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Abstract Based on an enactivist perspective on learning

mathematics, we articulate three key processes of design-

ing mathematics-grounding activities (MGAs) where stu-

dents’ mathematical thinking can be motivated and shaped

with the interactions between their enactments and the

evolving tasks in the activities. Then, evaluation criteria

and design steps will be derived in terms of the key pro-

cesses. The key processes of designing MGAs, the criteria

for evaluating quality MGAs and the design steps also

emerged from the reciprocal relationships between theories

and practices in the context of the Just Do Math (JDM)

program. The processes and steps of designing MGAs

suggested in this article can benefit researchers and edu-

cators to develop original activities for advancing the

learning of mathematics in line with the enactivist per-

spective. Additionally, the key processes can be further

referred to for explanations of how metaphorical grounds

of mathematics can emerge under systemic interactions

between learners, tasks and social contexts, and how

learners’ motivation is integrated into the evolving tasks.

Criteria could be applied for not only evaluating the

potential of MGAs but also for identifying the weaknesses

needed to be modified.

Keywords Enactivist � Game � Mathematics �
Metaphorical

Introduction

Based on an enactivist perspective on learning, we articu-

late three key processes of designing mathematics-

grounding activities (MGAs) where students’ mathematical

thinking can be motivated and shaped with the interactions

between their enactments and the evolving tasks in the

activities. Then, evaluation criteria and design steps will be

derived in terms of the key processes. The key processes of

designing MGAs, the criteria for evaluating quality MGAs

and design steps also emerged from the reciprocal rela-

tionships between theories and practices in the context of

the Just Do Math (JDM) program.

We firstly introduced the background of JDM and its

core component of MGAs. Next, an enactivist perspective

on learning mathematics was presented to provide a base

for reflecting on the design of MGAs. Then, three key

processes of designing MGAs were proposed and followed

by the evaluation criteria for quality MGAs and the design

steps, which were provided for educators and teachers to

select, adapt or design quality MGAs to motivate and shape

students’ mathematical thinking and conceptions. The

innovation and contribution of our approach are concluded

by comparing with current approaches to learning

mathematics.
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Background of JDM and MGAs

Goals and Products of JDM

Students’ negative affective performance in mathematics

learning is always a global problem (Mullis et. al., 2012;

OECD, 2014). Taiwan’s Ministry of Education launched

the JDM program in collaboration with Shi-Da Institute for

Mathematics Education in 2014 to resolve this problem

(Lin & Chang, 2019). The program aimed at engaging

students in mathematics cognitively and affectively as well

as enhancing mathematics teachers’ professional develop-

ment. The scope of the scaling up has encompassed more

than 23,000 primary and lower secondary school mathe-

matics teachers and more than 180,000 students (Wang,

et al., 2021). Until mid-2018, there have been 175 MGAs

designed and evaluated to accept. The mathematical con-

tent of these MGAs is connected to numbers, algebra,

measurement, geometry and probability (Lin & Chang,

2019).

To effectively engage students in mathematics cogni-

tively and affectively, MGAs are the core of the Just Do

Math program. MGAs were designed under careful con-

sideration of mathematics content, mediated tools, and

student learning to help students establish the fundamental

prerequisite ideas before learning a mathematics topic in

regular classes. The theories referred to the design of

MGAs included to provide students opportunities for

meaningful learning (Ausubel, 1961), for schema con-

struction (Skemp, 1989), for experiencing different abstract

levels of concepts with enactive, iconic and symbolic

representations (Bruner, 1964), and for game-based learn-

ing adapted from Dienes (1973) in the mode stage of the

JDM program (Lin & Chang, 2019). However, these the-

ories were reactively related to the elaboration of MGAs

rather than proactively referred to facilitating and

improving the design of MGAs.

An Exemplary MGA

Before reflecting on the design of MGAs, a classical

activity, Skemp’s (1989) rectangular numbers game, is

introduced and elaborated because it is acknowledged as

the first MGA in the JDM program (Lin & Chang, 2019).

The primary rule of the game is that one player gives the

other a number of counters, and the other tries to make a

rectangle using all of the counters. If the number of

counters can or cannot be used to make a rectangle, the

rectangular and non-rectangular shapes may represent two

different categories of shapes in the beginning of the

activity. Figure 1 shows an example of a rectangular shape.

Players as learners can meaningfully act on the counters

with the goal of making as many rectangles as possible.

When taking turns, the goal is to give a number of counters

which cannot be used to make a rectangular shape. As

players further classify the different shapes, the different

categories of shapes could further be transformed as dif-

ferent categories of numbers. It is noted that players’ active

classification may not be completely correspondent with

prime and composite numbers. For instance, students may

find that no matter how many counters they have, they can

make them into a line.

In order to win, the player has to make more rectangles

than the other player. The task is evolved as players reg-

ulate their strategies by observing what happened in the

game and transforming their strategies into an applicable

conception for further enaction. In addition to considering

the cognitive function of the rectangular numbers game,

the motivational function of games can make players

continuously and actively engage in the tasks. The classi-

fication of various lines and rectangles are assumed to be

brought forth in players’ mathematical world, which is

actually determined by each player, according to the

enactivist perspective (Simmt & Kieren, 2015). Both cog-

nitive and motivational functions in Skemp’s rectangular

numbers game are regarded as a favourable context for

students’ learning of mathematics.

We acknowledge Skemp’s rectangular numbers game as

a quality MGA for the effective learning of mathematics in

line with the enactivist perspective on learning, which will

be described later, because this game provides the oppor-

tunity for the players to bring forth an intended mathe-

matical world of the mathematical process (effective

classification of different shapes) and mathematical object

(categories of numbers) underlying the task (rectangular

numbers game) through embodied thinking with the

counters. Hence, we would base on an enactivist perspec-

tive on learning mathematics to reflect on MGAs and then

propose three key processes underlying the design of

MGAs.

Fig. 1 A rectangular shape
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An Enactivist Perspective on Learning
Mathematics

Enactivism defines cognition as ‘‘the enactment of a world

and a mind on the basis of a history of a variety of actions

that a being in a world performs’’ (Maturana & Varela,

1992, p. 9). This definition indicates that cognition is not

the individual’s mind itself, but rather the individual’s

action of bringing forth a world of significance where they

interact with others in the environment (Maturana & Var-

ela, 1992). The interactions that bring forth a world of

significance have been recognized as one pivotal move in

mathematics education research (Simmt & Kieren, 2015).

Learning mathematics is not predetermined by either the

individual or others, but rather by acting and interacting

with each other such that the co-evolution (i.e. the struc-

tural coupling, Maturana & Varela, 1992) of the individual

and others allows new actions to bring forth mathematical

knowledge and practices. The mathematical knowledge

and practices are occasioned by the interactions between

the individual and others but determined by the individ-

ual’s structure.

Mathematics education researchers have paid attention

to elaborating the implications of the enactivist perspective

for pedagogical practice (e.g. Hutto et al., 2015; Kieren

et al., 1995), and taken enactivism as research methodology

to interpret the interactions between the individual and

others, which bring forth a world of mathematical signifi-

cance and generate inter-objectivity (Simmt & Kieren,

2015). These studies indicate that it is paramount to

investigate how students or teachers bring forth a mathe-

matical world that is not fixed and predetermined but rather

is shaped and reshaped. Nonetheless, most studies focus on

descriptions and explanations of student learning or teacher

learning to teach. We would like to move one step forward

to anticipate student learning through task design and

evaluation.

An inevitable problem about task design is ‘‘the per-

sistence of a gap between teacher intention and student

activity’’ (Coles & Brown, 2016, p. 149). Coles and Brown,

based on the enactivist perspective, have provided two

mechanisms, including the making of distinctions and the

having of an explicit image of mathematical thinking, to

eliminate the gap by guiding teacher planning, teacher

actions and student activity in the classroom. The making

of distinctions through the use of similarity and difference

can occasion transforming actions of teachers and students.

For example, when students solve 1/4 9 36 = 9 by trans-

forming it as 4 9 9, it is necessary to refer to their internal

structure, an image of mathematical thinking (e.g. the unit

portion of the unknown whole is the part), relevant to this

task. Then, the task may be co-evolved as the whole is

4 9 1 if the part (i.e. 9) is changed to 1, or the whole is

2 9 9 if one unit portion (i.e. 1/4) is changed to 1/2. Such

co-evolution implies that students may be aware of the

common structure underlying the original and evolved

tasks. Such awareness may occasion the individual’s image

of the relationship between one unit portion, the whole and

the part to construct the solution of 4 9 9. The occasioned

transforming actions (the shift in attention, Watson &

Mason, 2007) reciprocally extend the individual’s image of

mathematical thinking to other tasks, such as 3/4 9 12 = 9.

After analyzing the complex process of learning algebra

in the classroom, Coles and Brown (2016) developed the

following principles of task design: ‘‘(1) considering at

least two contrasting examples (where possible, images)

and collecting responses; (2) asking students to comment

on what is the same or different about contrasting examples

and/or to pose questions; (3) introducing language and

notation arising from student distinctions; (4) starting with

a closed activity (which may involve teaching a new skill);

(5) having a challenge prepared in case no questions are

forthcoming; (6) opportunities for the teacher to teach

further new skills and for students to practise skills in

different contexts; (7) opportunities for students to spot

patterns, make conjectures and work on proving them’’ (p.

157). Principle (1), (2) and (3) aim at closing the gap

between teacher intention and student activity and thus

relate more to the mathematical world, brought forth by the

interaction between students and tasks through their mak-

ing of distinctions. Principle (4), (5), (6) and (7) are specific

to teaching in the particular way and thus relate more to the

task itself and teacher instruction as otherness to make an

intended mathematical world co-evolved more likely.

However, these principles were developed mainly based on

teaching with contrasting examples. It is worth proposing

alternative approaches to the design of learning activities

based on the enactivist perspective.

Tasks with certain characteristics will have the influence

on learners’ enactments which simultaneously change the

tasks (Lozano, 2017), so that tasks and learners are thus

always co-evolving to bring forth a mathematical world. To

allow students more likely to effectively bring forth an

intended mathematical world with tasks co-evolved (Var-

ela et al., 1991), how can we design tasks which can

motivate learners’ active engagement and facilitate their

effective, but not necessarily correct, enactments of

mathematical thinking through interacting with other

learners as well as the co-evolving tasks? To answer the

questions, we reflect on MGAs with the three focuses: the

essence of an intended mathematics, an approach to it’s

palpable enactment, and motivation inter-related with it.

The focuses are different from the art-of-the-state of

research on the reciprocal interactions between tasks, stu-

dents’ learning and classroom teaching. Herein, the factors
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considered to design tasks include motivational and cog-

nitive processes, and processes of designing quality MGAs

are proposed in terms of the above three focuses to facil-

itate the original design of tasks based on an enactivist

perspective on learning mathematics.

Key Processes of Designing MGAs:
Metaphorizing, Scaffolding, Gamifying

From the enactivist perspective, mathematical processes

and objects are enacted, not predetermined and brought

forth from learners’ embodied actions and interactions with

the evolving tasks as well as others (Varela, 1999).

Nonetheless, designers have to analyse what and how the

intended mathematical process and objects could be

enacted through the interactions when designing the tasks.

Thus, we posed three questions with respect to the above

three focuses for reflection on the design of MGAs. That is,

(1) What could the essence of an intended mathematics be

for enactment? (2) How can an intended mathematical

world be enacted and brought forth? and (3) How can

learners be motivated to enjoy the enactment of an inten-

ded mathematical world? Three key processes of designing

quality MGAs, including metaphorizing, scaffolding and

gamifying, are, respectively, derived from responses to the

three questions with reflections on the design of MGAs.

Metaphorizing

Without loss of nature, mathematics is about essences

which make mathematics abstract and are characterized as

embodied metaphors and semiotic objectification (Lakoff

& Nunez, 2013; von Glasersfeld, 1990; Radford, 2000). In

a mathematical world brought forth through the interac-

tions between the individual and others (tasks, peers or

teachers), mathematical abstraction can be counted as the

evolving enactments of cross-domain mappings between a

frame of a source domain (individuals’ world) and a frame

of a target domain (others’ world) by carrying the

embodied thinking and metaphorical inferences (an inter-

action world), which are composed of a metaphorical

ground for metaphorizing (Lakoff, 2009). Like in Rad-

ford’s study (2000), students developed metaphorical fig-

ures as linguistic devices for objectifying the 12th figure of

the pattern in a quiz and as substance for a symbolic for-

mula of a general term. Thus, mathematical abstraction can

be counted as a social activity where a mathematical world

is brought forth through the learners’ embodied thinking

and metaphorical inferences from manipulating or imag-

ining the material or digital tools.

To take Skemp’s (1989) rectangular numbers game as

an example, when players classify the different shapes

(mathematical processes) and then map the shapes (source

domain) into numbers (target domain), the source domain,

target domain as well as the potential interactive process

serve as the metaphorical ground of prime and composite

numbers (an intended mathematical object), drawn in

Fig. 2. The potential interactive process includes players’

enactments of making a line or rectangle, transforming

shapes into numbers and classifying numbers which can be

metaphorically represented as geometric shapes and

embodied in the action and re-action of making a rectangle.

In order to make more rectangles than the other player, one

would regulate their strategy with embodied thinking and

develop an applicable conception with metaphorical

inference (i.e. conceptual metaphor) in the evolving

activity. That is, the rectangular numbers game provides

players the opportunity to metaphorically represent num-

bers as geometric shapes and embody numbers as the

enactments of making a rectangle, and thus builds a

metaphorical ground for bring forth a conceptual metaphor

of prime and composite numbers, i.e. an intended mathe-

matical world.

A conceptual metaphor has been recognized as ‘‘the

cognitive mechanism by which the abstract is compre-

hended in terms of the concrete’’ (Núñez, 2000, p. 6). For

instance, numbers are points on a line, or an equation is a

balance (Lakoff & Nunez, 2013). Nonetheless, we would

like to create more metaphorical grounds to occasion

conceptual metaphors of the target domain through learn-

ers’ embodied experiences linked with active and reflective

thinking. The source domain is realized as a task context

with consideration of the subject’s historical contexts in

social contexts. In a task context, a source domain is

embodied as regulative actions where substantial ideas in a

target domain are co-evolved through carrying out the

embodied thinking and metaphorical inferences by leaners

and their interactions in social context. MGAs can be

accounted as providing the opportunities to develop con-

ceptual metaphors of the target domains involving intended

mathematical worlds emerging with learners’ embodied

thinking and metaphorical inferences from their changing

enactments in source domains.

Scaffolding

When reflecting how MGAs could more likely bring forth

conceptual metaphors of an intended mathematical world

through learners’ enactments, the need for scaffolding

arises. In view of the fact that a metaphorical ground could

be embedded in MGAs for shaping learners’ conceptual

metaphors and making sense of an intended mathematical

concept, the scaffolding aims at supporting the learners’

cognitive structuring and metacognitive reflection, which

are required to make experiences, actions and thoughts
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coherent (Menary, 2008). Cognitive structuring on

embodied perceptions is not only facilitated by the source

domain, but could be also scaffolded by physical and

mental manipulation (e.g. making a rectangle) which can

benefit to the co-evolution of learners’ conceptions and the

tasks.

There are studies suggesting that physical models are

not always necessarily effective because students may have

difficulties perceiving physical models as representations

of mathematical concepts and translating physical models

into mathematical symbols for further problem solving

(Uttal et al., 1997). From our analysis of Skemp’s rectan-

gular numbers game based on the enactivist perspective,

learners confront alternative difficulties associated with

metaphorizing, such as whether a hollow square belongs to

the rectangular numbers or whether a bigger number is a

rectangular number with 9 9 9 multiplication facts

actively applied by leaners, because physical models are

enacted by and evolved with learners to bring forth con-

ceptual metaphors of the intended mathematical concepts,

rather than needing to be represented as and translated into

mathematical concepts. Representations, such as zero-point

rectangular numbers or point-line numbers or square-rect-

angular numbers (i.e. square numbers), are co-evolved with

the learners’ cognitive structuring and metacognitive

reflection on their interactions with others and tasks.

The scaffolding is gradually faded out as physical

manipulation is evolved as mental manipulation (e.g.

imagining a number of counters which can only make a

line) and then reflectively abstracted as a conceptual

metaphor (e.g. a number which cannot be divided by

‘other’ numbers) of the intended mathematical concept

(e.g. a prime number). That is, the scaffolding of physical

manipulation aims at facilitating metaphorical inferences,

and assist visual as well as verbal representations of con-

ceptual metaphors when it is gradually faded out. Because

the representations are co-evolved with and thus made

sense of by learners, the interconnections between physical

models and the co-evolved representations may support

further understanding and application of the formal repre-

sentations of the mathematical concepts.

The metacognitive scaffolding is assumed to appear

when the tasks can trigger the learners’ awareness of the

insufficiency of the emergent conceptions (different fea-

tures of numbers) and the need to re-structure them (e.g.

classification of different features of numbers), which may

shift learners’ attention and then advance the structures of

attention from gazing, making distinctions, recognizing

relationships, perceiving properties to reasoning on the

basis of identified properties (Mason & Johnston-Wilder,

2004).

Accordingly, we assume that the attention to self- and

others’ enactments and shifts in structures of attention can

become a metacognitive scaffolding for self-reflection.

That is, through the interactions within and between the

leaners and the tasks in social the context, an evolving

system is provided for learners to create and maintain their

own domain of meaningfulness under the scaffolding of

physical as well as mental manipulation and the opportu-

nity to be aware of insufficiency as well as to self-reflect on

structures of attention which could constitute their vital

significance and brings forth a mathematical world, i.e. a

Source Domain 

Point 

Line 

Rectangle 

Metaphorical  

Inference 

Embodied 

Thinking 

Target Domain  

1

3 

6 

Non-rectangular 

(Prime) number 

Rectangular 

(Composite) number 

Metaphorical Ground 

Point Number  

Fig. 2 Metaphorical ground of

prime and composite numbers
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process of sense-making (Thompson, 2007). The complex

process of learning is occasioned when they engage the

activities ‘‘as reflections of a structure without losing sight

of the directness of our own experience’’ (Varela et al.,

1991, p.12).

Gamifying

In addition to the essence of an intended mathematics and

scaffolding for bringing forth it, the motivation power of

games is considered to uplift learners’ emotional engage-

ment and enjoyment in a co-evolving activity. Thus,

gamifying task contexts is applied for sustaining learners’

motivation to resolve the insufficiency of the emergent

conceptions. Particularly, an enactivist perspective on

motivation emphasises the intrinsic connections between

organism and environment through the organism’s enaction

(Shargel & Prinz, 2018). Such as in Skemp’s rectangular

numbers game, the atmosphere of competition and chal-

lenge in generating critical numbers produce a sense of

emotion inter-related with the grasp of a non-rectangular

number (i.e. prime numbers) named as ‘‘blow-up’’ numbers

by learners.

The gamified task contexts are also employed to opti-

mize systemic interactions. According to flow theory,

‘educational games should stretch a player’s mind to its

limits in his effort to overcome worthwhile challenges’

(Kiili et al., 2012, p. 89). Flow theory supposes that to

accomplish something difficult and worthwhile may not be

necessarily pleasant but can still be enjoyable (Csikszent-

mihalyi, 1991) because the experiential engagement with

gamified tasks can trigger selecting, processing, integrating

and discussing with each other, and then is intrinsically

interesting and fun (Kiili et al., 2014). Such process ben-

efits to optimize systemic interactions between internal and

external ecology. For instance, Skemp’s rectangular num-

bers game has been modified to develop the concept of

factors, and such modification brought forth systemic

progression of tasks, learners and all other participants in

the JDM program.

In gamified task contexts, the structural coupling is more

likely regulated by reflective and collective abstraction of

the intra- and inter-learners accompanying the systemic

interactions between learners, tasks and social contexts

because the regulation of the structural coupling relies on

learners’ historical contexts under task (intra-learners) and

social (inter-learners) contexts in a quality MGA.

Criteria for Evaluating MGAs

In the JDM program, MGAs were reflected to design for

creating an effective environment including learners, tasks

and social contexts where learners’ needs for and attention

to structures co-evolving with tasks can be sustained. An

empirical study has shown that the MGAs can enhance

students’ interest, confidence and engagement in bringing

forth fundamental mathematical conceptions in gamified

activities before learning mathematics in classes (Lin et al.,

2018). Based on the experience of the JDM program, three

criteria for evaluating the quality of these MGAs were

identified in terms of the above three processes:

metaphorizing, scaffolding, and gamifying.

When we are concerned about what constitutes a good

metaphorical ground for an intended mathematical world,

two conditions: sufficient and necessary are considered. To

elaborate our sufficient and necessary conditions, we refer

to the first two features of good generic examples—rep-

resentative and developmental (Mason & Pimm, 1984)—

being easy to learn and enjoyable to learn (Cheng, 2000).

Representative, considered as a sufficient condition of the

source domain, means that the source domain has to con-

tain the essential substance and a potential form of a target

domain. Developmental, considered as a necessary condi-

tion of the target domain, means that the metaphorical

ground for the target mathematical domain, such as rect-

angular numbers, should be beneficial to developing a new

concept, such as prime numbers. The other two features,

easy and enjoyable, are, respectively, correspondent with

the other two processes of designing MGAs: scaffolding

and gamifying.

As for the scaffolding criterion, we also consider good

generic examples, which can substantiate students’ math-

ematics sense-making (Mason & Pimm, 1984). Similarly,

MGAs should provide learners with the opportunity to

generate examples under the scaffolding of physical

manipulation and of self-awareness of the insufficiency of

emergent conceptions. Particularly, learners can make

structural coupling by generating, comparing as well as

testing different examples, and become aware of the need

to restructure their insufficient conceptions through the

shift in structures of attention.

In addition to the generation of generic examples, the

second criterion of scaffolding is drawn on optimizing the

third feature of good generic examples: being easy to learn.

It is suggested that the underlying structures (the source

and target domains) of task contexts be connected with

learners’ historical contexts, such as their pre-knowledge

and experience of rectangles under social contexts, because

the intrinsic connections make it easier for learners to make

sense of conceptual metaphors, emerging from interactions
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of complex systems (Fenwick, 2000). This process of

embodying an abstract concept through MGAs could be

counted as a form of generic abstraction where conceptual

metaphors, instead of formal concepts, are gradually made

sense of and evolved (cf. Harell & Tall, 1991).

The fourth feature of good generic examples, being

enjoyable to learn, is considered with relation to the third

process of gamifying. When evaluating the quality of

gamifying, we focus on the two criteria for keeping players

in the flow state: challenge and playability. The appropriate

level of challenge requires a balance between the learners’

confidence and the task difficulty (internal ecology) for

developing conceptual metaphors of an intended mathe-

matical world in social contexts (external ecology).

Playability resides not only in gamified task contexts but

also in learners’ historical and social contexts where the

regulative reflection on the insufficiency of the emergent

conceptions can be kept motivated.

In sum, being representative and developmental are the

criteria for evaluating the quality of metaphorizing. For

evaluating the quality of scaffolding, we are concerned

with the opportunities to generate generic examples as well

as the intrinsic connections of learners with tasks and

social contexts, which make the generation of generic

examples easier for students. The evaluation criteria for the

quality of gamifying are challenge and playability under

the consideration of the balance within and between

internal and external ecology.

Designing Steps and One Exemplary Application

From the three processes of designing MGAs:

metaphorizing, scaffolding and gamifying, three missions

of designing MGAs emerged: (1) to transform a mathe-

matical idea into a metaphorical ground, (2) to materialize

the metaphorical ground as the scaffolding of physical

manipulation as well as self-awareness of the insufficiency

of the emergent conceptions, and (3) to gamify a task

context for sustaining learners’ interest and perseverance in

bringing forth a conceptual metaphor to succeed in the

game.

To accomplish the first mission, two steps are suggested:

(1) recognizing what the target domain of an intended

mathematical concept is, and (2) recognizing a source

domain to embody the target domain which could be

inferred as conceptual metaphors of the source domain. To

accomplish the second mission, two steps are suggested:

(3) providing tools which can be manipulated to generate

examples, and (4) providing goals which can trigger

learners’ awareness of the insufficiency of their emergent

conceptions and enact the development of conceptual

metaphors. To accomplish the third mission, two steps are

suggested: (5) generating multiple task processes and out-

comes, and (6) generating relevant feedback as tasks

evolve.

Taking factorization of quadratic expressions in one

variable as the intended mathematical concept, the first step

is to recognize the target domain of this concept including

quadratic, linear and constant terms (e.g. x2, 5x, 6), quad-

ratic expressions (the addition or subtraction of these

terms), the multiplication of linear expressions [e.g.

(x ? 2)(x ? 3)] and their structural relationship. The sec-

ond step is to recognize the source domain including the

sides and area of one rectangle, the sides and area of one

rectangle composed of several rectangles, as well as the

relationship of the sides and area of the composed rectangle

and the other rectangles. The source domain directs us to

use algebra tiles (Leitze & Kitt, 2000) as physical models

which can embody metaphorical concepts of the target

domain, such as different representations of the area of one

rectangle (visual, geometric as well as symbolic) and the

transformation between geometric and symbolic represen-

tations from which structural relationships are co-evolved

instead of mapped in the MGA, which can be viewed as

conceptual understanding (Caglayan, 2013). This direction

has followed the third and fourth steps to provide manip-

ulable tools and the goals to trigger the insufficiency of free

arrangements of the tiles.

Differing from previous studies of using algebra tiles for

understanding factorization of quadratic polynomials,

algebra tiles are used to make sense of quadratic expres-

sions through manipulating geometric representations and

attending to the underlying structural relationships where

learners are asked to generate and compare various

examples of rectangles and express the structural rela-

tionships. Such process is assumed to bring forth

metaphorical concepts of the target domain when shifting

the attention to the structural relationships between geo-

metric and symbolic representations of the sides and area

of rectangles to the structural relationships within the

coefficients of quadratic polynomials and factored terms.

Accordingly, tasks are designed to construct one rect-

angle using up a set of rectangles and to record the area of

the set of rectangles as well as the two adjacent sides of the

composed rectangle. In order to trigger learners’ awareness

of insufficiency of emergent conceptions (e.g. the com-

posed rectangle and the set of rectangles used up have the

same area), two contexts, with and without using physical

models, to accomplish the tasks are provided. In the con-

text without using physical models, learners can encounter

the need to grasp an effective and efficient approach to

compose a set of rectangles because trial-and-error pro-

cesses are unfavourable without using physical models, and

then reflect on the process of using physical models to

regulate the attention.
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Several sets of rectangles are written on blank cards, for

example, one rectangle with x length and x width, 4 rect-

angles with x length and 1 width, and 3 rectangles with 1

length and 1 width (unit squares). In order to generate

multiple task processes and outcomes, which is the fifth

step, we can vary the sets of rectangles by varying the

length and width parameters, such as one rectangle with 2x

length and x width, and the number of rectangles with x

length and 1 width as well as unit squares. It can be

assumed that one would get a higher score when per-

forming a task without using physical models. The direct

feedback is the shape of a rectangle. Indirect feedback is

generated through observing and reflecting on others’

strategies to regulate one’s own. The sixth step is accom-

plished by both feedback types provide information rele-

vant to the goals. The board game could end when all cards

are used up or when one player scores a certain number of

points (Deng, 2014).

Applying the criteria for evaluating the above MGA of

rectangular tiles, algebra tiles are representative of alge-

braic terms and polynomials. Various numbers of rectan-

gles of different categories make emergent conceptions

developmental and the generation of various examples

possible. Generic examples reside in generic quadratic

polynomials, such as x2 ? 4x ? 3 or x2 ? 6x ? 5, which

is both not too simple (e.g. x2 ? 2x ? 1) and yet simple

enough to evolve emergent conceptions. The physical

models make the tasks easier for learners to accomplish

because of being manipulative and transformative, resulted

from the intrinsic connections and self-regulation. Uncer-

tainty about task processes brings challenge and curiosity.

In addition to a playable activity, the relevant feedback

sustains learners’ interest and perseverance.

Thus, the MGA of rectangular tiles should be qualified

to provide an opportunity to make sense of and develop

metaphorical concepts of factorizing quadratic expressions

in line with the enactivist perspective on learning. Learning

through engaging in the MGA of rectangular tiles enables

learners to experience algebra as the expression of rela-

tionships and to overcome the difficulties in manipulations

and applications of algebraic symbols because the struc-

tural relationships between physical models and algebraic

symbols are co-evolved rather than residing in interpreting

abstract algebraic symbols with concrete physical models.

Conclusion

Based on an enactivist perspective on learning mathemat-

ics, MGAs are reflected to develop a systemic ecology

where mathematical practices are enacted, rather than

relying on either learners or tasks, based on a metaphorical

ground analyzed by designers (metaphorizing), provided

with the scaffolding of physical manipulation and self-

awareness of insufficient conceptions (scaffolding) and

through motivating learners to interact and interconnect

with evolving gamified tasks (gamifying). This means that

learners, tasks and others in MGAs are three interactive and

interconnected systems, and are structurally coupled to

develop metaphorical concepts. Tasks act as triggers for

learners to change and transform as much as learners act as

triggers for tasks to change and transform. Our approach to

structural coupling is to make it not only occasioned and

co-emergent at the moment of systemic interactions

between learners, tasks and social contexts, but also scaf-

folded by manipulating physical models to generate

examples and to be aware of the insufficiency of their

emergent conceptions which can facilitate the need for

abstraction and make metaphorical inference in MGAs.

Enactivism does not account too much for how the

structured coupling of learners and tasks can be encour-

aged. The three processes, six criteria and six steps con-

sidered for designing and evaluating MGAs pave the way

to putting the enactivist theory into practice. Compared to

Skemp’s (1989) notion of knowledge construction, a

combination of building and testing, we further pay

attention to how building and testing can occur more likely

based on the enactivist perspective on learning. From

Freudenthal’s (1991) view, reality is based on common

sense experience, and the boundary between horizontal and

vertical mathematization relies on the learners’ back-

ground. Metaphorical grounds of MGAs extend the

meaning of reality to a source domain in contexts, and then

provide opportunities for learners to horizontally and ver-

tically mathematize with the scaffolding of physical

manipulation, self-awareness of the insufficiency of

emergent conceptions and shifts in structures of attention

for self-reflection.

Proulx (2013) has applied the enactivist theory for

analysing students’ emergent strategies when solving

mental mathematics problems, following Threlfall’s (2002)

ideas about strategy development in mental calculations.

Proulx’s illustrations shifted the focus of investigation of

problem solving from the nature of strategies used by

students to the nature of mathematical activities involving

students and tasks (Davis, 1995). Our application of the

enactivist perspective moves one step forward to originally

design mathematical activities (e.g. MGAs) which can

generate the learning opportunities for learners to bring

forth intended mathematical concepts through systemic

interactions between learners, tasks and social contexts.

Our key processes concur with the embodied design by

considering two epistemic modes of the immediate ‘‘do-

ing’’ and mediated ‘‘thinking’’ to emphasize physical

experience and guided signification (i.e. the conveying of

meaning) where learners are engaged in immersive action
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and then structured reflection (Abrahamson & Lindgren,

2014). In MGAs, such reflection is facilitated by self-

awareness of the insufficiency of emergent conceptions and

sustained through the interactions within and between the

leaners and the tasks. Thus, MGAs resemble embodied

design, with the aim of shaping and reshaping learners’

physical action schemes with the evolving tasks, and

shifting their structures of attention to bring forth

metaphorical concepts of the target domain.

The processes and steps of designing MGAs suggested

in this article can benefit researchers and educators to

develop original activities for advancing the learning of

mathematics in line with the enactivist perspective. Addi-

tionally, the key processes can be further referred to for

explanations of how metaphorical grounds of mathematics

can emerge under systemic interactions between learners,

tasks and social contexts, and how learners’ motivation is

integrated into the evolving tasks. Criteria could be applied

for not only evaluating the potential of MGAs but also for

identifying the weaknesses needed to be modified. To sum

up, our approach contributes to the application of the

enactivist perspective to the articulation of the key pro-

cesses of metaphorizing, scaffolding and gamifying for the

design and evaluation of MGAs, which make task design

more accessible and students’ learning predictable. Further

investigation is to develop effective instructional principles

from analyzing MGAs from teachers’ perspective in

practical contexts.
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