≤ ω ≤ m2

R
(

ω−m2
r

)
ω ≥ m2 (r > 0)

(1)

where L (and R) is a decreasing “shape” function from R
+ to [0, 1] with L(0) = 1; L(ω) < 1

for all ω > 0; L(ω) > 0 for all ω; L(1) = 0(or L(ω) > 0 for all ω and L(+∞) = 0).
If l = r , we obtain symmetrical L R2 fuzzy data.
When m1 = m2 = m we obtain the L R1 fuzzy data, which has the following membership

function:

μỹ(ω) =
{

L
(m−ω

l

)
ω ≤ m (l > 0)

R
(

ω−m
r

)
ω ≥ m (r > 0)

(2)

A particular case of L R2 fuzzy data is the trapezoidal fuzzy data, whose membership
function is:

μỹ(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − m1−ω
l m1 − l ≤ ω ≤ m1 (l > 0)

1 m1 ≤ ω ≤ m2

1 − ω−m2
r m2 ≤ ω ≤ m2 + r (r > 0)

0 otherwise.

(3)
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Fig. 1 Geometric representation of the trapezoidal membership function

Figure 1 shows the membership function of a trapezoidal fuzzy datum.
A particular case of L R1 fuzzy data is the triangular fuzzy data, with the following

membership function:

μỹ(ω) =

⎧
⎪⎨

⎪⎩

1 − m−ω
l m − l ≤ ω ≤ m (l > 0)

1 − ω−m
r m ≤ ω ≤ m + r (r > 0)

0 otherwise.

(4)

2.2 Model definition and estimation

Consider the linear dependence relationship between a L R2 fuzzy output (or response vari-
able) Ỹ ≡ (m1, m2, l, r) and a set of p L R2 fuzzy inputs {X̃ j ≡ (x m1 j , x m2 j , x l j , xr j ) :
j = 1, . . . , p}.

The proposed fuzzy linear regression model consists of modeling simultaneously the two
centers of the L R2 response variable by means of a multiple regression model on the L R2

explanatory variables, and the left and right spreads of the response through two multiple
linear regressions on the estimated centers.

Hence, the linear regression model with fuzzy response variable Ỹ and fuzzy explanatory
variables X̃ j , j = 1, . . . , p, can be formalized as follows, using a matrix notation:

m1 = m∗
1 + εm1 m∗

1 = M1α1 + M2α2 + Lαl + Rαr (5a)

m2 = m∗
2 + εm2 m∗

2 = M1β1 + M2β2 + Lβl + Rβr (5b)

l = l∗ + εl l∗ = 1γ0 + m∗
1γ1 + m∗

2γ2 = M∗γ (5c)

r = r∗ + εr r∗ = 1δ0 + m∗
1δ1 + m∗

2δ2 = M∗δ (5d)

where m1, m2 are the n-vectors of the left and right centers of the response fuzzy variables,
m1, m2; l, r are the n-vectors of the left and right spreads of the response fuzzy variables, l, r ;
M1, M2 are the (n×(p+1))-matrices of the left and right centers of the input fuzzy variables
(design matrices), x m1 j , x m2 j ( j = 1, . . . , p), respectively; L, R are the (n × (p + 1))-
matrices of the left and right spreads of the input fuzzy variables, x l j , xr j ( j = 1, . . . , p),
respectively1; α1, α2, αl , αr are the (p + 1)-vectors of coefficients of the models on the left
centers m1; β1, β2, βl , βr are the (p + 1)-vectors of coefficients of the models on the right
centers m2; γ0, γ1 and γ2 are the coefficients of the model on the left spreads, l; δ0, δ1 and δ2

1 M1, M2, L, and R also contain a vector of ones, related to the intercepts of the model.
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are their counterparts for the model on the right spreads, r; εm1 , εm2 are the n-vectors of the
error terms of the models on the left and right centers, respectively; εl, εr are the n-vectors
of the error terms of the models on the left and right spreads, respectively; 1 is the n-vector
of ones. The theoretical values of the centers, and of the spreads are marked with an asterisk
symbol (*). Finally, M∗ is the (n × 3) matrix whose columns are the vector of ones and
the vectors of the theoretical values of the left and right centers of the response variable;
γ and δ are the (3 × 1) vectors of the coefficients of the model on the left and right spreads,
respectively.

Note that in the model (5a)–(5d) we assume that the estimates of both spreads depend on
the estimates of both centers (see Eqs. (5c) and (5d)). We can interpret the left and right center
of the dependent variable as the lower and the upper bound, respectively, of interval-valued
data, and the spreads as the degree of imprecision of these interval-valued data. Hence, the
assumption of linear dependency between spreads and centers is reasonable since in many
instances the magnitude of the error depends on the size of the interval estimates.

We use the Weighted Least Squares (WLS) procedure to estimate the coefficients of
the model [20]. In what follows, we refer to the model (5a)–(5d) as the WLS-based fuzzy
regression model. Depending on the nature of the weighing matrix W, we have different
linear regression models. In particular, when W = I, we obtain the Least Squares (LS) based
fuzzy regression model.

The objective function to be minimized is the weighted squared Euclidean distance
between the observed fuzzy variables and their estimates, Δ̃2

W [9].

Let ‖x‖W = (x′Wx)
1
2 be the weighted norm of the generic vector x, where W is a

diagonal matrix, whose elements are the weights attached to each observation. Then, the
weighted squared Euclidean distance Δ̃2

W can be written as:

Δ̃2
W = ‖m1 − m∗

1‖2
W + ‖m2 − m∗

2‖2
W

+‖(m1 − λl) − (m∗
1 − λl∗)‖2

W + ‖(m2 + ρr) − (m∗
2 + ρr∗)‖2

W (6)

where λ = ∫ 1
0 L−1(ω) dω and ρ = ∫ 1

0 R−1(ω) dω are parameters which account for the
shape of the membership function. In particular, if the membership function is trapezoidal,
then λ = ρ = 1/2 [9].

Equation (6) can be developed as follows:

Δ̃2
W = (m1 − m∗

1)
′W(m1 − m∗

1) + (m2 − m∗
2)

′W(m2 − m∗
2)

+[(m1 − λl) − (m∗
1 − λl∗)]′W[(m1 − λl) − (m∗

1 − λl∗)]
+[(m2 + ρr) − (m∗

2 + ρr∗)]′W[(m2 + ρr) − (m∗
2 + ρr∗)]

= (m1 − m∗
1)

′W(m1 − m∗
1) + (m2 − m∗

2)
′W(m2 − m∗

2)

+[(m1 − m∗
1) − λ(l − l∗)]′W[(m1 − m∗

1) − λ(l − l∗)]
+[(m2 − m∗

2) + ρ(r − r∗)]′W[(m2 − m∗
2) + ρ(r − r∗)]

= 2 (m′
1Wm1 − 2 m′

1Wm∗
1 + m∗

1
′Wm∗

1 + m′
2Wm2 − 2 m′

2Wm∗
2 + m∗

2
′Wm∗

2)

−2 λ(m′
1Wl − m′

1Wl∗ − m∗
1
′Wl + m∗

1
′Wl∗) + λ2(l′Wl − 2 l′Wl∗ + l∗′Wl∗)

+2 ρ(m′
2Wr − m′

2Wr∗ − m∗
2
′Wr + m∗

2
′Wr∗) + ρ2(r′Wr − 2 r′Wr∗ + r∗′Wr∗).

(7)

By minimizing (7), we obtain the iterative solutions of the model (5a)–(5d), which are
reported in Appendix.
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2.3 Properties of the model

In this section, we illustrate some properties of the WLS-based fuzzy regression model
(5a)–(5d), which will be useful in the following.

Proposition 1 The weighted sums of the residuals of the left and right centers and of the left
and right spreads are equal to 0:

1′W(m1 − m̂1) = 0

1′W(m2 − m̂2) = 0

1′W(l − l̂) = 0

1′W(r − r̂) = 0

where m̂1, m̂2, l̂ and r̂ are the estimates of the left and right centers, and of the left and right
spreads of the respondent variable.

From this proposition we also derive that the weighted mean of the residuals is equal to 0.

Proposition 2 The residuals of the left and right centers are uncorrelated with the estimates
of the left and right centers, respectively:

(m1 − m̂1)
′Wm̂1 = 0

(m2 − m̂2)
′Wm̂2 = 0

Similarly, the residuals of the left and right spread are uncorrelated with the estimates of
the left and right spreads, respectively:

(l − l̂)′Wl̂ = 0

(r − r̂)′Wr̂ = 0

Note that, given the relationship between the sub-models in (5a)–(5d), it follows that:

(m1 − m̂1)
′Wl̂ = 0

(m2 − m̂2)
′Wr̂ = 0

(l − l̂)′Wm̂1 = 0

(r − r̂)′Wm̂2 = 0

Proofs for Propositions 1–2 can be easily derived from the LS properties proved in Coppi
et al. [10].

2.4 Goodness of fit

To evaluate the goodness of fit of the model (5a)–(5d) to the data, we propose a generalization
of the determination coefficient R2 for fuzzy regression models suggested by Coppi et al.
[10].

First, define the following quantities:

– the total weighted sum of squares:

SSTW = ‖m1 − 1m̄1‖2
W + ‖m2 − 1m̄2‖2

W

+‖(m1 − λl) − (1m̄1 − λ1l̄)‖2
W + ‖(m2 + ρr) − (1m̄2 + ρ1r̄)‖2

W, (8)
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– the weighted explained sum of squares:

SSEW = ‖m̂1 − 1m̄1‖2
W + ‖m̂2 − 1m̄2‖2

W

+‖(m̂1 − λl̂) − (1m̄1 − λ1l̄)‖2
W + ‖(m̂2 + ρr̂) − (1m̄2 + ρ1r̄)‖2

W, (9)

– the weighted residual sum of squares:

SS RW = ‖m1 − m̂1‖2
W + ‖m2 − m̂2‖2

W

+‖(m1 − λl) − (m̂1 − λl̂)‖2
W + ‖(m2 + ρr) − (m̂2 + ρr̂)‖2

W, (10)

where m̄1, m̄2, l̄ and r̄ are the sample means of the left and right centers and of the left and
right spreads, respectively.

Based on the properties illustrated in Sect. 2.3, it can be shown that:

SSTW = SSEW + SS RW. (11)

Then, the determination coefficient for the weighted fuzzy linear regression model is
defined as:

R2
W = SSEW

SSTW
= 1 − SS RW

SSTW
, 0 ≤ R2

W ≤ 1. (12)

As in the standard linear regression framework, the closer R2
W approaches 1, the better

the fit of the model to the data.
The analysis of the goodness of fit of a model is useful when one wants to select the model

which provides the best fit to the data, in a class of parametric models.
However, it can be shown that R2

W is not decreasing as the number of inputs in the model
increases. For this reason, if the objective is to select the “best” model in a class of models,
then R2

W could be ineffective.
A better solution is to adopt the adjusted determination coefficient R̄2

W, which adds a
penalization term that takes into account the number of inputs. We indicate the number of
parameters of the fuzzy regression model with p̄. In particular, when both inputs and output
are L R2 fuzzy variables p̄ = [8 · (p + 1) + 6]. Then, the adjusted determination coefficient
is:

R̄2
W = 1 − (1 − R2

W)
n − 1

n − p̄
. (13)

R̄2
W increases only if the inclusion of a new input improves R2

W more than would be
expected by chance. The adjusted determination coefficient can be used to select the optimal
number of inputs to be included in the model.

As observed by Coppi et al. [10], the denominator of the adjusting factor (n − p̄) in
(13) decreases more than proportionally as p increases, thus penalizing the model with
p + 1 variables in a more severe way than the traditional (crisp) version of the adjusted
determination coefficient. Then, it would be better to use an adjusting factor in which we
consider only the number of parameters of one of the centers-model, p.

2.5 Some remarks

Remark 1 (Generalization of the design matrices) The design matrices M1, M2, L and R in
the model (5a)–(5d) can be generalized by considering appropriate functions of the compo-
nents of the fuzzy explanatory variables X̃.
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Let be F1, F2, Fl and Fr the “transformed” design matrices, where:

f ′
1i = [ f1(x m1i ), . . . , f p(x m1i )]

f ′
2i = [ f1(x m2i ), . . . , f p(x m2i )]

f ′
li = [ f1(x li ), . . . , f p(x li )]

f ′
ri = [ f1(x ri ), . . . , f p(x ri )]

are the generic rows of the transformed design matrices. Each row represents the regression
“profile” of observation i in terms of suitably chosen functions of the observed vectors
of the fuzzy explanatory variables. In this way, the model allows also for transformation
of the original fuzzy variables, like the polynomial or the logarithmic transformations. By
substituting F1, F2, Fl and Fr in (5a)–(5d) the properties of the model proposed can be easily
extended to this more general case.

Remark 2 (Local optima issues) As for other iterative estimation algorithm, the solutions of
the model (5a)–(5d) (see Appendix) do not guarantee the attainment of the global minimum.
For this reason we initialize the iterative algorithm considering several different starting
points in order to check the stability of the solution.

Remark 3 (Negative spreads) The iterative solutions of the model (5a)–(5d) (see Appen-
dix) do not automatically guarantee the non negativity of the estimated spreads l∗ and r∗.
To cope with this issue, one can adopt the approaches proposed by D’Urso [14]. In partic-
ular, among the different approaches for guaranteeing the non-negativity of the estimated
spreads proposed by D’Urso [14] there is the so-called “unconstrained approach”, in which a
logarithmic transformation of the spreads is suggested (for more details, see [14]). In litera-
ture, this approach has been particularly successful and has been used afterwards by various
authors in fuzzy-exploratory and fuzzy-inferential frameworks. For instance, Ferraro et al.
[21]—following the idea of considering a modeling structure based on three sub-models
proposed by D’Urso and Gastaldi [15] and D’Urso [14] and using the least-squares approach
as in Coppi and D’Urso [9] and Coppi et al. [10]—formalized a linear regression model
in a fuzzy-inferential framework using the logarithmic transformation of the spreads of the
response as suggested in D’Urso [14] within an exploratory framework.

Remark 4 (Particular cases of the model (5a)–(5d)) The model (5a)–(5d) can be considered
as the most general fuzzy regression model, with L R2 fuzzy inputs and outputs. By combining

Table 1 Regression models with fuzzy/crisp output/inputs and mixed membership functions

Output Input

Crisp L R1 L R2

Crisp y∗ = Xα y∗ = Mα1 + Lαl + Rαr y∗ = M1α1 + M2α2 + Lαl + Rαr

L R1 m∗ = Xα m∗ = Mα + Lαl + Rαr m∗ = M1α1 + M2α2 + Lαl + Rαr

l∗ = M∗γ l∗ = M∗γ l∗ = M∗γ

r∗ = M∗δ r∗ = M∗δ r∗ = M∗δ

L R2 m∗
1 = Xα m∗

1 = Mα + Lαl + Rαr m∗
1 = M1α1 + M2α2 + Lαl + Rαr

m∗
2 = Xβ m∗

2 = Mβ + Lβl + Rβr m∗
2 = M1β1 + M2β2 + Lβl + Rβr

l∗ = M∗γ l∗ = M∗γ l∗ = M∗γ

r∗ = M∗δ r∗ = M∗δ r∗ = M∗δ
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different typologies of membership functions for the fuzzy/crisp inputs/outputs, we obtain
different (fuzzy) regression models, outlined in Table 1.

For instance, by putting M1 = M2 = X, L = R = 0, α1 = α2 = α and β1 = β2 = β one
can easily obtain from (5a)–(5d) the fuzzy regression model with crisp inputs and L R2 fuzzy
output, and from the iterative solutions, reported in Appendix, the corresponding coefficients’
estimates.

The models in Table 1 can be also generalized to the case in which the fuzzy output and/or
the fuzzy inputs are symmetrical.

3 Assessment of imprecision of the regression function

As observed by Coppi et al. [10] in the case of crisp inputs and L R1 fuzzy output, the
estimation procedure of the fuzzy linear regression model provides a crisp evaluation of
the regression coefficients. Since the response variable is fuzzy, the fuzzy linear regression
model implicitly involves a fuzzy regression model expressed in terms of fuzzy regression
coefficients. Thus, the crisp estimates of the fuzzy regression model involve a certain degree
of imprecision. This observation can be extended also to all the models reported in Table 1
with fuzzy output, and in particular to our proposed model (5a)–(5d).

To evaluate the imprecision due to the crisp estimates of the fuzzy regression model, we
exploit the “implicit” fuzzy model with fuzzy regression coefficients.

Following a similar line of reasoning as in Coppi et al. [10], we refer to the case with L R2

response variable and crisp inputs, but our conclusions can be extended to more complex
models.

The fuzzy regression model with L R2 fuzzy response variable and crisp explanatory
variables is:

m∗
1 = Xα

m∗
2 = Xβ

l∗ = M∗γ
r∗ = M∗δ

(14)

where, M∗ = (1, m∗
1, m∗

2), γ = (γ0, γ1, γ2)
′ and δ = (δ0, δ1, δ2)

′.
The implicit fuzzy model can be expressed as:

ỹ∗
i = β̃0 + β̃1xi1 ⊕ . . . ⊕ β̃pxip, i = 1, . . . , n (15)

where: ỹ∗
i = (m∗

1i , m∗
2i , l∗i , r∗

i ) is the theoretical value of the L R2 fuzzy response variable for
the i-th unit; the coefficient β̃k = (β1k, β2k, βlk, βrk), k = 1, . . . , p is a L R2 fuzzy number,
with the four components being the left and right centers, and the left right spread of the k-th
coefficient, respectively; ⊕ denotes the addition of fuzzy numbers.

We express the model (15) in the following way:

m∗
1i = β10 + β11xi1 + · · · + β1pxip m∗

1 = Xβ1

m∗
2i = β20 + β21xi1 + · · · + β2pxip m∗

2 = Xβ2

l∗i = βl0 + βl1|xi1| + · · · + βlp|xip| l∗ = |X|βl

r∗
i = βr0 + βr1|xi1| + · · · + βr p|xip| r∗ = |X|βr

(16)

where |X| is the matrix of the absolute values of the inputs, β1, β2, βl and βr are the (p +1)

vectors of the components of the vector of the fuzzy coefficients β̃k .
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Coppi et al. [10] observed that from (16) we obtain estimates of β1, β2, βl and βr which
are compatible with α1, α2, δ and γ , the coefficient of the model (14).

Let assume the fuzzy arithmetic relationships represented by the equations in (16) can be
approximated as follows:

m∗p
1 = Xβ1 + u1

m∗p
2 = Xβ2 + u2

l∗p = |X|βl + ul

r∗p = |X|βr + ul

(17)

where p indicates that these relationships are proxies of the real relationships, and where
u1, u2, ul and ur are vectors of residuals.

By means of Ordinary Least Squares (OLS), we obtain compatible estimate of the model
(16). For instance, the OLS estimate of β1 is:

β1 = (X′X)−1X′m∗p
1 = (X′X)−1X′Xα̂1 = α̂1

where α̂1 is the LS estimate of α1 from the model (14). In a similar way, we obtain a compatible
estimate of β2.

As for the estimates of the spreads βl and βr , one can adopt the non-negative Least Squares
(NNLS) algorithm [27], to avoid negative estimates.

In conclusion, the model (14) provides both a good approximation of the centers of the
fuzzy regression coefficients β̃ and of the fuzzy values of the fuzzy response variable, ỹ.
Moreover, by means of the LS approximation of the spreads in (17) we obtain reasonable
estimates of the spreads of β̃.

Finally, note that another source of uncertainty in our framework is related to the data
generation process [10]. One could take into account this type of uncertainty by means of the
bootstrap procedure to evaluate the standard error of the regression coefficients estimates.

Results illustrated in this section could also be extended to the other fuzzy regression
models shown in Table 1.

4 Robust fuzzy regression

It can be shown that the WLS-based fuzzy regression model (5a)–(5d) is generally not robust
to the presence of outlier data.

For instance, when W = I, the WLS-based fuzzy regression model reduces itself to the
LS-based fuzzy regression model, which is extremely sensitive to the presence of outliers,
yielding a distortion in the parameter estimates [20].

In fuzzy regression, we could have different types of outliers in the dataset with respect
to: one or more crisp explanatory variables; the centers of one or more fuzzy explanatory
variables; the spreads of one or more fuzzy explanatory variables; the centers of the fuzzy
dependent variable; the spreads of the fuzzy dependent variable; the fuzzy regression lines;
more aspects.

We denote the data observed on a generic unit, where both output and p inputs are fuzzy
L R2 variables, with (ỹi , x̃i ). Let us also suppose that the theoretical relationship between the
fuzzy output ỹi and the fuzzy inputs x̃i can be described by the model (5a)–(5d). A sample
of such observations is depicted in Fig. 2a, in the case when there is a single fuzzy input
(p = 1). Solid lines represent the interval-valued data given by the left and right centers of
ỹ and x̃ , dashed lines represents the spreads, i.e. the uncertainty, around the centers.
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Fig. 2 Example of outliers for the (5a)–(5c). a No outlier. b Outlier with respect to the relationship between
ỹ and x̃ , but not with respect to the two variables. c Outlier with respect to the relationship between ỹ and x̃ ,
and with respect to the centers of x̃ . d Outlier with respect to the spreads of x̃ . e Outlier with respect to the
centers of x̃ to the spreads of ỹ and to the relationship between ỹ and x̃ . f Outlier with respect to the centers
of ỹ and x̃ , but not with respect to the relationship between ỹ and x̃

As observed above, different types of outliers could occur in the dataset. Consider, for
instance, Fig. 2b where there is an outlier (depicted with a bolder line) with respect to the
relationship between ỹ and x̃ . A closer inspection reveals that the unit is not an outlier with
respect to the two fuzzy variables. Indeed, the value of the left and right centers (and of the
left and right spreads) are in the range of the values observed for the other units.

In Fig. 2c we have a different case, since the anomalous unit is an outlier with respect to
both the relationship between ỹ and x̃ , and to the fuzzy input. As can be seen, the values of
the left and right centers of x̃ lie outside the range of the left and right centers of the fuzzy
input for the remaining units.

In Fig. 2d the outlier is with respect to the spreads of x̃ . This outlier partially undermines
also the relationship between ỹ and x̃ , at least for the part of the model (5a)–(5d) devoted to
the spreads.
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Figure 2e shows a more general case in which the unit is an outlier with respect to the
centers of x̃ , the spreads of ỹ and the relationship between the fuzzy variables.

Finally, in Fig. 2f we show a situation in which the observation is an outlier with respect
to both ỹ and x̃ , but not with respect to their relationship.

In this section we propose a robust version of the fuzzy regression model (5a)–(5d). The
proposed model is based on the Least Median Squares (LMS) estimation method [30], which
relies on the minimization of the median of squared residuals:

Δ̃2
med = median

i

{
(m1i − m∗

1i )
2 + (m2i − m∗

2i )
2

+[(m1i − λli ) − (m∗
1i − λl∗i )]2 + [(m2i + ρri ) − (m∗

2i + ρr∗
i )]2} (18)

The two-steps estimation procedure can be illustrated as follows [20].
In the first step we apply a random re-sampling procedure [31], in which, we consider

several subsets of p̄ = [8 · (p + 1) + 6] observations, where p̄ is the number of unknown
parameters of the model (5a)–(5d). As the number of subsets increases, the probability of
extracting at least one subset without outliers, increases.

Let M1s, M2s, Ls and Rs be the [ p̄ × (p + 1)] matrices extracted from the matrices
M1, M2, L and R defined in Sect. 2.2, whose rows match up to the randomly selected
observations. Let also m1s, m2s, rs and ls be the corresponding sub-vectors ( p̄ × 1) of
m1, m2, l and r, respectively.

For each subset, the regression coefficients are estimated using the iterative solutions
illustrated in Appendix, by putting W = I p̄ , thus obtaining the estimated values m̂1s, m̂2s, l̂s
and r̂s . These estimates are employed to compute the median of squared residuals (18).

Since the optimal solution of LMS employs only a subset of observations, it is likely that
a great deal of the remaining observations are not outliers. Hence, in the second step of the
procedure we improve the estimates by considering all observations, assigning low weights
to data identified as outliers. The identification of these observations is based on the robust
residuals from LMS (see [20]).

In particular, we adopt the following weights for our analysis:

wi =

⎧
⎪⎨

⎪⎩

1, |ri/σ̂ | ≤ c1

0.5, c1 ≤ |r2
i /σ̂ | ≤ c2

0, |ri/σ̂ | ≤ c2,

(19)

where ri is the square root of the i-th squared residual from LMS:

r2
i = median

i

{
(m1i − m∗

1i )
2 + (m2i − m∗

2i )
2

+[(m∗
1i − λli ) − (m∗

1i − λl∗i )]2 + [(m2i + ρri ) − (m∗
2i + ρr∗

i )]2} ,

σ̂ is the robust estimate of the scale of residuals, σ̂ =
√

median(r2
i ), r2

i /σ̂ , i = 1, . . . , n, are
the standardized residuals, and c1 and c2are constants. For our applications we set c1 = 2.5
and c2 = 3.5.

The final estimates of the coefficients of the WLS-based fuzzy regression model (5a)–(5d)
are derived by applying formulae (20a)–(20n) (see Appendix) to the whole sample, by setting
W = diag(wi ).

In what follows, we refer to this robust model as the LMS–WLS-based fuzzy regression
model.
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The weights (19) suitably tune the effect of outliers, removing the units with weight equal
to 0 from the optimization process, and reducing the impact of those units with weights 0.5,
which deviate less than the former from the bulk of data.

Finally, note that the presence of outlier entails, ceteris paribus, an increase in R2
W, since

outliers have weights equal to 0, or at most 0.5, thus yielding a decrease of SS RW. Hence,
we expect that the robust LMS–WLS-based fuzzy regression model performs better, in terms
of goodness of fit to data, with respect to the LS-based fuzzy regression model.

5 A simulation study

5.1 Fuzzy simple linear regression model: crisp input, L R2 fuzzy output

To illustrate the main features of the LS (W = I) and of the LMS–WLS-based fuzzy
regression models proposed, we first consider a simulated dataset with a L R2 fuzzy response
variable and one crisp explanatory variable (p = 1). As observed above, the LS and the
LMS–WLS-based fuzzy regression models could be easily derived from the model (5a)–(5d)
(see Remark 4).

We generated 40 observations on the crisp variable from U [1, 2]. Then we generated the
L R2 fuzzy output as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1i = 1.61 + 3.50xi + N (0, 1) = m∗
1i + N (0, 1)

m2i = 1.99 + 4.18xi + N (0, 1) = m∗
2i + N (0, 1)

li = 0.24 + 0.01m∗
1i + 0.04m∗

2i + N (0, 1) = l∗i + N (0, 1)

ri = 0.16 + 0.04m∗
1i + 0.06m∗

2i + N (0, 1) = r∗
i + N (0, 1)

Figures 3a–b show the results of the two models fitted to the generated dataset. The value
of the determination coefficient is reported in the top left of each figure. Each L R2 fuzzy
output value is represented by a solid line (centers) and two dashed lines (spreads). The fitted
model is represented by two solid lines for the models on the left and right centers, and two
dotted lines for the models on the left and right spreads.

The two models provide similar results, as can be seen also by the value of R2
W.

To evaluate the different behaviour of the LS and of the LMS–WLS-based fuzzy regression
model in presence of anomalous data, we have also contaminated the simulated dataset with
three different kind of outliers: one outlier in the input; one outlier in both centers; one outlier
in both spreads.

Figures 3c–h refer to the cases in which each kind of outlier is considered, one at a time.
The outlier is highlighted with a thicker line. In Figs. 4a–h different combinations of the three
type of outliers are considered.

Some consideration follows:

1. the LS-based fuzzy regression model is heavily affected by the presence of a single outlier
in the input or in the centers of the output, especially when the two contaminations are
combined;

2. the effect of the presence of anomalous values in the spread is mitigated by the presence
of the weights λ and ρ of the spreads in the objective function (6);

3. the LMS–WLS-based fuzzy regression model performance is not affected by the presence
of a single outlier, irrespective of which element (centers and/or spreads of the response
variable variable, and/or explanatory variable) of the generated dataset is contaminated.
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Fig. 3 Fitting of the LS and LMS–WLS-based fuzzy regression models to the simulated dataset: no contam-
ination or contamination in one element. a LS: no outlier. b LMS–WLS: no outlier. c LS: one outlier in the
input. d LMS–WLS: one outlier in the input. e LS: one outlier in both centers. f LMS–WLS: one outlier in
both centers. g LS: one outlier in both spreads. h LMS–WLS: one outlier in both spreads
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Fig. 4 Fitting of the LS and LMS–WLS-based fuzzy regression models to the simulated dataset: contamination
in two or more elements. a LS: one outlier in the input and in the centers. b LMS–WLS: one outlier in the
input and in the centers. c LS: one outlier in the input and in the spreads. d LMS–WLS: one outlier in the
input and in the spreads. e LS: one outlier in the centers and in the spreads. f LMS–WLS: one outlier in the
centers and in the spreads. g LS: one outlier in all elements. h LMS–WLS: one outlier in all elements
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5.2 Fuzzy simple linear regression model: L R2 fuzzy input/output

We now consider a simulation carried out on a fuzzy linear regression model with a fuzzy
L R2 response variable and one fuzzy L R2 explanatory variable (p = 1). Fuzzy data for the
simulation study are generated with the following scheme:

m1 = (1, U [1, 2])(1.42, 1.53)′ + (1, U [2.5, 3.5])(0.16, 0.88)′

+(1, U [0.1, 0.2])(0.20, 0.58)′ + (1, U [0.15, 0.25])(0.80, 0.26)′ + N (0, 1)

= m∗
1 + N (0, 1)

m2 = (1, U [1, 2])(1.00, 2.25)′ + (1, U [2.5, 3.5])(2.61, 1.38)′

+(1, U [0.1, 0.2])(0.24, 0.48)′ + (1, U [0.15, 0.25])(0.01, 0.48)′ + N (0, 1)

= m∗
2 + N (0, 1)

l = 1.1751 + m∗
1 · 0.044 + m∗

2 · 0.014 + N (0, 1) = l∗ + N (0, 1)

r = 1.093 + m∗
1 · 0.022 + m∗

2 · 0.026 + N (0, 1) = r∗ + N (0, 1)

We generated 100 datasets of 200 observations. In each dataset the regression coefficients
were held constant, while the values of the fuzzy inputs were randomly generated. We fitted to
each generated dataset both the LS and the LMS–WLS-based fuzzy regression model. Finally,
we computed the mean and the median of R2

W to evaluate the average and the median fitting
performance of the two models over the simulation cycle. Results are reported in the fourth
column of Table 3. As expected, both models provide a good fitting performance.

Then we contaminated each dataset by adding an increasing percentage of outliers (from 5
to 30 %, by steps of 5 %) in the input or in the output centers following different contamination
schemes, summarized in Table 2.

In Table 3 (columns fifth to tenth) we also report the mean and the median of R2
W computed

over the 100 datasets generated for each outlier generation scheme.

Table 2 Outlier generation
schemes

Scheme Outliers in the input centers Outliers in the output centers

x m1 ∼ U [4, 5] m∗
1 ∼ U [0, 1]

x m1 ∼ U [6.5, 8.5] m∗
2 ∼ U [14.5, 15]

Table 3 Simulation results: mean and median of R2
W computed over 100 simulated datasets

Model Outlier scheme Percentage of outliers

0 % 5 % 10 % 15 % 20 % 25 % 30 %

LS Input centers Mean 0.978 0.330 0.264 0.240 0.234 0.199 0.168

Output centers 0.238 0.142 0.107 0.077 0.071 0.073

Input centers Median 0.978 0.322 0.269 0.241 0.249 0.200 0.198

Output centers 0.234 0.147 0.115 0.081 0.073 0.069

LMS–WLS Input centers Mean 0.978 0.976 0.978 0.978 0.977 0.977 0.978

Output centers 0.979 0.978 0.978 0.977 0.976 0.979

Input centers Median 0.979 0.977 0.980 0.978 0.979 0.980 0.980

Output centers 0.980 0.979 0.978 0.977 0.977 0.978
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Some consideration follow:

1. the LS-based fuzzy regression model is heavily affected by the presence of outliers in
the centers of the input variable, even when there are only 5 % of outliers;

2. the LMS–WLS-based fuzzy regression model is not affected by the presence of outliers
in the centers of the input variable, irrespective of the percentage of outliers,

3. similar conclusions can be deduced when there are outliers in the centers of the output
variable.

6 Applications

6.1 Daily variation of pollutant concentration

In this application we examine the dependence relationship between the atmospheric concen-
tration of carbon monoxide (CO) and other pollutants, namely mono-nitrogen oxides (NOx),
which, in atmospheric chemistry, correspond to the total concentration of nitric oxide (NO)
and nitrogen dioxide (NO2), and ozone (O3).

The original data was collected in Rome during the year 1999. The original dataset provides
hourly values of all the variables considered. Prior to the analysis, we have standardized all
variables.

We are interested in detecting the effect that the daily variation of the inputs (NOx and
O3) exerts on the daily variation of the concentration of CO. Missing data prevent us from
contrasting daily variation of CO with daily variation of NOx and O3. Therefore, we compute
the weekly averages of the daily minimum and maximum of each variable.

To cope with the loss of information due to summarizing the data, we consider the variables
as L R2 fuzzy variables. Then, the two centers of each L R2 fuzzy variable are given by the
mean values of the minimum and maximum value recorded each day of the week; the left
(right) spreads are the mean deviations from the average minimum (maximum) values, of
those values which are lower (higher) than the average minimum (maximum) values. We
further assume that the shape of the L R2 membership function is trapezoidal, which implies
λ = ρ = 1/2. See Coppi et al. [10] for a similar fuzzy formalization of the data.

Having considered weekly data, we end up with 53 observations. The obtained fuzzy data
matrix is reported in Table 4

The determination coefficient computed for the LS-based fuzzy regression model is equal
to 0.879, while that of the LMS–WLS-based fuzzy regression model is 0.880. Both models
provide a good fit to data, even if the LMS–WLS-based fuzzy regression model slightly
outperforms the non-robust model due to the presence of three outliers.

The estimates of the coefficients are reported in Tables 5 (models on the centers) and 6
(models on the spreads). As can be seen, the estimates are similar between the two models.

With the proposed model, it is possible to highlight which component of each fuzzy
explanatory variables mainly affects each component of the response variable.

Consider, for instance, the influence of the left centers of the explanatory variables on
the left and right centers of the response, given respectively by α1 and β1. In both cases,
the main effect is exerted by the weekly average minimum values of the concentration of
NOx. The greater is this value, the greater are both the weekly average minimum values of
CO. Moreover, since the effect on the right center is greater, as the minimum value of the
concentration mono-nitrogen oxides raises, the daily variation of carbon monoxideincreases.

Similar evidence can be drawn from the effect of the right centers of the inputs, in particular
of NOx. Given the almost nil effect on the left center of the output and the strong influence on
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Table 4 Standardized pollution data: left (right) centers are the mean values of the minimum (maximum)
value recorded each day of the week; left (right) spreads are the mean deviations from the average minimum
(maximum) values, considering only values lower (higher) than the average minimum (maximum)

Week CO2 NOx O3

Centers Spreads Centers Spreads Centers Spreads

Left Right Left Right Left Right Left Right Left Right Left Right

1 −1.161 1.241 1.268 0.948 −1.151 1.822 1.241 0.971 −0.835 0.037 0.838 0.830

2 −0.957 3.560 1.123 0.890 −0.678 4.120 0.809 0.503 −0.841 −0.434 0.846 0.835

3 −1.139 3.419 1.336 0.992 −0.941 3.606 1.212 0.832 −0.833 0.320 0.838 0.827

4 −0.932 4.690 1.036 0.793 −0.606 4.126 0.713 0.525 −0.765 −0.150 0.819 0.439

5 −1.280 2.481 1.378 1.036 −1.074 2.230 1.285 0.794 −0.584 1.059 0.831 0.035

6 −1.189 2.971 1.375 1.050 −0.882 3.599 1.160 0.674 −0.782 0.510 0.818 0.567

7 −1.316 2.190 1.428 1.094 −1.247 1.649 1.341 1.060 −0.645 1.343 0.785 0.505

8 −1.056 2.290 1.224 0.832 −0.870 2.496 1.062 0.613 −0.773 0.368 0.796 0.742

9 −0.923 2.730 1.181 0.280 −0.866 2.407 1.147 0.655 −0.691 1.034 0.759 0.280

10 −1.214 2.556 1.355 1.026 −1.070 2.147 1.153 0.863 −0.736 1.478 0.776 0.684

11 −1.006 2.938 1.123 0.861 −0.805 3.092 0.898 0.681 −0.756 1.648 0.776 0.729

12 −1.297 1.235 1.390 1.142 −1.113 1.083 1.341 0.810 −0.368 2.043 0.635 0.299

13 −1.463 2.248 1.481 1.355 −1.087 1.617 1.208 0.996 −0.734 1.573 0.758 0.710

14 −1.113 1.231 1.268 0.803 −1.132 1.585 1.422 0.842 −0.714 1.702 0.776 0.590

15 −1.289 1.111 1.370 1.181 −1.103 1.225 1.212 1.021 −0.699 2.222 0.747 0.579

16 −1.287 1.658 1.394 1.181 −1.097 1.834 1.290 0.905 −0.731 1.404 0.790 0.702

17 −1.278 0.757 1.384 1.065 −1.041 0.803 1.176 0.773 −0.843 1.597 0.846 0.838

18 −1.272 1.576 1.312 1.220 −1.092 1.722 1.289 0.828 −0.846 1.611 0.846 0.846

19 −1.272 1.277 1.394 1.181 −1.092 0.467 1.294 0.941 −0.825 1.281 0.843 0.718

20 −1.280 1.036 1.355 1.224 −1.101 0.739 1.218 0.945 −0.740 1.913 0.820 0.256

21 −1.289 1.377 1.355 1.123 −1.120 0.885 1.251 1.022 −0.827 1.543 0.841 0.794

22 −1.206 0.953 1.316 1.123 −0.985 0.578 1.116 0.887 −0.833 3.251 0.843 0.826

23 −1.222 1.269 1.283 1.142 −1.004 0.964 1.093 0.884 −0.831 2.961 0.838 0.826

24 −1.247 1.318 1.316 1.195 −1.017 0.761 1.070 0.947 −0.825 2.934 0.833 0.806

25 −1.210 0.970 1.297 1.123 −1.026 1.067 1.157 0.894 −0.834 2.531 0.838 0.830

26 −1.094 0.505 1.239 0.948 −1.027 0.672 1.075 0.979 −0.846 0.594 0.846 0.846

27 −1.045 0.728 1.123 0.658 −0.954 0.550 1.065 0.842 −0.766 3.218 0.834 0.630

28 −1.289 0.779 1.309 1.239 −1.087 0.747 1.171 1.024 −0.835 2.260 0.842 0.827

29 −1.256 0.986 1.297 1.200 −1.108 0.370 1.235 1.013 −0.810 3.374 0.836 0.746

30 −1.189 0.546 1.413 1.099 −1.043 0.135 1.271 0.952 −0.457 2.162 0.825 0.462

31 −1.239 0.729 1.274 1.210 −1.152 0.597 1.290 1.097 −0.797 2.602 0.818 0.769

32 −1.231 0.372 1.262 1.152 −1.104 0.453 1.201 1.031 −0.835 3.028 0.840 0.830

33 −1.231 0.015 1.367 0.890 −1.092 0.307 1.229 0.750 −0.780 2.101 0.832 0.710

34 −1.297 −0.280 1.297 1.297 −1.248 0.027 1.279 1.186 −0.774 2.079 0.822 0.678

35 −1.161 0.011 1.227 0.832 −1.109 0.039 1.181 1.037 −0.608 3.019 0.779 0.247

36 −1.307 0.698 1.394 1.220 −1.091 0.750 1.205 0.977 −0.761 1.670 0.790 0.731

37 −1.169 1.423 1.278 1.006 −1.060 0.985 1.156 0.996 −0.806 2.111 0.822 0.790

38 −1.189 1.460 1.326 1.134 −1.043 1.534 1.247 0.889 −0.842 2.281 0.846 0.834
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Table 4 continued

Week CO2 NOx O3

Centers Spreads Centers Spreads Centers Spreads

Left Right Left Right Left Right Left Right Left Right Left Right

39 −1.173 1.501 1.297 1.079 −0.976 1.617 1.150 0.846 −0.840 1.670 0.846 0.832

40 −1.214 2.091 1.283 1.123 −1.016 1.470 1.126 0.868 −0.843 0.905 0.846 0.838

41 −1.272 2.938 1.413 1.084 −1.013 2.261 1.213 0.863 −0.835 1.208 0.842 0.827

42 −1.164 2.199 1.227 1.006 −0.834 2.389 0.902 0.742 −0.841 1.078 0.846 0.838

43 −1.297 1.767 1.378 1.161 −1.144 1.422 1.227 1.034 −0.835 0.283 0.839 0.826

44 −1.156 2.805 1.251 0.919 −0.877 2.439 1.020 0.686 −0.840 0.206 0.846 0.832

45 −1.256 2.091 1.413 1.137 −1.010 1.876 1.260 0.822 −0.835 0.805 0.844 0.824

46 −1.264 2.107 1.399 1.084 −0.960 1.806 1.304 0.823 −0.755 0.275 0.834 0.555

47 −1.264 2.398 1.384 1.103 −1.043 2.104 1.190 0.848 −0.827 0.185 0.836 0.806

48 −1.197 2.506 1.355 1.079 −0.883 2.700 1.073 0.741 −0.830 −0.118 0.838 0.822

49 −0.905 2.873 1.142 0.193 −0.576 2.965 0.866 0.293 −0.832 −0.583 0.838 0.830

50 −1.079 2.786 1.326 0.832 −0.732 2.840 1.081 0.383 −0.826 −0.250 0.830 0.822

51 −1.206 3.120 1.344 0.861 −0.968 2.605 1.275 0.738 −0.821 −0.235 0.831 0.794

52 −1.314 2.116 1.471 1.195 −1.112 1.735 1.281 0.888 −0.641 0.561 0.801 0.240

53 −1.332 1.214 1.413 1.210 −1.098 1.711 1.250 0.871 −0.798 0.535 0.824 0.758

Table 5 Coefficients’ estimates for the LS and the LMS–WLS-based fuzzy regression models: Models on
the centers (pollution data)

Model α1 α2 αl αr α1 α2 αl αr

LMS

Int. −4.172 2.082 0.773 1.027 −2.366 3.905 −0.784 −0.540

O3 −0.166 0.007 −0.231 −0.102 0.052 −0.013 0.603 −0.358

NOx 0.540 −0.013 −0.148 −0.061 2.218 0.931 0.656 1.517

LMS–WLS

Int. −3.553 1.222 1.173 1.099 −1.654 2.825 −0.937 −0.679

O3 −0.078 0.016 −0.462 −0.073 −0.221 −0.045 1.279 −0.444

NOx 0.577 −0.010 −0.093 −0.105 2.078 0.919 0.458 1.650

Table 6 Coefficients’ estimates
for the LS and the
LMS–WLS-based fuzzy
regression models: Models on the
spreads (pollution data)

Model δ0 δ1 δ2 γ0 γ1 γ2

LS −0.774 −1.508 −0.002 0.397 −0.743 0.014

LMS–WLS −0.898 −1.602 0.005 0.397 −0.742 0.014

the right center, we can derive a positive influence of the maximum value of the concentration
mono-nitrogen oxides on the daily variation of CO.

Overall, we observe a direct relationship between the daily variation of NOx and that of
carbon monoxide.

123



298 P. D’Urso, R. Massari

6.2 Attitude towards traditional vs. “creative” advertising

The aim of this application is to illustrate how to cope with various source of the uncertainty
that may affect the regression analysis: fuzziness of the response and of the explanatory
variables; uncertainty about the values of regression coefficients; uncertainty about the choice
of a specific model in a class of parametric model.

Data for our analysis are drawn from a survey on a sample of 103 students from Sapienza
University and LUISS University, in Rome, interviewed about their opinions about traditional
and new media. A section of the survey was devoted to the respondents’ opinions towards
traditional vs. innovative advertising campaigns. Respondents are asked to report their degree
of agreement towards these seven statements (in brackets are reported the names of each
variable):

– I am sensitive to traditional advertising campaigns, i.e. campaigns broadcast by TV and/or
radio, published on newspaper or magazines, etc. (sens-tr; response variable).

– I am tired of traditional advertising campaigns (tired-tr).
– I do not pay attention to traditional advertising campaigns (not-tr).
– I try to avoid traditional advertising campaigns (avoid-tr).
– I am impressed by “creative” advertising campaigns, e.g., via blog and/or social networks,

sponsorship of public events, etc. (impr-cre).
– Creative advertising campaigns are more effective in capturing my attention (eff-cre).
– I better remember a creative advertising campaigns with respect to a more traditional one

(rem-cre).

The degree of agreement were reported on a 4-item scale, from “I totally disagree” (1) to
“I totally agree” (4).

The complete dataset is reported in Table 7.
Coppi and D’Urso [8] observed that the subjective evaluation of a qualitative scale could

be better represented in a fuzzy framework, which takes into account the uncertainty and the
heterogeneity in individual evaluation.

Hence, we adopted a fuzzy coding for describing the subjective judgements reported in
the survey. In particular, we recoded the qualitative variables as L R1 fuzzy variables. The
L R1 fuzzy recoding of these linguistic variables is reported in Table 8 [1], and represented
in Fig. 5, in which it is also shown the membership function of each fuzzy value.

Then, we analysed the relationship between the variable sens-tr and the remaining vari-
ables by means of a fuzzy linear regression model with L R1 fuzzy output and L R1 fuzzy
outputs. As observed in the Remark 4, this model is a particular case of the more general
model (5a)–(5d).

To select the optimal model we employed a procedure based on the maximization of the
value of the adjusted determination coefficient, R̄2

W. Notice that in this case each added vari-
able involves the estimation of 7 additional coefficients ( p̄ = [3 ∗ (p + 1) + 4]). Then the
penalization factor increases more than proportionally for each added variable, as observed
in Sect. 2.4. For this reason we considered the following expression for the adjusted deter-
mination coefficient:

R̄2
W = 1 − (1 − R2

W)
n − 1

n − p

The selection procedure adopted is backward-type and can be illustrated as follows.
For a model with k fuzzy inputs we compute R̄2

W(k). Then, we compute R̄2
W, j (k−1) for all

the k models derived from the first model by dropping one variable at time ( j = 1, . . . , k).
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Table 7 Student data Student sens-tr tired-tr not-tr avoid-tr impr-cre eff-cre rem-cre

1 2 3 2 3 1 3 1

2 1 3 4 3 3 4 4

3 2 4 1 2 4 4 4

4 2 2 2 2 3 4 4

5 2 3 2 3 3 3 3

6 3 2 2 3 2 3 2

7 2 3 3 3 4 4 4

8 3 2 2 2 2 2 2

9 2 3 3 4 3 3 3

10 3 2 2 3 2 4 3

11 2 4 2 3 4 3 4

12 2 2 3 3 4 3 2

13 3 4 1 2 3 4 4

14 2 3 2 3 4 3 3

15 2 3 2 4 3 4 4

16 2 4 3 3 3 4 4

17 1 2 2 4 4 4 4

18 3 2 3 4 2 3 3

19 4 3 1 1 4 4 4

20 2 3 3 4 3 3 3

21 3 3 1 2 2 2 3

22 3 2 3 4 4 4 4

23 4 1 1 1 4 3 3

24 3 3 2 3 3 4 3

25 3 1 1 2 4 4 4

26 3 4 3 4 4 4 4

27 3 4 4 4 4 4 4

28 2 4 2 3 3 3 3

29 1 4 4 4 2 4 3

30 2 2 4 3 1 1 1

31 2 1 3 3 2 3 2

32 2 3 3 3 3 4 3

33 2 3 3 1 4 4 4

34 3 2 2 2 3 3 2

35 2 4 4 4 3 3 3

36 2 3 1 1 4 4 4

37 3 2 1 2 1 2 2

38 3 2 2 3 3 3 4

39 3 2 2 4 1 2 3

40 3 1 2 2 2 4 3

41 3 3 2 2 4 4 4

42 3 2 3 4 3 3 4

43 2 3 2 2 3 2 2

44 3 1 1 2 3 4 4
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Table 7 continued Student sens-tr tired-tr not-tr avoid-tr impr-cre eff-cre rem-cre

45 3 1 1 2 2 2 2

46 2 4 4 4 3 4 4

47 3 2 2 2 3 3 4

48 2 4 3 3 4 4 4

49 3 4 2 3 4 4 4

50 1 4 4 4 4 4 4

51 3 4 1 1 4 4 4

52 3 3 2 4 4 4 4

53 1 4 4 4 1 2 2

54 2 3 2 3 2 3 3

55 3 2 4 1 4 4 4

56 2 3 2 3 3 3 3

57 2 4 4 4 3 4 4

58 2 2 4 2 2 3 3

59 2 3 3 3 4 4 4

60 1 3 3 2 3 3 3

61 3 2 2 4 3 3 3

62 2 3 3 2 3 3 4

63 2 4 3 3 1 2 2

64 2 2 3 1 1 1 1

65 2 4 2 3 2 3 3

66 3 2 3 3 3 3 4

67 2 2 2 3 3 3 3

68 2 4 2 4 2 2 4

69 2 2 2 4 4 3 3

70 2 3 3 2 3 3 2

71 2 3 2 3 2 2 2

72 2 3 3 4 4 4 3

73 3 3 1 3 2 2 2

74 1 4 2 3 1 3 2

75 2 2 3 4 3 3 3

76 2 3 3 3 4 4 4

77 1 4 4 2 2 2 3

78 3 4 3 4 4 4 4

79 3 4 2 4 3 3 3

80 4 1 1 1 1 1 1

81 2 3 2 2 2 2 2

82 3 2 2 2 3 3 3

83 4 4 1 4 4 4 3

84 3 2 1 4 4 4 4

85 2 4 4 4 4 4 4

86 1 3 3 2 1 2 2

87 3 2 2 2 3 3 3

88 4 3 2 4 4 4 4
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Table 7 continued Student sens-tr tired-tr not-tr avoid-tr impr-cre eff-cre rem-cre

89 2 4 3 3 4 4 4

90 2 1 4 2 3 3 1

91 3 3 2 1 4 4 4

92 2 3 2 3 2 3 3

93 2 4 3 4 2 2 2

94 2 3 3 2 3 3 3

95 3 1 1 1 3 4 4

96 2 3 3 3 2 3 4

97 3 4 4 4 3 4 4

98 2 2 2 1 3 4 4

99 2 3 3 4 3 3 4

100 3 2 3 4 3 3 4

101 4 1 1 1 3 2 3

102 2 2 2 2 2 2 2

103 2 4 3 3 4 4 4

Table 8 Linguistic variables and
corresponding fuzzy values
(center, left spread, right spread)

Linguistic variables Code Fuzzy values

I totally disagree 1 (3, 3, 1)

I partially disagree 2 (4, 1.5, 1.5)

I partially agree 3 (6, 1, 0.5)

I totally agree 4 (8, 1.75, 0.25)

m
em

be
rs

hi
p 

va
lu

e

Likert scale

Fuzzy numbers
3 4 6 8

1 2 3 4

1
0

Fig. 5 Fuzzy recoding of the 4-item scale, with membership function

If max j R̄2
W, j (k − 1) > R̄2

W(k), we consider the model j ′ with k − 1 inputs such that

j ′ = argmax j R̄2
W, j (k − 1) and we continue the procedure. Otherwise, we select the model

with k fuzzy inputs.
The model selection procedure is summarized in Table 9.
As can be seen, the best model is the LMS–WLS-based fuzzy regression model with six

fuzzy inputs. Note also that all the LS-based fuzzy regression models are severely affected
by the presence of outliers, as can be seen by the low values of R̄2

W.
As for the estimates of the coefficients of the fuzzy regression model, as observed in Sect. 3,

one has to take into account the imprecision due to the ignorance about the data generation
process. Hence we generated 100 bootstrap samples. We then fitted both models to these
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Table 9 Model selection Variable excluded LS LMS–WLS Outliers (%)

R2
W R̄2

W R2
W R̄2

W

None 0.462 0.429 0.984 0.983 40 38.83

tired-tr 0.397 0.366 0.851 0.843 37 35.92

not-tr 0.287 0.250 0.540 0.517 24 23.30

avoid-tr 0.426 0.397 0.850 0.842 39 37.86

impr-cre 0.452 0.424 0.845 0.837 41 39.81

eff-cre 0.457 0.429 0.883 0.877 42 40.78

rem-cre 0.460 0.433 0.936 0.933 44 42.72

Table 10 Coefficients’ estimates
for the LS and the
LMS–WLS-based fuzzy
regression models: Models on the
center (advertising data)

Model α (SE) αl (SE) αr (SE)

LS

Int. 1.424 (1.228) 1.388 (0.734) 1.446 (0.527)

x̃1 −0.016 (0.098) 0.330 (0.119) 0.562 (0.331)

x̃2 −0.442 (0.075) 0.259 (0.104) −0.432 (0.219)

x̃3 0.145 (0.089) 0.398 (0.160) 0.053 (0.283)

x̃4 0.144 (0.076) −0.153 (0.116) 0.213 (0.226)

x̃5 −0.054 (0.128) 0.252 (0.178) −0.104 (0.391)

x̃6 −0.019 (0.099) 0.030 (0.137) −0.228 (0.330)

LMS–WLS

Int. 1.645 (0.710) 1.019 (0.353) 0.505 (0.190)

x̃1 −0.056 (0.038) 0.589 (0.052) 1.503 (0.133)

x̃2 −0.376 (0.053) 0.643 (0.124) −1.091 (0.144)

x̃3 −0.028 (0.054) 0.003 (0.039) −0.096 (0.126)

x̃4 0.336 (0.059) −0.546 (0.067) 0.977 (0.156)

x̃5 −0.050 (0.059) 0.009 (0.128) −0.157 (0.188)

x̃6 0.119 (0.045) −0.130 (0.077) 0.388 (0.180)

bootstrap samples. The standard deviation of the estimates of the regression coefficients
provided us a measure of the accuracy of the estimates obtained with both models.

The estimates of the coefficients are reported in Tables 10 (models on the center) and
11 (models on the spreads). The bootstrap estimates of the standard errors are reported in
brackets.

As expected, the presence of outliers produces some bias in the estimates of the LS-
based fuzzy regression model. Consider, for instance, the effect that the center of the third
explanatory variables exerts on the centers of the response. The two models return estimates
with opposite signs. However, one would expect that the more the respondent tries to avoid
traditional campaigns, the less sensitive is she or he to these types of campaigns, i.e., we
expect a negative sign of the coefficient, as in the LMS–WLS-based fuzzy regression model,
while the sign for the LS-based fuzzy regression model is positive.

Focusing only on the LMS–WLS-based fuzzy regression model and on the model which
relates the centers of the explanatory variables to the center of the output, we notice that
the second, the fourth and the sixth variable are significant. Thus, not paying attention to
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Table 11 Coefficients’ estimates
for the LS and the
LMS–WLS-based fuzzy
regression models: Models on the
spreads (advertising data)

LS LMS–WLS
Est. (SE) Est (SE)

δ0 1.763 (0.057) 2.121 (0.019)

δ1 −0.174 (0.015) −0.251 (0.006)

γ0 2.051 (0.276) 1.937 (0.060)

γ1 −0.095 (0.058) −0.067 (0.013)

traditional campaigns, being impressed by creative campaign, and better recalling creative
campaigns affect the most the sensitiveness to traditional campaigns.

7 Final remarks

In this paper, a generalization of the fuzzy regression model proposed by Coppi et al. [10] has
been discussed. In particular, by considering an iterative Weighted Least Squares estimation
approach, a general linear regression model for studying the dependence of a general class
of fuzzy response variable ,i.e., L R2 fuzzy variable or trapezoidal fuzzy variable, on a set of
crisp or L R2 fuzzy explanatory variables has been proposed. Furthermore, some theoretical
properties and a suitable generalization of the determination coefficient to investigate the
goodness of fit of the regression model, have been illustrated. To neutralize and/or smooth
disruptive effects of possible crisp or fuzzy outliers in the estimation process, a robust version
of the fuzzy regression model based on the Least Median Squares estimation approach has
been suggested. Finally, some theoretical remarks and an assessment of imprecision of the
regression function have been illustrated. The good performance of our models are shown
by means of a simulation study and some applications to real cases.

In future, the proposed fuzzy regression model and its robust version might be improved
in several directions. In particular, an interesting aspect is related to the modelization of the
regression relationship between the spreads of the fuzzy response variable and the respective
estimated centers. In model (5a)–(5d) these are assumed in a simple linear form. A more
complex relationship could be considered, in order to cope with observational studies where
the simple linear assumption is not suitable.

Another interesting issue is to utilize our models in a clusterwise context [17,19].
Furthermore,to improve the capability of managing the uncertainty due to randomness of

the data, a further line of research that deserves careful attention in future research consists
of making our fuzzy regression models probabilistic, by using the notion of fuzzy random
variable (see, e.g., [7]). We will investigate the above lines of research in future works.

Appendix: Iterative solutions of the L R2 output–L R2 inputs regression model

By substituting in (7) the expressions (5a)–(5d), and by putting the first partial derivatives
with respect to each coefficient equal to zero, the following iterative solutions are obtained.

α1 = (2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)−1(M′
1WM1)

−1M′
1W

·{2m1 − (M2α2 + Lαl + Rαr )(2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)

−λ[m1γ1 + l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+λ2γ1[l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
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+ρδ1[m2 − (M1β1 + M2β2 + Lβl + Rβr )]
+ρ2δ1[r − (M1β1 + M2β2 + Lβl + Rβr )δ2 − 1δ0]} (20a)

α2 = (2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)−1(M′
2WM2)

−1M′
2W

·{2m1 − (M1α1 + Lαl + Rαr )(2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)

−λ[m1γ1 + l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+λ2γ1[l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+ρδ1[m2 − (M1β1 + M2β2 + Lβl + Rβr )]
+ρ2δ1[r − (M1β1 + M2β2 + Lβl + Rβr )δ2 − 1δ0]} (20b)

αl = (2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)−1(L′WL)−1L′W
·{2m1 − (M1α1 + M2α2 + Rαr )(2 − 2λγ1 + λ2γ 2

1 + ρ2δ2
1)

−λ[m1γ1 + l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+λ2γ1[l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+ρδ1[m2 − (M1β1 + M2β2 + Lβl + Rβr )]
+ρ2δ1[r − (M1β1 + M2β2 + Lβl + Rβr )δ2 − 1δ0]} (20c)

αr = (2 − 2λγ1 + λ2γ 2
1 + ρ2δ2

1)−1(R′WR)−1R′W
·{2m1 − (M1α1 + M2α2 + Lαl)(2 − 2λγ1 + λ2γ 2

1 + ρ2δ2
1)

−λ[m1γ1 + l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+λ2γ1[l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]
+ρδ1[m2 − (M1β1 + M2β2 + Lβl + Rβr )]
+ρ2δ1[r − (M1β1 + M2β2 + Lβl + Rβr )δ2 − 1δ0]} (20d)

β1 = (2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)−1(M′

1WM1)
−1M′

1W

·{2m2 − (M2β2 + Lβl + Rβr )(2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)

−λγ2[m1 − (M1α1 + M2α2 + Lαl + Rαr )]
+λ2γ2[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − 1γ0]
+ρ[m2δ2 + r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]
+ρ2δ2[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]} (20e)

β2 = (2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)−1(M′

2WM2)
−1M′

2W

·{2m2 − (M1β1 + Lβl + Rβr )(2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)

−λγ2[m1 − (M1α1 + M2α2 + Lαl + Rαr )]
+λ2γ2[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − 1γ0]
+ρ[m2δ2 + r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]
+ρ2δ2[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]} (20f)

βl = (2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)−1(L′WL)−1L′W

·{2m2 − (M1β1 + M2β2 + Rβr )(2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)

−λγ2[m1 − (M1α1 + M2α2 + Lαl + Rαr )]
+λ2γ2[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − 1γ0]
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+ρ[m2δ2 + r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]
+ρ2δ2[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]} (20g)

βr = (2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)−1(R′WR)−1R′W

·{2m2 − (M1β1 + M2β2 + Lβl)(2 + λ2γ2 + 2ρδ2 + ρ2δ2
2)

−λγ2[m1 − (M1α1 + M2α2 + Lαl + Rαr )]
+λ2γ2[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − 1γ0]
+ρ[m2δ2 + r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]
+ρ2δ2[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]} (20h)

γ1 = λ−1[(M1α1 + M2α2 + Lαl + Rαr )
′W(M1α1 + M2α2 + Lαl + Rαr )]−1

(M1α1 + M2α2 + Lαl + Rαr )
′W{(M1α1 + M2α2 + Lαl + Rαr ) − m1

+λ[l − (M1β1 + M2β2 + Lβl + Rβr )γ2 − 1γ0]} (20i)

γ2 = λ−1[(M1β1 + M2β2 + Lβl + Rβr )
′W(M1β1 + M2β2 + Lβl + Rβr )]−1

(M1β1 + M2β2 + Lβl + Rβr )
′W{(M1α1 + M2α2 + Lαl + Rαr ) − m1

+λ[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − 1γ0]} (20j)

γ0 = λ−1(1′W1)−11′W{(M1α1 + M2α2 + Lαl + Rαr ) − m1

+λ[l − (M1α1 + M2α2 + Lαl + Rαr )γ1 − (M1β1 + M2β2 + Lβl + Rβr )γ2]}
(20k)

δ1 = ρ−1[(M1α1 + M2α2 + Lαl + Rαr )
′W(M1α1 + M2α2 + Lαl + Rαr )]−1

(M1α1 + M2α2 + Lαl + Rαr )
′W{m2 − (M1β1 + M2β2 + Lβl + Rβr )

+ρ[r − (M1β1 + M2β2 + Lβl + Rβr )δ2 − 1δ0]} (20l)

δ2 = ρ−1[(M1β1 + M2β2 + Lβl + Rβr )
′W(M1β1 + M2β2 + Lβl + Rβr )]−1

(M1β1 + M2β2 + Lβl + Rβr )
′W{m2 − (M1β1 + M2β2 + Lβl + Rβr )

+ρ[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − 1δ0]} (20m)

δ0 = ρ−1(1′W1)−11′W{m2 − (M1α1 + M2α2 + Lαl + Rαr )

+ρ[r − (M1α1 + M2α2 + Lαl + Rαr )δ1 − (M1β1 + M2β2 + Lβl + Rβr )δ2]}.
(20n)
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