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Abstract
Quasi-periodic orbit families in astrodynamics are usually studied from a global 
standpoint without much attention to the specific orbits which are computed. Instead, 
we focus on the computation of particular quasi-periodic orbits and develop tools to 
do so. These tools leverage the parametric structure of families of quasi-periodic 
orbits to treat orbits only as a set of orbit frequencies instead of states in phase space. 
We develop a retraction on the family of quasi-periodic orbits to precisely navigate 
through frequency space, allowing us to compute orbits with specific frequencies. 
The retraction allows for movements in arbitrary directions. To combat the effects 
of resonances which slice through frequency space we develop resonance avoidance 
methods which detect resonances during continuation procedures and change the 
step size accordingly. We also develop an augmented Newton’s method for root-
finding and an augmented gradient descent method for unconstrained optimization 
over a family of quasi-periodic orbits. Lastly, we implement an augmented 
Lagrangian method to solve constrained optimization problems. We note that many 
of the tools developed here are applicable to a wider range of solutions defined 
implicitly by a system of equations, but focus on quasi-periodic orbits.

Keywords Quasi-periodic orbits · Invariant tori · Orbit families · Optimization · 
Resonance

1 Introduction

Trajectory design of 1-parameter families of solutions is simpler than multi-
parameter families since there is only one dimension in the space of solutions to 
search: forward and backward. Multi-parameter families introduce a larger solution 
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space and increase the complexity of finding solutions since there are multiple 
dimensions to search. Most studies utilizing methods to compute quasi-periodic 
orbits don’t focus on the computation of specific family members, but instead are 
used to research entire families of orbits [1–7]. Knowing the characteristics and 
limitations of each orbit family is the first step in determining which orbit types 
should be used in designing a mission. The next step is finding explicit members 
from the candidate families to provide options that meet initial mission constraints. 
Quasi-periodic orbit families generally exist in multi-parameter families in 
astrodynamics models, and the ability to search through these higher dimensional 
spaces to pick out a specific orbit is not trivial.

A family of quasi-periodic orbits satisfying the Diophantine conditions1 has been 
shown to be a nearly continuous family called a Cantor family (Cantor manifold) in 
[8–10]. A Cantor manifold has gaps in it where the torus frequencies do not satisfy 
the Diophantine conditions. It has been shown that a Cantor manifold can be treated 
as a smooth manifold where smoothness is defined in the sense of Whitney2 [9–13]. 
The smoothness of families of quasi-periodic orbits is a powerful notion as it allows 
one to draw ties to smooth manifolds defined by the implicit function theorem, and 
utilize all the rich theory and tools developed for smooth manifolds [14, 15]. One 
such tool is the gradient; an indispensable tool enabling gradient-based optimization 
over families of orbits, adding to the list of available tools for trajectory designers. 
This work focuses on the optimization of cost functions over a family of quasi-
periodic orbits.

Optimization can be done on smooth and non-smooth manifolds using non-
gradient-based methods, such as genetic algorithms and particle swarm optimizers 
[16], however in general, it is beneficial to utilize the topology and smoothness of 
a space when available. The exceptions to this are when the cost of evaluating the 
gradient is prohibitive, the gradient is not well-behaved over the space, or when 
there are many local minima.

The standard optimization formulation

where z = [xT ,�T ]T treats the orbit states x and the orbit frequencies � as 
independent variables which need to satisfy equality constraints defining a family of 
quasi-periodic orbits. Instead, we reformulate the optimization problem as

(1)

min
z∈ℝd

f (z)

subject to gi(z) = 0, i = 1,… , r

hj(z) ≤ 0, j = 1,… , s,

1 Also called a non-resonance condition. The Diophantine conditions ensure the torus frequencies stay 
sufficiently far from resonances.
2 Whitney’s theorem in Reference [11] says that a differentiable function f(x) defined on a compact sub-
set U ⊂ ℝ

n can be extended to a differentiable function F(x) defined on ℝn.
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to leverage the fact that each orbit is uniquely parameterized by the orbit 
frequencies such that the optimization occurs over the set of orbit frequencies in 
a family of quasi-periodic orbits, Ω . Optimizing over the orbit frequencies greatly 
reduces the number of optimization variables. The negative gradient of a cost 
function, −��f  , dictates the direction in Ω to move locally to minimize f. We 
use a retraction developed here to explore the descent direction and compute the 
corresponding quasi-periodic orbits. Using the retraction derives several benefits. 
First, and foremost, the retraction ensures the invariance equations and any 
additional parametric constraints for the computation of quasi-periodic orbits are 
always satisfied. Moreover, the retraction is specialized to handle the subtleties of 
computing quasi-periodic orbits, such as avoiding resonances, efficiently computing 
quasi-periodic orbits. Lastly, the retraction uses continuation which is leveraged to 
perform line searches in a gradient descent method.

Optimizing over families of quasi-periodic orbits, and even periodic orbit, closely 
relates to a class of problems called PDE-constrained optimization (PDECO). 
PDECO problems occur when there are constraints governed by physical laws 
described by partial differential equations (PDEs). PDECO is a well-developed 
and active field which supports research in a variety of disciplines. One popular 
use is for topology (shape) optimization which aims to find the optimal shape of 
a surface given constraints within a dynamical environment. The most well-
known use of topology optimization in aerodynamics might be to design aircraft. 
Other applications of PDECO include crystal growth [17], cooling of electronic 
components [18], drug transport [19–21], image denoising [22], and uncertainty 
[23]. The reader is directed to the recent book by Antil and Leykekhman in [24] for 
a deeper dive into the subject of PDECO and its applications. The following papers 
contain additional applications [25–27]. While no PDEs are used here, the form of 
the resulting problem is similar. The equations defining a family of quasi-periodic 
orbits serve the same purpose as PDEs with the primary constraint being the quasi-
periodicity constraint involving the solution flow of an ordinary differential equation 
(ODE). The process to compute families of solutions in ODEs involves the use of 
continuation. The idea of using continuation to solve optimization problems seems 
to have originated in the work of Kernévez and Doedel [28].

Kernévez and Doedel devise an optimization routine to find the solution pair 
(�0, u0) of control variables and state variables which maximizes a cost functional 
f (�,u) such that the state equation g(�, u) = 0 is satisfied and subject to inequality 
constraints hi(�,u) ≤ 0 . Their approach freezes all � except one element, employs 
continuation to compute a branch of solutions to g(�, u) = 0 , and then pick the 
solution from the branch which maximizes f (�,u) . They repeat this process in 
succession and change which control variable is left unfrozen. Their approach 
is applied to a family of dynamical systems which depend on � and experience 
bifurcations in these variables. The successive use of continuation is called 
successive continuation and has been used in a variety of disciplines [29–33], 

(2)
min
�∈Ω

f (x,�)

subject to hi(x,�) ≤ 0, i = 1,… , s,
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however they find optimal control variables which change the dynamical system. In 
essence, they are solving for a dynamical system which provides favorable behaviors 
to optimize their processes. The application here considers optimizing over families 
of solutions within a single dynamical system using successive continuation, but 
for the simplicity of presentation we mostly restrict our discussion to families of 
2-dimensional quasi-periodic invariant tori.

We assume the reader is familiar with quasi-periodic orbits and generally 
understand how they are computed using continuation methods, therefore we only 
provide the equations we use to solve for quasi-periodic orbits and the dynamical 
system in which they reside in Sect.  2. We proceed to develop the optimization 
problem in Sect. 3 and describe how derivatives of functions are taken with respect 
to orbit frequencies in Sect.  4. From there we develop a modified continuation 
procedure, which we call a retraction, to target a set of orbit frequencies in Sect. 5. 
Due to the freedom the retraction has to move in frequency space we develop 
methods to reduce the effects of resonances on the computation of quasi-periodic 
orbits in Sect.  6. We then describe the ways in which we solve optimization 
problems over a family of quasi-periodic orbits and provide results for various 
test cases optimizing over the Earth–Moon L2 quasi-halo orbit family. Finally, we 
conclude the paper with an overview of the work and provide a discussion in Sect. 9.

2  Preliminaries

2.1  Continuation of Quasi‑Periodic Orbits

Let X be a vector of points in phase space which partition an invariant curve of a 
2-dimensional quasi-periodic invariant torus with frequencies

The corresponding stroboscopic time, T, and rotations number, �1 are computed as

We define the vector

The equations defining a family of 2-dimensional quasi-periodic invariant tori 
[34–36] are given by

(3)� =

[
�0

�1

]
.

(4)T =
2�

�0

(5)�1 = T�1

(6)z =

⎡⎢⎢⎢⎣

X

T

�1
�

⎤⎥⎥⎥⎦
.
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where R−�1
 is a rotation operator that rotates points in the Fourier domain by an 

angle −�1 , �T (X) is the solution flow of each point in X from time 0 to time T, and 
X̃ is a previously computed invariant curve. The second and third equation in F are 
called phase constraints and give a unique parameterization to the torus. The last two 
equations are consistency constraints capturing the dependence between the orbit 
frequencies and the stroboscopic time and rotation number. The implicit function 
theorem states that if dim(null(DF)) = 2 then there are 2 independent parameters 
to the 2-parameter family. We choose the orbit frequencies to be these independent 
parameters and define the dependent state variables of a quasi-periodic orbit as

We define the following sets

If dim(null(DF)) = 2 for all points in M then each of M , X  , and Ω are implicitly 
defined smooth embedded submanifolds, and refer to them simply as smooth 
manifolds here.

Suppose we add a single parametric constraint, g1 to F , such as a constant 
frequency constraint, then the dimension of the family generally reduces from 2 to 1. 
We let the new generating equations be

and define the 1-dimensional smooth manifolds

(7)F(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

R−𝜌1
𝜑T (X)�

X − X̃,
𝜕X̃

𝜕𝜃0

�
�
X − X̃,

𝜕X̃

𝜕𝜃1

�

T𝜔0 − 2𝜋

𝜌1 − T𝜔1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0,

(8)x =

⎡⎢⎢⎣

X

T

�1

⎤⎥⎥⎦
.

(9)M = {z ∣ F(z) = 0}

(10)X = {x ∣ F(z) = 0}

(11)Ω = {� ∣ F(z) = 0}.

(12)F̄(z) =

[
F(z)

g1(z)

]
= 0

(13)M̄ = {z ∣ F̄(z) = 0}

(14)X̄ = {x ∣ F̄(z) = 0}
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Single-parameter continuation is typically employed to compute M̄ . Let z0 be a 
solution to F̄ = 0 . Computing the tangent space of M̄ , Tz0M , provides a family 
tangent vector, z′

0
 , to predict a nearby solution. The tangent space is computed by 

computing the nullspace of DF . Given a small step size Δs a guess of a new solution 
z1 ∈ M̄ is given by

The 1-parameter family is mapped out by including the pseudo-arclength constraint3 
[37]

and solving the system of equations

for z1 . The process of prediction and correction continues until user-defined 
conditions are met, or a solution fails to be found.

2.2  Circular Restricted Three‑Body Problem

The dynamical system of study here is the circular restricted three-body problem 
[38]. It is the study of motion of a massless particle under the gravitational forces 
of two massive bodies P1 and P2 in circular orbits about their common center of 
mass with m1 ≥ m2 . The dynamics are stated in a rotating frame such that the x-axis 
points from P1 to P2 , the z-axis is aligned with the orbital angular momentum vector, 
and the y-axis completes the right-handed coordinate system. The equations are 
written in a non-dimensional (ND) form where the distance between P1 and P2 and 
the mean motion are equal to one. The dimensionless mass parameter is defined as 
� = m2∕(m1 + m2) . The equations of motion take the following form

(15)Ω̄ = {� ∣ F̄(z) = 0}.

(16)ẑ1 = z0 + Δsz
�

0
.

(17)s(z) =
1

N1

⟨
X − X̃, X̃

�
⟩
+ (T − T̃)T̃ � + (𝜌1 − �̃�1)�̃�

�

1
+
⟨
� − �̃, �̃

�⟩
− Δs

(18)H(z) =

[
F̄(z)

s(z)

]
= 0

(19)

ẍ = x + 2ẏ −
(1 − 𝜇)(x + 𝜇)

r3
1

−
𝜇(x − 1 + 𝜇)

r3
2

ÿ = y − 2ẋ −
(1 − 𝜇)y

r3
1

−
𝜇y

r3
2

z̈ = −
(1 − 𝜇)z

r3
1

−
𝜇z

r3
2

3 Note that z̃� = [X̃
�

, T̃
�

, �̃�
�

1
, �̃

�

].
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where r1 =
√
(x + �)2 + y2 + z2 is the distance to P1 and 

r2 =
√
(x − 1 + �)2 + y2 + z2 is the distance to P2 . The value of � used is 

0.012153599037880 which describes the Earth–Moon system.
The circular restricted three-body problem admits one integral of motion called the 

Jacobi constant, an energy-like quantity that determines which areas of phase space 
are accessible and which other orbits can be reached without changing energy levels. 
Equation (20) defines the Jacobi constant given a state vector x in non-dimensional 
units. In the given form a lower value of J correlates to higher energies at which more 
areas of space can be accessed.

The circular restricted three-body problem is an autonomous dynamical system. In 
these systems periodic orbits form 1-parameter families while n-dimensional quasi-
periodic orbits form n-parameter families. In this work we are concerned with the 
Earth–Moon L2 2-parameter family of quasi-halo orbits, and has been studied in 
great detail by Gómez and Mondelo [2], and Lujan and Scheeres [5, 6].

3  Problem Statement

We proceed with a general statement of the problem to be solved. Let 
F ∶ ℝ

D ×ℝ
p
→ ℝ

D be a system of equations defining a p-parameter family of orbits. 
We are interested in finding a solution z∗ ∈ M such that z∗ minimizes a cost function 
f ∶ ℝ

D ×ℝ
p
→ ℝ subject to equality and inequality constraints. The optimization 

problem can be stated as

In Problem (21), ℝD+p is the space over which the optimization occurs, treating 
z as the optimization variables, and x and � as independent quantities. From the 
implicit function theorem we know x and � are not independent. Each x is uniquely 
parameterized by � and the frequencies � lie on the manifold Ω . We recast Problem 
(21) as the following optimization problem

to remove the dependence on x from the problem. As we will see, we can do 
this because we develop a function which computes x given � . We can further 

(20)J(x) = 2

(
1 − 𝜇

r1
+

𝜇

r2

)
+ x2 + y2 − (ẋ2 + ẏ2 + ż2)

(21)

min
z∈ℝD+p

f (z)

subject to F(z) = 0

gi(z) = 0, i = 1,… , r

hj(z) ≤ 0, j = 1,… , s.

(22)

min
�∈Ω

f (x,�)

subject to gi(x,�) = 0, 1 = 1,… , r

hj(x,�) ≤ 0, j = 1,… , s
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remove the remaining equality constraints by considering the fact that the equality 
constraints perform the same function as parametric constraints, leading to the new 
system of equations F̄ ∶ ℝ

D ×ℝ
p
→ ℝ

D+r

According to the implicit function theorem, if DxF̄ is full rank for all z satisfying 
F̄(z) = 0 then each set

defines a (p − r)-dimensional smooth manifold. It is evident that 0 ≤ r ≤ (p − 1) , 
since for r = p there is at most a single solution in the space to optimize over, and 
r > p results in no solutions. Then Problem (22) reduces to

Now each � ∈ Ω̄ satisfies F and the equality constraints. Problem (27) effectively 
removes the equality constraints by considering a space of parameters which identi-
cally satisfy the equality constraints. We note that the equality constraints decrease 

(23)F̄(z) =

⎡⎢⎢⎢⎣

F(z)

g1(z)

⋮

gr(z)

⎤⎥⎥⎥⎦
= 0.

(24)M̄ = {(x,�) ∣ F̄(x,�) = 0}

(25)X̄ = {x ∣ F̄(x,�) = 0}

(26)Ω̄ = {� ∣ F̄(x,�) = 0}

(27)
min
�∈Ω̄

f (x,�)

subject to hi(x,�) ≤ 0, i = 1,… , s.

Fig. 1  Equality and inequality constraints reduce the feasible set of solutions
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the dimension of the feasible set of solutions while the inequality constraints reduce 
the measure of the feasible set of solutions (Fig. 1). Using the retraction developed 
in Sect. 5 we ensure F and g are automatically satisfied, removing that burden from 
the optimizer, and leading to an unconstrained optimization problem even in the 
presence of equality constraints.

4  Derivative With Respect to the Frequencies

Gradient-based methods are used to solve Problem (27). In the optimization problem 
we find �∗ minimizing a cost function f. We also consider the case of finding �∗ , the 
roots of a vector function g . Solving for the roots of a vector function is closely 
related to minimizing a cost function with Newton’s method. In the latter case, g 
can be thought of as the gradient of an unknown cost function. In both cases we take 
derivatives with respect to the frequencies. We proceed with an explanation of the 
derivative of g with respect to �.

Let g ∶ ℝ
D ×ℝ

p
→ ℝ

t with t ≥ 1 . Then

Here, we make two observations: First, dg
d�

 is the standard Euclidean gradient. It is 
defined on Ω and not necessarily on Ω̄ . Second, dz

d�
 facilitates how z changes given 

unit changes in each frequency. The matrix dz
d�

 is formed from a particular set of basis 
vectors spanning TzM , which we call the principle tangent basis, Vp . Let z ∈ M and

be a matrix whose columns are linearly independent vectors spanning TzM . 
Furthermore, we require the p × p matrix V� be full rank. Then the principle tangent 
basis is found as

Column i of Vp gives how z changes with unit changes in �i , or equivalently gives 
dz

d�i

 . Therefore, we have

and the Euclidean derivative of g with respect to � is

(28)

dg

d�
=

�g

�x

�x

��
+

�g

��

��

��

=
[
�g

�x

�g

��

] [ �x

��

�p

]

=
dg

dz

dz

d�
.

(29)V =

[
Vx

V�

]

(30)Vp = V
[
V−1
�
�p

]
.

(31)Vp =
dz

d�
,
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the matrix multiplication between the Euclidean derivative of g , with respect to z , 
and Vp . The derivative dg

dz
 is readily obtained through analytical or numerical means, 

such as finite differencing or automatic differentiation. The principle tangent basis is 
readily obtained from the tangent space of M . The tangent space is an output of the 
retraction.

We still require a step to transform the Euclidean derivative dg
d�

 defined on Ω to a 
manifold derivative defined on Ω̄ . The transformation of the derivative is achieved 
by projecting the derivative onto TzM̄ through the projection operator. Now, we 
require z ∈ M̄ , and let V̄  be a matrix whose columns are linearly independent basis 
vectors spanning TzM̄ . Then the projection operator of a matrix onto T�Ω̄ is given 
as

and the manifold derivative of g with respect to the parameters is

where ḡ = g|M̄ is the restriction of g to M̄ . When g is a scalar function, g, the 
Euclidean gradient of g with respect to � is given by

The manifold gradient is then

In the constrained and unconstrained optimization problems the choice of derivative 
type is dependent on whether equality constraints are included. Equality constraints 
reduce the dimension of the search space, so the Euclidean gradient may point in a 
direction not tangent to Ω̄ , showing the need for the manifold gradient.

5  The Retraction

Research investigating orbit families usually relies on the use of single-parameter 
continuation where the continuation is restricted to follow some rule based 
on the hard coded constraints [1, 2, 5–7, 34–36]. In these cases, the computed 
family members primarily serve to be representative members from the family to 
gain insight into the family as a whole. Intentionally computing a single, specific 
family member with continuation methods is not an ability we have seen in the 
astrodynamics community. In 2001  Gómez and Mondelo presented the idea of 
computing a periodic orbit with given energy level and a prescribed value of 

(32)
dg

d�
=

dg

dz
Vp

(33)Proj�(A) = V̄�

[
V̄†
�
A
]
,

(34)
dḡ

d�

T

= Proj�

(
dg

d�

T
)
,

(35)��g(z) =
dg

d�

T

.

(36)��ḡ(z) = Proj�
(
��g(z)

)
.
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a coordinate [2], however the idea is applied to the refinement of an orbit, which 
uses differential corrections, not continuation, so one must have an (approximated) 
orbit very close to the desired one. Leveraging the implicit function theorem, we 
develop a function, called a retraction, to compute orbits with a desired set of orbit 
frequencies, allowing for initial guesses to be far from the true orbit. We do this 
by augmenting a standard continuation method to travel a specified distance in a 
specified direction in the parameter space of an implicit manifold M defined by 
F(x,�) = 0 . The augmentation comes in the form of a line search over step sizes to 
minimize the difference between the distance in the parameter space which is desired 
and the distance which has actually been traveled by the continuation method. The 
retraction takes advantage of the tangent space of M to continue solutions in the 
appropriate direction.

5.1  Continuation Equations

The aim of the tool is to target a solution zt satisfying either Eqs. (7) or (12) by 
specifying the target frequencies �t . To do this we must begin with an initial solution 
z0 from within the family.

In the case of satisfying Eq. (7) this is simple. We only require the line

be entirely contained in Ω where ��t = �t − �0 . Then it is sufficient to use 
continuation to compute the branch of solutions lying on �(t) . We append Eq. (7) 
with the following scalar parametric constraint, called a direction constraint,

where � is the coordinate of � such that

and �̆ are the remaining coordinates of � . Choosing � and �̆ in this way ensures 
there are no issues with singularities. Moreover, we append the pseudo-arclength 
equation s(z) from Eq. (17) so that

has a full rank Jacobian matrix. Equation (40) is used in a continuation method and 
ensures we compute solutions which lie along the straight line connecting �0 to �t . 
However, we need to modulate the step size so that the continuation can converge to 

(37)�(t) = �0 + t��t, t ∈ [0, 1]

(38)
d(z) =

�̆ − �̆0

𝜔 − 𝜔0

−
�̆t − �̆0

𝜔t − 𝜔0

=
𝛿�̆

𝛿𝜔
−

𝛿�̆t

𝛿𝜔t

(39)� = argmax
i=0,1

|�0,i − �t,i|,

(40)H(z) =

⎡⎢⎢⎣

F(z)

d(z)

s(z)

⎤⎥⎥⎦
= 0
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the target solution zt and stop computing solutions. We will return to this in Section 
(5.4).

For the case of satisfying Eq. (12) we have the 1-dimensional manifold M and 
only need to append s(z) to F̄(z) to generate the continuation equations, H̄(z) . How-
ever, suppose dimM = p (i.e. we are interested in a p-parameter family of p-dimen-
sional quasi-periodic orbits) and dimM̄ = p − c , then the direction constraint 
becomes a vector equation and modifications need to be made. The reader is pointed 
to Fig. 2 to follow the proceeding discussion of this case.

We append the pseudo-arclength constraint to Eq. (12), however it is likely that 
�(t) ∉ Ω̄ for all t ∈ [0, 1] , so we must project the vector ��t into the tangent space 
T�0

Ω̄ . We then want to ensure that the path the continuation follows on Ω̄ is aligned 
with the projected vector ��∥

t  . That is to say the vector pointing from the initial fre-
quencies to the current frequencies �� = � − �0 projected into T�0

Ω is parallel to 
��

∥
t  . The projection is accomplished as follows. Let V̄0 be a matrix whose columns 

are linearly independent vectors spanning Tz0M̄ . Furthermore, we let

where V̄�0
 is a p × (p − c) matrix with linearly independent column vectors4 and V̄x0

 
is the remaining elements of V̄0 . The projection operator is given as

Now the projected vector we wish to follow along the manifold is

(41)V̄0 =

[
V̄x0

V̄�0

]
,

(42)Proj�0
(v) = V̄�0

[
V̄†
�0
v
]
.

Fig. 2  Depiction of the general direction constraint. The manifold Ω̄ shown against the manifold Ω in (a). 
The projection of ��

t
 onto the tangent space, resulting in ��∥

t
 , and the projection of the continuation path 

onto ��∥
t
 in (b)

4 V̄0 having linearly independent column vectors does not imply any subset of the rows also have linear 
independence. Thus, we require V̄�0

 to also have linearly independent columns.
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The projected vector from the initial frequencies to the current frequencies in the 
continuation is given by

leading to the following direction constraints

It is important to note that the projection operator uses V̄�0
 from the initial solution 

z0 for the entirety of the computation of the branch.
We do not append all the direction constraints to F̄(z) . Instead, only p − 1 − c 

constraints are appended. The choice of which equations to discard does not matter. 
Any p − 1 − c of the scalar equations suffices to construct a full rank Jacobian matrix. 
Let d̄ be the p − 1 − c direction equations, then the continuation equations become

The original target solution is likely not able to be achieved. Instead, we must settle 
for a nearby solution which satisfies Eq. (12). To this end, let

Then traveling in the direction of ��∥
t  on Ω̄ a distance d should provide a nearby 

solution as long as d isn’t too large.

5.2  Initial Direction

From Eq. (43) we know the initial direction on Ω̄ needed to continue solutions which 
satisfy the direction constraints of Eq. (46). However, to initialize the continuation 
method we need to know the direction for both the states and the frequencies. We 
generate the initial direction z′

0
 to move on M̄ as

In the case with no additional parametric constraints V†
�0

= V−1
�0

 , reducing Eq. (48) to

(43)��
∥
t = Proj�(��t).

(44)��∥ = Proj�0
(��),

(45)d̄(z) =
𝛿�̆∥

𝛿𝜔∥
−

𝛿�̆∥
t

𝛿𝜔
∥
t

.

(46)H̄(z) =

⎡⎢⎢⎣

F̄(z)

s(z)

d̄(z)

⎤⎥⎥⎦
= 0.

(47)d = ‖��∥
t ‖.

(48)

z
�

0
= V̄0

[
V†
�0
𝛿�t

]

=

[
V̄x0

V̄†
�0
𝛿�t

V̄�0
V̄†
�0
𝛿�t

]

=

[
𝛿x

∥
t

𝛿�
∥
t

]
.
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5.3  Stopping Criterion

A standard continuation method computes branches until either the maximum 
number of solutions has been computed or when a new solution fails to be found. 
However, to target a specific solution we must introduce a stopping criterion which 
stops on the correct solution. In the case with no parametric constraints we know 
the frequencies �t and can stop when those frequencies are met, however when 
parametric constraints are introduced the target frequencies are likely not in Ω̄ . 
Thus, we introduce a stopping criterion based on distance traveled on the frequency 
manifold.

The target distance to travel is given in Eq. (47). We need a way to compute and 
keep track of the distance traveled, so that we can end the continuation when the 
distance traveled equals the target distance within tolerance. To describe the distance 
computation we describe how the distance is computed on the first continuation step. 
Let z0 be the initial solution with frequencies �0 , Δs0 be the initial step size, and let 
z1 be the first solution from the continuation. Then we define the distance traveled on 
Ω̄ be d1 = sign(Δs0)‖�1 − �0‖ . Extending this to the kth solution leads to

The distance dk is an approximation of the length of the continuation curve starting at 
�0 in Ω̄ at the kth continuation step. Positive step sizes represent forward progression 
along the continuation curve and thus accumulate positive distance. On the contrary, 
negative step sizes represent backtracking along the continuation curve, and thus 
subtract off from the total distance traveled. In the case of no parametric constraints 
the distance computation can be simplified to dk = ‖�k − �0‖ . Computing dk allows 
us to keep track of the progression of the continuation. Leveraging this knowledge 
we can intelligently choose step sizes such that dk → d.

5.4  Step Size Computation

A standard continuation method utilizes some nominal step size controller based 
on the number of iterations needed to converge on a solution. This works well for 
computing branches of solutions to study families as a whole, but does not perform 

(49)

z
�

0
= V0

[
V−1
�0
��t

]

=

[
Vx0

V−1
�0
��t

V�0
V−1
�0
��t

]

=

[
�xt
��t

]
.

(50)dk =

k�
j=1

sign(Δsj−1)‖�j − �j−1‖.



The Journal of the Astronautical Sciences           (2024) 71:37  Page 15 of 41    37 

well when a specific solution from a single- or multi-parameter family is desired. A 
nominal step size update is adequate until the solutions approach the target solution, 
at which point the step size needs to be fine-tuned.

The method to choose the step size to converge on the target distance is a line 
search over step sizes, given in Algorithm 1. Let �k and �′

k
 be the frequencies and their 

family tangent values, respectively, at the current continuation solution. Additionally, 
let Δsk be the current nominal step size, and dk be the current distance traveled on the 
parameter manifold. A step size s is chosen from a uniform partition on the interval [
−1.2|Δsk|, 1.2|Δsk|

]
 with N points. We choose N = 1000 , allowing the step size to 

potentially decrease by 3 orders of magnitude each continuation step. The step size is 
multiplied by ‖�′

k
‖ to generate an estimate Δ� of how much the frequencies will change 

by on the next continuation solution. Δ� is also the predicted distance traveled on the 
parameter manifold from solution k to solution k + 1 . The distance is added to the current 
distance traveled, dk , to generate a guess of the total distance traveled upon convergence 
to solution zk+1 . The absolute value of the difference between the target distance d and the 
predicted total distance traveled gives an error, or the distance left to go before converging 
to the target distance. We choose the step size s which minimizes this error.

Algorithm  1  Line search to determine the step size to get closest to the target 
distance

We note there are more sophisticated line search methods to pick the optimal step 
size, however we are not interested in getting the exact optimal step size because the true 
frequencies will differ from the predicted frequencies. Moreover, to truly know the opti-
mal step size it is necessary to solve the continuation equations for each step size. This is 
extremely prohibitive, so we rely solely on the predicted error rather than the true error 
to pick the optimal step size. We comment on the range of step sizes; by allowing the 
lower bound of the step sizes to be negative we allow the possibility of backtracking in 
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the event the continuation has traveled too far, ultimately allowing for convergence to the 
target distance.

5.5  The Algorithm

Thus far we have seen that by projecting the vector from the frequencies of 
the initial solution to the target frequencies to the parameter tangent space and 
using the distance constraints we can control the direction of the continuation. 
Furthermore, by modulating the step size the continuation can achieve a target 
solution.

Algorithm 2  Retract from T�0
Ω̄ down to Ω̄ and find the corresponding solution on X̄

Algorithm 2 takes as inputs the direction to travel in the frequency space, ��t , 
the initial solution, z0 , the initial tangent space, V̄0 , the initial step size, Δs0 , the 
error tolerance on the distance, � , and the number of points for the routine Tar-
geTSTepSize, N. The distance, d, to travel is computed as the norm of ��t . Then 
the family tangent vector is computed according to Eq. (48) and normalized with 
the appropriate norm ‖ ⋅ ‖ consistent with the inner product used in the pseudo-
arclength equation. The algorithm proceeds to go into the continuation loop. In 
each iteration the step size is modulated with Algorithm 1, the next solution is 
computed with the routine Solver. The routine Solver solves the continuation 
equations and returns the next solution, its tangent space, and the nominal step 
size. The cumulative distance in the frequency space is computed. The continua-
tion loop continues until either the distance traveled is within the error tolerance 
or an updated solution is not found, and returns the final solution.
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5.6  Validation

The retraction is tested on the 2-parameter family of the Earth–Moon L2 quasi-
halo orbits in the circular restricted three-body problem. For the case of no 
additional parametric constraints we use the retraction to compute an orbit with 
a specific set of orbit frequencies. For the case with a parametric constraint we 
include a Jacobi constant constraint, constraining the possible set of frequencies. 
The only way to know the achievable set of frequencies is to compute the entire 
constant energy branch. Without computing the entire branch we settle for 
targeting the distance along the branch to produce an orbit close to a desired set 
of orbit frequencies.

5.6.1  Targeting Orbit Frequencies in a Family of Quasi‑Periodic Orbits

We choose an initial quasi-halo orbit with frequencies

target frequencies

and a distance tolerance of � =1e-8. Therefore,

and d = 0.045048224260009 . Based on ��t we have 𝛿�̆ = 𝜔0 and �� = �1.
Algorithm 2 produces a quasi-halo with frequencies

� = (1.946982196701564, 0.590131700668313),

�t = (1.978018524093039, 0.622782717360435),

��t = (0.031036327391475, 0.032651016692122)

�∗ = (1.978018520706167, 0.622782713797358).

Fig. 3  Targeting the frequencies of a quasi-periodic orbit
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The results are given in Fig. 3. Plots (a) and (b) show the continuation in frequency 
space with plot (b) being a zoomed in view of plot (a), while plot (c) shows the 
distance error versus the continuation solutions. Plot (a) shows how long the con-
tinuation path was relative to the size of the family in frequency space. In plot (b) 
it is seen that the solution jumps past the target solution and begins to backtrack. 
From there it takes only a few more solutions to hone in on a quasi-halo orbit with 
frequencies satisfying the tolerance. The entire algorithm computes 19 orbits and 
takes 105 s to run. The computations were performed in the Julia language and the 
integrations were not run in parallel. The runtime can be significantly reduced if the 
integrations are run in parallel.

Plot (c) shows a monotonically decreasing error as the orbits are successively 
computed. This behavior is expected for larger step sizes, but as the step size gets 
small enough it is not unexpected for the distance error to oscillate. The oscillation 
can occur because the predicted frequencies do not exactly determine the true 
frequencies. The Newton’s method can converge to an orbit further away from the 
target than expected based on the predicted frequencies.

5.6.2  Targeting Distance on a Subset of a Family of Quasi‑Periodic Orbits

For this test case a Jacobi constant constraint is appended to F , creating a 
1-parameter family of quasi-halo orbits. No direction constraints are necessary since 
the continuation method can trace out a 1-parameter branch.

The same initial quasi-halo orbit, target frequencies, distance error tolerance, and 
number of points discretizing the invariant curve are used as in Sect. 5.6.1. The only 
difference is the use of the Jacobi constant constraint. The value is constrained to 
match the Jacobi constant of the initial quasi-halo orbit.

Algorithm 2 produces a quasi-halo with frequencies

Fig. 4  Targeting the distance along a constant Jacobi energy line



The Journal of the Astronautical Sciences           (2024) 71:37  Page 19 of 41    37 

The results are given in Fig. 4. Plots (a) and (b) show the continuation in frequency 
space, while plot (c) shows the distance error versus the continuation solutions, 
and plot (d) shows the error in the prescribed value of the Jacobi constant for each 
computed solution. The initial step size is 1e-3 while the maximum nominal step 
size is 5e-3. Keeping the maximum step size small when parametric constraints are 
included cultivates accurate distance computations. The number 5e-3 is conservative 
since constant Jacobi energy lines in frequency space are nearly straight [5]. Though 
it cannot be seen in plot (b) the solution jumps past the target solution and begins to 
backtrack. The entire algorithm computes 23 orbits and takes 134 s to run.

Plot (c) shows the distance error decreasing monotonically again while plot (d) 
shows the computed orbits share the same Jacobi constant. Plot (b) shows the orbit 
a distance d along this constant Jacobi energy branch. If we compare the distance 
between the initial and the final parameters on Ω we get a distance of 0.04504817, 
but the distance on Ω̄ is 0.04504822. The distance on Ω does not quite meet the 
distance error tolerance of 1e-8, while the distance on Ω̄ does.

6  Resonance Avoidance Methods

It is well known that resonances between the internal frequencies of invariant 
tori play a vital role in the theoretical study and numerical computation of quasi-
periodic invariant tori. Greene [39] and MacKay [40] show invariant curves are most 
robust when the rotation number of the curve is a noble number. As the rotation 
number moves away from a noble number and approaches a rational number the 
robustness diminishes. At a resonance the frequencies of an invariant torus violate 
the non-resonance condition, and the dimension of the torus decreases, resulting in 
a submanifold of lower-dimensional invariant tori [9]. For a 2-dimensional quasi-
periodic invariant torus with frequencies near a resonance the invariant curve no 
longer covers �  , and resembles an island chain on a Poincaré map [41], a behavior 
which extends to higher-dimensional quasi-periodic invariant tori. Both phenomena 
are destructive to the computation of quasi-periodic orbits.

The complications of computing invariant tori near resonances is numerically 
observed by Gómez and Mondelo in [2] wherein they compute a 2-parameter family 
of 2-dimensional quasi-periodic orbits. To avoid these challenges, they tactfully 
choose generating periodic orbits such that 2�

�
 is an integer plus the golden number 

1

2
(1 +

√
5) , leading to the most irrational set of frequencies. Gómez and Mondelo 

enforce the continuation to maintain this rotation number to ensure the family of 
computed quasi-periodic orbits exist in the nonlinear system.

McCarthy and Howell present a method to avoid resonances in a 3-parameter 
family of 3-dimensional quasi-periodic orbits [35]. They suggest fixing the rotation 
numbers such that they take values which are not multiples of 2 � . Their method 
ensures the ratios of the frequencies stay away from integer values. They do not 
address the issue that many resonances occur when the ratios of the frequencies 

�∗ = (1.978018524093039, 0.622782717360435).
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are not integers. Picking the rotation numbers to ensure the frequency ratios avoid 
rational numbers is a more challenging task. However, avoiding resonances is 
exactly one of the issues addressed in this section.

Both resonance avoidance methods described above are sufficient for studying 
large portions of families of quasi-periodic orbits, but they are restrictive in the 
types of branches which can be computed, and do not allow the parameter space to 
be explored freely.

6.1  Irrational Numbers in Floating Point Arithmetic

To efficiently compute branches of quasi-periodic orbits in arbitrary directions we 
devise a methodology to avoid resonances. To avoid resonances it is necessary to 
identify when the torus frequencies are near a resonance. Identifying a resonance 
on a computer equates to determining whether the ratio of two frequencies in 
floating point arithmetic is well approximated by a rational number. Determining the 
irrationality of a frequency vector on a computer is not a trivial task since all floating 
point numbers are necessarily rational. While this is not a well-defined problem we 
leverage research that addresses the issue of detecting resonances on a computer.

A question addressed by Sander and Meiss in [42] is: Given a floating point 
number x and an interval I� = [x − �, x + �] what is the rational n

d
 in this interval 

with the smallest denominator? They mention there are built in functions, such 
as in Mathematica and MATLAB, which return an n and d, but do not return the 
smallest denominator. Therefore, they present an algorithm which does return the 
smallest denominator such that n

d
∈ I . We use their algorithm, given in Algorithm 3, 

to determine the approximate rationality between the torus frequencies.

Algorithm 3  Compute the smallest denominator of the rational number approximat-
ing a floating point number within an interval
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Sander and Meiss perform tests on a set of floating point numbers to determine 
which values of d make for good approximations to x. They found that log10(d) has a 
mean value of log10(�)∕2 , and when log10(d) deviates from the mean value then x is 
well approximated by a rational number. Their results lead to the development of the 
metric

to rate how “rational” x is [42]. In their work they use � = 10−8 , and deem a point 
x to be rational when the log deviation � is greater than 0.3375. We use the same � 
value in this work, but use different values of � to determine when an orbit is near 
a resonance. It is not straightforward to determine what � should be because each 
resonance has a region around it where the computation of orbits becomes difficult; 
the size of this region is different for each resonance.

6.2  Method 1: Picking Irrational Frequencies

In a continuation method to compute branches of quasi-periodic orbits we have a 
current solution zk = [xT

k
,�T

k
]T and a family tangent vector z′

k
 which governs the 

prediction of the next solution zk . Suppose a performance-based nominal step size Δs 
for the prediction is used, such as the step size controller in Chapter 4 of Seydel [37], 
then the nominal set of frequencies is

The nominal frequencies may be nearly commensurate, thus making the next torus 
numerically challenging to compute. However, within any open interval around any 
number there are irrational numbers. Leveraging this information we conduct a line 
search to pick a new step size within the interval [0.9Δsk, 1.1Δsk] so that the new 
predicted set of frequencies is the “most” irrational.

For a given value of s ∈ [0.9Δsk, 1.1Δsk] we compute a set of predicted 
frequencies �p = �k + s�

�

k
 . For each combination of ratios between the 

frequencies, excluding the inverse of the ratios, we rate the rationality of 
each ratio using SMALLDENOM and Eq. (51). These values are stored for each 
combination of ratios and for each set of predicted frequencies, producing a 
matrix of � values. The best step size is the one that minimizes the average � 
value for a fixed value of s. Picking the best step size this way minimizes the 
likelihood of being near a resonance, promoting well-conditioned computations 
of invariant tori. The method to choose the best step size to produce the most 
irrational set of frequencies is given in Algorithm 4.

We note that Algorithm 3 is not well-behaved over the interval [0.9Δsk, 1.1Δsk] (see 
Figure 13 in [42]), so locating the optimal step size is reduced to performing a grid 
search with 1000 values of s equally spaced throughout the interval.

(51)� = | log10(d) + log10(�)∕2|

(52)�k+1 = �k + Δsk�
�

k
.
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Algorithm 4  Compute best step size to avoid being near a resonance

An example of using Algorithm 4 is given in Fig. 5. The black square repre-
sents the frequencies of the current solution. The cyan diamond represents the 
nominal frequencies using the nominal continuation step size. One thousand 
predicted frequencies are computed within the interval [0.9Δs, 1.1Δs] . Each pair 
of predicted frequencies are evaluated using Algorithm 3 and Eq. (51), and are 
colored according to their � value. The blue star is the frequency pair which 
attains the minimum value of � in the grid search. The step size corresponding 

Fig. 5  Example of picking step size to minimize chance of stepping near a resonance. Plot (b) is a 
zoomed in copy of plot (a)
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to that frequency pair is the step size chosen for the prediction step. Had the 
nominal step size been slightly larger the nominal set of frequencies could have 
been considered rather rational, possibly requiring more Newton iterations to 
converge.

6.3  Method 2: Hopping Beyond Resonances

With a step size chosen nominally, similar to the method presented in Chapter 4 of 
Seydel [37], it is easy for the continuation of quasi-periodic orbits to get stuck near 
a resonance. As the continuation approaches a strong resonance more iterations will 
necessarily be needed to converge to a true solution. By taking more iterations to 
converge the step size will decrease and the frequencies of the quasi-periodic orbits 
will ever so slowly approach the resonance, leading to stagnation and termination in 
the continuation procedure.

To circumvent the issue of premature termination due to resonances one needs 
a way of identifying when the continuation is stagnating at a particular resonance. 
From there we can make an informed decision on how to adjust the step size. Track-
ing the � values alone to determine the likelihood of being near a resonance is not 
sufficient. The � value is only able to detect when the torus frequencies are near 
a resonance, however the continuation of a branch of quasi-periodic orbits may be 
progressing sufficiently and just happen to converge with frequency ratios near dif-
ferent rational values.

A method to hop beyond resonances requires not only tracking the � values, 
but also requires tracking the ratio of the frequencies to determine progress in 
the continuation. Therefore, we present the following heuristic method to iden-
tify and jump past resonances in Algorithm 5 and Algorithm 6. Let �k be the 
frequencies of the current converged solution with the new nominal step size 
Δsk . Let r be a vector which records the value of each combination of frequency 
ratios, and let c be a vector of positive integers which keeps a count of the con-
secutive occurrences when each frequency ratio is near a resonance. At the start 
of the continuation, for k = 0 , r is composed of the values of frequency ratios 
for the initial quasi-periodic orbit, while c starts at all zeros. Once the next 
solution zk+1 has been found then Algorithm 6 is called to determine whether 
the step size should be increased to move beyond a resonance.
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Algorithm 5  Determine if continuation of quasi-periodic orbits are near a resonance

Algorithm 6 first calls Algorithm 5 to update r and c . Algorithm 5 goes through 
each combination of frequency ratios of �k+1 , computes the rational with the smallest 
denominator using Algorithm  3, and computes � . For a given frequency ratio we 
increase the counter associated with that ratio by one if two conditions are met. The 
first is that � needs to be sufficiently large to indicate the presence of a resonance. 
Trial and error has resulted in a threshold value of 0.1. The second condition is the 
frequency ratio of the current continuation solution must be sufficiently close to the 
frequency ratio of the previous continuation solution. We let the threshold value be 
1e-3. If either of these conditions are not met then the counter associated with that 
frequency ratio is reset to zero. The new values of the frequency ratios are recorded 
and compared with the next continuation solution.

Algorithm 6  Decide whether to increase step size to hop a resonance

Algorithm  6 uses c to decide if the continuation has stagnated at a resonance. 
If any value in c has a value of 5, indicating the continuation has been near a 
particular resonance for 5 consecutive solutions, then we change the step size to be 
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0.05 multiplied by the sign of the step size. A step size magnitude of 0.05 has been 
deemed sufficient to be able to move beyond many resonances while also providing 
for good linear approximations in the prediction step of continuation. However, 
the value 0.05 should not be taken as absolute and is likely dependent on many 
factors such as the family of orbits, the dynamical system, and the dimension of the 
invariant tori. As it has been mentioned the method presented in this section is a 
heuristic method, and, as such, many values have been chosen to provide favorable 
performance for the applications encountered in this work.

6.4  Validation

We tested the performance between the use of both resonance avoidance methods 
together against using neither method. In the former case we call it the RAv variant, 
and in the latter case we call in the plain variant. The plain variant uses only the 
nominal step size update. The nominal step size update is also used in the RAv 
variant with the inclusion of Algorithm 4 to make little modifications to the step size 
and with the inclusion of Algorithm 6 to prevent stagnation at a resonance.

For the test we chose 7 quasi-halo orbits from within the Earth–Moon L2 quasi-
halo orbit family to act as initial solutions for continuing branches of solutions. 
About each initial solution 15 directions equally spaced out on a circle are chosen 
for the branches to follow. The frequencies are targeted according to the retraction 
developed in Sect. 5.

All together there are 105 branches of solutions spanning a large portion of the 
unstable 2-dimensional quasi-halo orbits for both variants. The branches are faced 
with resonances to get to the target set of frequencies. We are looking to see how 
many of the branches successfully reach the target set of frequencies, how much 
time the branch took to get there, and how many family members were computed 
along the way. Examining these three quantities gives insight into the performance 
of the resonance avoidance methods. Statistics relating to these three metrics are in 
Table 1.

Figure 6 shows the performance and convergence conditions of the RAv variant 
compared to the plain variant. In frequency space, the figure shows the family of 
quasi-halo orbits, the starting solutions, the target frequencies, and the final solution 
in each branch. Each final solution is colored according to the reason the branch 
terminated. Select resonance lines are laid on top of the family to help show 
interactions between the branches and resonances. The RAv variant has 77 branches 
which converge to solutions with the target set of frequencies, 22 branches which 
reach the boundary of the family, and 6 branches which are stopped by resonances. 
Therefore, there are 99 successful branches and 6 unsuccessful branches. The plain 
variant has 70 convergent branches, 21 which reach the boundary of the family, 
and 14 that are stopped by resonances, showing the RAv variant performs better at 
moving past resonances.

For the RAv variant the average time per branch is 98 s, the average number of 
solutions per branch is 15, and the average time per solution is 6.5 s. For the plain 
variant the average time per branch is 102.5 s, the average number of solutions per 
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branch is 17, and the average time per solution is 6  s. The results show the RAv 
variant increases the average time per solution, but decreases the average number of 
solutions per branch and has an overall decrease in the average time per branch.

7  Targeting Orbital Characteristics

In this section we consider the root-finding problem to find a solution within a 
2-parameter family of solutions with desired characteristics. We do this by modify-
ing a Newton’s method to solve for the roots of a function g ∶ M → ℝ

t , for t = 1, 2 . 
The function g can be thought of as equality constraints or parametric constraints 
where each gi specifies a characteristic we wish the solution to have. Specifying 2 
parametric constraints for a 2-dimensional manifold generally leads to a single solu-
tion on the manifold (Fig.  7). Other cases include multiple, isolated solutions, no 

Fig. 6  Comparing the solutions in frequency space between the resonance avoidance variant (a) to the 
plain variant (b)

Table 1  Performance of RAv 
and Plain variants

Variant RAv Plain

# Hit Converge 77 70
# Hit Boundary 22 21
# Hit Resonance 6 14
Avg. Time per Branch 98 sec 102.5 sec
Avg. # QPOs per Branch 15 17
Avg. Time per QPO 6.5 sec 6 sec
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solutions, and infinite solutions. For t = 1 there are generally an infinite number of 
solutions.

A Newton’s method is used to update � rather than z . The updated frequencies 
are used with the retraction to compute the solution at the updated frequency values. 
The reason for updating � instead of z is Newton’s method is only able to converge 
on the solution, z∗ , satisfying

if the initial guess, z0 , is reasonably close to the true solution. We call this the refine-
ment of a solution. We leverage the retraction to remove F , focusing solely on g . 
The retraction ensures F(z) = 0 is satisfied at all times, and uses continuation which 
allows z0 to be far from z∗.

The next section presents the algorithm used to target the characteristics of a 
solution within a 2-parameter family of solutions. We then validate the algorithm 
with various examples in Sect. 7.2, testing it on the 2-parameter family of quasi-halo 
orbits.

7.1  Modified Newton’s Method

We wish to find a solution z∗ ∈ M such that g(z∗) = 0 . The algorithm to target the 
characteristics of a solution from within a p-parameter family of solutions is given in 
Algorithm 7. Given an initial solution z0 ∈ M and a matrix V0 whose columns span 
the tangent space Tz0M , the principle tangent basis is computed according to Eq. 
(30), providing the derivative of z0 with respect to the frequencies, dz

d�
|z0 . The deriva-

tive of g with respect to z is computed and evaluated at z0 , 
dg

dz
|z0 . The Euclidean 

derivative of g with respect to � is computed according to Eq. (28) and evaluated at 
z0.

A Newton update is computed to provide a change in frequencies ��1 . If the num-
ber of scalar equations composing g is equal to p then the inverse in the Newton 
update is the usual inverse. If the number of scalar equations is less than p then the 
inverse is the Moore-Penrose inverse. The change in frequencies dictates a direc-
tion and a distance to move in Ω , directly providing the set of frequencies �1 of the 

H(z) =

[
F(z)

g(z)

]
= 0

Fig. 7  Example of two paramet-
ric constraints on a 2-dimen-
sional manifold, leading to a 
single solution z∗
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solution z1 . The updated solution z1 and its tangent space V1 is computed with the 
retraction in Algorithm 2. The actual updated frequencies are not exactly equal to 
the guess provided by the Newton step, so �1 is taken from the returned solution 
z1 . For brevity, we leave out certain parameters from Algorithm 7 and assume the 
appropriate parameters are passed into Algorithm 2.

The iterations continue until either ‖g(zk)‖ ≤ � or ‖�k+1 − �k‖ ≤ � , where � is the 
error tolerance on the characteristics. The first termination condition guarantees the 
solution has characteristics close enough to the targeted characteristics. The second 
termination condition indicates convergence to a local minimum of g.

Algorithm 7  IFT Newton’s Method: Find a root of a function defined on an implicit 
manifold

7.2  Validation

The maximum number of characteristics we can choose an orbit to have is 2. For a 
single characteristic there are an infinite number of solutions which can be targeted. 
As long as the two characteristics generate intersecting contours on Ω there is a 
solution z∗ such that g(z∗) = 0.

We test the algorithm on six different characteristic functions. The cases, run 
time, and number of Newton iterations are given in Table 2. Case 1 targets a solu-
tion with a specified invariant curve amplitude A1 (see Lujan and Scheeres [6] 
for the amplitude computations). Case 2 targets a solution with a specified Jac-
obi constant. Case 3 targets a solution with a specified amplitude size and Jacobi 
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constant. Case 4 targets a solution with a specified orbit amplitude and frequency 
�0 . Case 5 targets a solution with a specified value of the unstable eigenvalue. 
Lastly, case 6 targets a solution with a specified Jacobi constant and unstable 
eigenvalue. Cases 1, 2, and 5 have an infinite number of solutions, while cases 3, 
4, and 6 have a single unique solution. In cases 3, 4, and 6 we choose character-
istic values from pre-computed quasi-halo orbits, so there is a truth target orbit to 
compare to. In all cases we use an error tolerance, �0 , of 1e-7 for Algorithm 7 and 
1e-8 for Algorithm 2.

The results of cases 1, 3, and 6 are given in Figs. 8, 9, 10. Plots (a) and (b) show 
the iterates �k . Plot (c) shows the error of each characteristic function versus the 
iteration number. Plot (d) shows the invariant curve of each solution Xk . Cases 
3 and 6 show the truth target invariant curve in plot (d). All cases converge in 3 
or 4 iterations. Cases 1 through 4 converge in 4 min or less, while cases 5 and 6 
take longer. The increased time of cases 5 and 6 are due to the computation time 
required to compute the derivative of the unstable eigenvalue with respect to z . 

Table 2  Test cases for targeting 
solution characteristics

Case # g(z) Run Time (min) # Iterations

1 A(X) − A
∗
1

3.7 4
2 J̄(X) − J

∗ 2.4 3
3

[
A(X) − A

∗
1

J̄(X) − J
∗

]
3.2 4

4
[
A(X) − A

∗
1

�0 − �∗
0

]
4.1 4

5 �
u
(z) − �∗

u
12 3

6
[
J̄(X) − J

∗

𝜆
u
(z) − 𝜆∗

u

]
19.2 4

Fig. 8  Results of case 1
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There is no analytical means to compute the derivative of the unstable eigenvalue, 
so we must resort to numerical derivatives. Finite differencing is prohibitively 
slow, so we use automatic differentiation to perform the numerical derivatives.

Cases 1 through 4 find solutions within the error tolerance. Cases 5 and 6 ter-
minate before the error tolerance is reached because the difference between the 
current and updated frequencies are within tolerance. Even with the premature 
termination of the algorithm, the last iteration of case 6 is nearly identical to 
the truth target solution as seen in plot (d) of Fig. 10. In case 4 the error in �0 
reached tolerance on the first iteration, and exactly matched the targeted value in 

Fig. 9  Results of case 3

Fig. 10  Results of case 6
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the subsequent iterations. In cases 1, 2, and 5 a solution is still found even though 
dg

d�
 is not invertible in the usual sense.
Algorithm 7 converges on the target solution quickly even with initial solutions 

not near the truth solution. Treating � as the free vector and x as a dependent 
vector to be found by the retraction shows improved performance over a standard 
Newton’s method which treats z as the free vector.

8  Optimization

In this section we solve Problem (27) with and without inequality constraints. For the 
unconstrained problem, we develop a modified gradient descent algorithm developed 
specifically for the use of the retraction to efficiently perform line searches. For the 
constrained problem, we use a standard augmented Lagrangian method from [43]. 
The augmented Lagrangian method constructs a series of unconstrained optimization 
problems which are solved with the modified gradient descent algorithm. The modified 
gradient descent is tested on various unconstrained problems, and then the augmented 
Lagrangian method is used to solve three constrained problems.

8.1  Modified Gradient Descent

The standard gradient descent method assumes all the variables in z are independent 
optimization variables and optimizes over a Euclidean space. For solutions z ∈ M 
or z ∈ M̄ only � are the independent optimization variables, and the space Ω̄ is not 
Euclidean, requiring manifold derivatives. Equality constraints are absorbed by the 
retraction, reducing the search space to the only space the optimization is aware of. 
Therefore, including equality constraints still results in the unconstrained optimization 
problem

We call the modified gradient descent method the IFT gradient descent method 
because it is applicable to implicitly defined smooth manifolds which satisfy the 
conditions of the implicit function theorem. The IFT gradient descent is similar to 
the Euclidean gradient descent except the gradient is taken only with respect to the 
frequencies � and the gradient is a manifold gradient when there are equality con-
straints, g . The IFT gradient descent aims to find a local minimum solution z∗ of the 
function f ∶ M̄ → ℝ . Beginning with an initial solution z0 ∈ M̄ and V̄0 we com-
pute the gradient of f with respect to the frequencies �0 with Eq. (36). The initial 
descent direction, d , is given as

The descent direction provides the direction to search on Ω̄ to find solutions which 
reduce the value of the cost function. While the magnitude of d provides a distance 
to travel, the descent direction only provides local information. Traveling exactly a 

(53)min
�∈Ω̄

f (x,�).

d = −�� f̄ (z0).
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distance d = ‖d‖ may result in a solution with a cost larger than the initial solution. 
To ensure the next solution, z1 , has a cost less than the initial solution a line search is 
employed. The descent direction is computed for z1 and the process continues until 
either ‖�� f̄ (zk)‖ ≤ 𝜀 or ‖zk+1 − zk‖ ≤ �.

Ideally, we want the next iterate to be the solution in the direction of d which has 
the lowest cost associated with it. That is we want to find the solution which attains 
the minimum of the set of points

for a sufficiently large 𝛼 > 0 . Finding the exact optimal solution of L� is computa-
tionally expensive since each solution must be found with the retraction function. 
The retraction uses continuation, so we leverage this to construct L� . A small initial 
step size, Δs0 , is chosen so that many solutions are computed near zk , giving a fine 
resolution near zk and less resolution further away as the step sizes increases. We 
don’t want to compute too many solutions in the continuation, and we don’t want to 
pass over the optimal solution to Problem 53 when zk is near the optimal solution. 
The cost is computed for each solution in the continuation and the solution with the 
minimum cost is chosen as the next iterate in the gradient descent algorithm.

Algorithm 8  IFT Gradient Descent: Find minimum of a cost function defined over 
an implicit manifold

8.2  Augmented Lagrangian Method

An ALM constructs a modified cost function called the augmented Lagrangian 
given by

(54)L𝛼 = {f (z) ∣ z = RETRACT(𝛾d, zk, V̄k), 𝛾 ∈ [0, 𝛼]}
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where 𝜌 > 0 is a penalty parameter and � ∈ ℝ
s
+
 are Lagrange multipliers. An ALM 

solves the unconstrained subproblem

successively while updating � and � after each solve. The method to solve the 
subproblem can be any method to solve unconstrained optimization problems. We 
call the method to solve the subproblems the SUBSOLVER routine. We refer the 
reader to the book by Birgin and Martinez [44] and to Chapter 17 in [45] to learn 
more about ALMs. For implicitly defined smooth manifolds the unconstrained 
subproblem becomes

Before introducing the algorithm we present the clip operator defined by

define I = 1,… , s to be the set of indices for the inequality constraints, and let

The algorithm used to solve the constrained optimization problems is given in 
Algorithm 9 and pulled from Liu and Boumal in [43], however slight modifications 
have been made to it.

The variable �0 is the initial values of the Lagrange multipliers. We set these initial 
values to 1e-8. The variables �min and �max are minimum and maximum bounds to 
the Lagrange multipliers, and set �min =1e-12 and �max =1e+9. The variable �0 is an 
initial penalty parameter, and we set �0 =1e-4. The multiplier 𝜃𝜌 > 1 determines the 
rate of growth of the penalty parameter, and we set �� = 20 . The variables �0 , �min , 
and �� ∈ (0, 1) play a role in determining how many iterations are necessary before 
convergence can be declared. We set �0 = 1 , �min = 1e − 8 , and �� = 0.005 . The mul-
tiplier �� determines a threshold for the relative amount of movement in the inequality 

(55)L�(x, �,�) = f (x) +
�

2

s∑
i=1

[
max

(
0, hi(x) +

�i

�

)]2
,

(56)min
x∈ℝd

L�(x,�)

(57)min
�∈Ω̄

L𝜌(z,�).

(58)clip[a,b](x) = max(a, min(b, x)),

h(z) = [h1(z),… , hs(z)]
T .
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constraints in order to adjust the penalty parameter. Essentially, if the values of hk+1 do 
not change much from the previous iteration then the penalty parameter is increased. 
We set this value to be 0.8. The constant dmin is an error bound. When the distance 
between two consecutive solutions is less than this amount then it is likely that the 
algorithm is converging to an optimal solution. However, the convergence decision is 
balanced with the number of iterations which have satisfied ‖zk+1 − zk‖ < dmin , thereby 
increasing the confidence that the returned solution is actually an optimal solution to 
Problem (27). We set dmin =1e-6. Finally, Nmax limits the number of iterations, so the 
algorithm cannot continue forever. We set Nmax = 50.

Algorithm 9  Augmented Lagrangian Method

After Algorithm 9 returns a solution x∗ we check the gradient of L�∗ (z
∗,�∗) to 

determine whether the returned solution is optimal. If ‖�L�∗ (z
∗,�∗)‖ ≤ �min and 

each hi(z∗) ≤ 0 for i ∈ I  , then z∗ is declared to be a solution to Problem (27).
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8.3  Validation

8.3.1  Unconstrained Optimization

We test Algorithm 8 on the family of quasi-halo orbits to find an orbit which mini-
mizes the distance squared to the desired Jacobi constant value of J∗ = 3.055460 . 
The first case does not include equality constraints, having two significant effects. 

Table 3  Test cases for 
unconstrained optimization

Case # f (z) g(z) Run Time (min) # Iterations

1 1

2

(
J̄(X) − J

∗
)2 – 29.3 –

2 1

2

(
J̄(X) − J

∗
)2 �0 − �∗

0
4 –

Fig. 11  Results of case 1. Plot a is a zoomed out version of plot b 

Fig. 12  Results of case 2. Plot a is a zoomed out version of plot b 
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First, we only need to take a Euclidean gradient. Second, there are an infinite num-
ber of solutions to Problem  53 having a Jacobi constant with a specific value. In 
the second case we include a constant �0 equality constraint, identifying a single 
solution to Problem 53. The two cases are given in Table 3 along with the run time. 
Due to the specific implementation of Algorithm 8 we did not record the number of 
gradient descent iterations needed for convergence.

The results of case 1 and 2 are in Fig. 11 and 12, respectively. In Fig. 11 we see 
the descent direction lies perpendicular to the Jacobi constant contour, showing the 
continuation path follows the path of steepest descent. It is not clear why the run 
time is nearly 30 min, however this time can surely be decreased by tuning the line 
search. We note the use of Algorithm 7 is likely to be more efficient to find a solu-
tion with the desired Jacobi constant.

In case 2 we constrain the optimal solution to have an �0 value of 1.947982. The 
initial solution does not meet this constraint, so Algorithm 7 is first used to find a 
solution with the desired �0 to initialize Algorithm 8. The gradient of f is projected 
to the tangent space of the 1-dimensional manifold M̄ , pointing parallel to the con-
stant �0 line. The continuation path follows the constant �0 constraint until the gra-
dient vanishes at the optimal solution on the Jacobi constant line. Case 2 has a 7x 
speed-up over case 1, showing that equality constraints speed up the optimization.

8.3.2  Constrained Optimization

We validate Algorithm 9, using Algorithm 8 in place of SubSolver, with the three 
test cases. The cases are given in Table 4 along with the run time and the number 
of iterations for the ALM to converge. In cases 1 and 2 we minimize the distance 
squared to the desired Jacobi constant value of J∗ = 3.055460 . Case 1 does not have 
an equality constraint, while case 2 has a constant �0 equality constraint. Both cases 
constrain �1 to be less than 0.518223. In case 3 we minimize the square of the loga-
rithm of the unstable eigenvalue and place constraints on the minimum and maxi-
mum values of both �0 and the Jacobi constant.

In all three cases we know a priori where the optimal solution lies. In case 1, any 
quasi-halo orbit with the desired Jacobi constant and �1 ≤ 0.518223 is an optimal 
solution. In case 2, there is a single optimal solution. The optimal solution is the 
quasi-halo with orbit frequencies � = (1.947982, 0.518223) . In case 3, the optimal 
solution lies on the boundary of the feasible set at the intersection of the lines

Table 4  Test cases for constrained optimization

Case # f (z) g(z) h(z) Run Time (hr) # Iterations

1 1

2

(
J̄(X) − J

∗
)2 – �1 − �∗

1
2.1 9

2 1

2

(
J̄(X) − J

∗
)2 �0 − �∗

0
�1 − �∗

1
0.4 20

3 1

2
log10(�u(z))

2 – ⎡
⎢⎢⎢⎣

𝜔0 − 𝜔∗
0

�̂�0 − 𝜔0

J̄(X) − J
∗

Ĵ − J̄(X)

⎤
⎥⎥⎥⎦

24.7 18
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The location of the optimal solution can be inferred from the stability surface plots 
in Lujan and Scheeres in [5].

The results of case 1 through 3 are in Figs. 13, 14, 15, respectively. The black stars 
are solutions to each subproblem in the ALM, beginning with the initial solution and 
ending with the optimal solution. In case 1 the feasible set of solutions lies below the 
�1 = 0.518223 line. In Fig. 13 we see the first iteration of the ALM finds a solution near 
the desired Jacobi constant because the penalty parameter and Lagrange multipliers are 

J̄(X) = 3.030083

𝜔0 = 1.884444.

Fig. 13  Orbit frequency iterates to minimize the difference in the Jacobi constant with an �1 inequality 
constraint

Fig. 14  Orbit frequency iterates to minimize the difference in the Jacobi constant with an �0 equality 
constraint and �1 inequality constraint
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very small. At the first solution the inequality constraint is not satisfied, so the penalty 
parameter and Lagrange multipliers are modified to construct a new augmented Lagran-
gian with a different vector field. As the iterations continue the penalty parameter and 
Lagrange multipliers continue to be modified until an optimal solution is found.

Case 2 begins with the same initial solution as case 1 and optimizes the same cost 
function, however case 2 has an equality constraint. The feasible set of solutions is 
the set of all quasi-halo orbits with �0 = 1.947982 and �1 ≤ 0.518223 . In Fig. 14 we 
see the initial quasi-halo does not satisfy the equality constraint, so Algorithm 7 is 
used to initialize Algorithm 9. The first iteration of the ALM finds a quasi-halo orbit 
near the desired Jacobi constant. The remaining iterates are found with ever smaller 
�1 values as the penalty parameter and the Lagrange multipliers are modified until 
the final solution satisfies the inequality constraint such that �1 = 0.518223.

For case 3 we adjust the initial value of the penalty parameter to be equal to 1000 
because we know the optimal solution to the unconstrained problem is far from the 
feasible set of solutions. The feasible set of solutions lies on the interior and boundary 
of the area encompassed by the four inequality constraints. The time to find the optimal 
solution is quite high, at 24 h, due to the high cost of evaluating the gradient of the aug-
mented Lagrangian. There are other ways to compute the optimal solution in this situa-
tion. We could have used Algorithm 7 to compute the solution with �0 = 1.884444 and 
a Jacobi constant of 3.030083. However, in other cases the location of the optimal solu-
tion may not be available. The family may not be known in great detail ahead of time, 
or the location of the optimal solution may not be easy to determine.

9  Conclusion

We developed tools to perform root-finding, and unconstrained and constrained 
optimization over families of quasi-periodic orbits by leveraging the smoothness 
of quasi-periodic orbit families. These tools enable orbits to be accurately chosen 

Fig. 15  Orbit frequency iterates to minimize the unstable eigenvalue with Jacobi constant and �0 ine-
quality constraints
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based on orbital characteristics and constraints, and requires little knowledge of the 
orbit family to function. We developed a modified Newton’s method to perform the 
root-finding of quasi-periodic orbits with specified values of orbital characteristics. 
This is useful when one knows the exact values of the desired parameters. Tak-
ing this a step further, one can construct an organized grid of solutions in various 
parameter spaces with arbitrary spacing, possibly improving interpolation methods 
over families of quasi-periodic orbits. Organized grids of solutions serve as efficient 
orbit databases, and reduce the number of solutions needed to store and represent a 
family. For cases when one does not know the exact parameter values or wants to 
include inequality constraints then one can use the optimization tools. By leveraging 
continuation methods we transform optimization problems with equality constraints 
to unconstrained optimization problems on submanifolds. For these cases we devel-
oped a modified gradient descent algorithm. The inclusion of inequality constraints 
leads to constrained optimization problems. To solve constrained optimization prob-
lems we implemented an augmented Lagrangian method, though other methods to 
solve constrained optimization problems would suffice.

The tools developed here provide novel tools for trajectory design for multi-
parameter families of orbits. To create these tools we first created a retraction, allow-
ing us to take advantage of the manifold structure of families of orbits and reduce the 
state space to search for solutions. The retraction augments a continuation method to 
control the direction of continuation and stop at a specific point in the frequency 
space. Moreover, we develop two methods to reduce the effects of resonances on 
the computation of quasi-periodic orbits. These methods do not impose restrictions 
on the continuation and use information about resonances to change the step size. 
All tools and methods in this paper are tested with the 2-parameter Earth-Moon L2 
quasi-halo orbit family in the circular restricted three-body problem. We would like 
to point out that much of the mathematical development in this paper can be applied 
to p-parameter families of solutions satisfying F(z) = 0 , not just 2-parameter fami-
lies of quasi-periodic orbits.
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