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Abstract
Sensor tasking for space domain awareness is a complex problem that involves 
scheduling observations of objects in space from one or multiple sensors, usually 
telescopes. This paper formulates the short-term sensor tasking problem from a 
single telescope as a purely combinatorial problem and uses a beam version of the 
A* search algorithm to efficiently search for priority-based observation schedules. 
Several admissible heuristics are proposed to speed up the search procedure when 
aiming for sub-GEO, GEO, or both kinds of objects in the same observation 
window. Several pruning techniques are also implemented to reduce the search space 
dimension and the computational time required. Simulations are conducted with real 
space objects retrieved from the Norad catalog and data from one of the telescopes 
of the Space4 Center at the University of Arizona. The objective is to evaluate the 
search algorithm’s effectiveness, time complexity, and performance under different 
real-world scenarios.
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1 Introduction

Scheduling observations of human-made objects in space for space domain 
awareness (SDA) involves coordinating multiple ground-based sensors, like 
telescopes or antennas, to collect data and use them for several purposes, among 
which orbit determination, object catalog maintenance, and conjunction analysis. 
The main objective of sensor tasking is to maximize either the quantity of tracked 
objects within a specific time frame or an accumulated score. Indeed, each object 
can be assigned a priority index or score to indicate its relative significance. For 
instance, a suspected conjunction may result in a higher priority for the involved 
objects in the preceding nights, to collect as many observations as possible 
and reconstruct their orbits with higher accuracy. The process of tasking must 
consider various factors, including the telescope’s geographical location, the 
visibility of the objects, the telescope’s range of motion and speed, potential 
geographical limitations, lighting conditions, and the time needed for camera 
preparation, focusing, and executing the required exposures with the desired 
filters.

Achieving the best possible sensor tasking is a challenging optimization 
problem that generally can be classified as an NP-hard combinatorial problem. 
This involves determining the optimal set of objects to be observed from a larger 
pool and establishing the order of observation while satisfying some physical and 
time constraints. Practical implementation of precise integer linear programming 
(ILP) solution methods, like branch and bound, often becomes unfeasible due to 
their excessively demanding computational requirements. Numerous approaches 
to sensor tasking have been proposed within the existing literature. Among these, 
a prevalent approach entails employing either heuristic algorithms or greedy 
solution mechanisms [1], which operate based on predefined rules and decision 
trees to rapidly identify a generally suboptimal solution. To address long-
term sensor planning tasks, some papers have explored dynamic programming 
techniques [2] and Monte Carlo-based tree search algorithms [3], although 
assessing all the potential observations still demands substantial computational 
resources. Furthermore, these methods tend to be confined to a single orbital 
regime, such as objects in geosynchronous Earth orbit (GEO), low Earth orbit 
(LEO), or medium Earth orbit (MEO). More recently, machine learning methods, 
such as deep reinforcement learning [4, 5], have also been adopted in sensor 
tasking problems, exhibiting good levels of accuracy and adaptability when 
facing changes in object orbits, observation windows, observer locations, and 
sensor characteristics. These approaches can learn from past instances of the 
problem and adapt to novel data. However, they cannot exploit the underlying 
problem’s inherent mathematical structure, frequently resulting in long training 
periods and an absence of guarantees regarding the optimality or robustness of 
the final solution.

This paper focuses on short-term single-telescope tasking for observing objects 
in multiple orbital regimes, specifically, in sub-GEO (LEO, MEO, GTO) and 
GEO. The main objective is to develop a rapid tasking tool capable of scheduling 
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telescope observations on a night-by-night basis. This involves retrieving the 
most current two-line elements (TLEs) of the target objects directly from the 
Norad catalog via SpaceTrack.com just before the beginning of each observation 
session, typically shortly before local nautical twilight. Given that Norad’s TLEs 
are updated daily, the position of the objects in the sky at the time of observation 
can be determined by forward-propagating them for less than a day. This ensures 
that any errors introduced during propagation are small enough to maintain the 
object within the telescope’s field of view and, consequently, within the exposures 
captured by the camera. Consequently, uncertainties in the object’s position can 
be safely disregarded.

This deterministic sensor tasking problem can be formulated as a variant of the 
orienteering problem (OP), an NP-hard combinatorial problem that combines the 
score-maximization objective of the knapsack problem (KP) with the path-length 
minimization elements of the traveling salesman problem (TSP). This problem 
takes its name from an outdoor sport, orienteering, where the objective is to visit, 
in a limited amount of time, a subset of the checkpoints located on a map, starting 
from the home base, to maximize the total score associated with them. In the 
telescope tasking scenario, each checkpoint corresponds to a different observation 
opportunity for a given object, and the time to move from one checkpoint to the 
next one (i.e., the cost associated with that arc) corresponds to the time needed to 
physically slew the telescope to the new pointing direction, possibly wait till the 
beginning of the new object pass, or for a fixed preparation time, and observe the 
object itself to collect the desired exposures.

In this work, the sensor tasking problem is formulated as a search problem on 
a graph and tackled with the A* search algorithm [6]. A* search is a widely used 
algorithm for finding the optimal path in a graph, and it can be applied to the 
optimal telescope tasking to efficiently search through the vast number of possible 
observation schedules. The A* algorithm is a combination of two approaches: 
Dijkstra’s algorithm for finding the shortest path (respectively, the highest scoring 
path, in maximization problems) in a graph and a heuristic function that estimates 
the “distance” (respectively, the improvement in total score) between a node 
and the goal. The algorithm uses a priority queue to keep track of nodes that 
have been visited and those that need to be explored. Each node is assigned an 
evaluation function based on the sum between its distance from the start node 
(respectively, the cumulative score since the start node) and the estimated distance 
(respectively, score improvement) to the goal. The algorithm selects the node with 
the best value of the evaluation function and explores its neighbors, updating the 
heuristic associated with neighboring nodes as necessary. The search continues 
until the goal node is reached or until no more nodes can be explored. The 
efficiency of A* search mainly depends on the accuracy of the heuristic function. 
The more accurate the heuristic, the fewer nodes are expanded, but, generally, 
the more complex the heuristic is to be computed. Hence, a trade-off between the 
accuracy of the heuristics and its complexity is usually required. If the heuristic is 
admissible, that is, it never overestimates (respectively, underestimates) the true 
cost (respectively, cumulative score) of the optimal path to the goal node, A* 
is proven to be both optimal and optimally efficient. Three admissible heuristics 
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for A* are proposed in this study, the first valid for scheduling sub-GEO (i.e., 
LEO and MEO) objects, the second for scheduling GEO objects, and the third 
one combining the other two when objects in both orbital regimes are considered.

Being an exact solution algorithm, A* may encounter challenges in finding an 
optimal solution within a reasonable computational time, particularly when dealing 
with complex problem instances. To address this issue, various pruning techniques 
are employed during the search process itself. Specifically, schedules deemed 
unlikely to yield a high cumulative score are systematically eliminated from the 
priority queue. This elimination is achieved by implementing a beam search version 
of the A* algorithm [7], named Beam-A* (BA*). While this pruning strategy 
significantly accelerates the search, it comes at the trade-off of losing guarantees on 
the global optimality of the solution.

Numerical simulations are carried out using actual object data in both LEO 
and GEO retrieved from the Norad catalog and the real characteristics of one of 
the telescopes (Raptors-2) of the Space4 Center at The University of Arizona 
(Tucson, Arizona). First, the two A* heuristics for sub-GEO and GEO objects are 
compared with a "base" heuristic in terms of the number of expanded nodes and run 
time on increasingly bigger sets of objects to understand their efficiency and time 
complexity, using an optimal version of A*. The effect of varying the object score 
range on the heuristic efficiency and on the optimal observation schedules is also 
analyzed in detail. The beam search version of the algorithm, BA*, is then compared 
against the exact version of the A* to understand its accuracy and time complexity 
when dealing with different sets of objects in both the GEO and sub-GEO regimes 
and longer observation times. Eventually, the results obtained when scheduling 
objects in just the LEO, GEO, or both orbital regimes at the same time are presented 
and discussed in detail by varying the available observation time.

2  Problem Statement

This section introduces the telescope tasking problem (TTP) and mathematically 
formulates it as a search problem on a graph.

2.1  Problem Definition

Let us consider a telescope characterized by its geographic coordinates (�,�, z) , 
which represent its latitude, longitude, and altitude above sea level. This telescope 
can be oriented in a specific direction identified by the azimuth � and altitude (or 
elevation) � , by using a motorized altazimuth mount. This mount has a maximum 
angular rate of motion, or slew rate, denoted as �max.

On a given day, the telescope becomes operational at a specific time called epoch 
t0 . This time is chosen to coincide with nautical twilight, defined as the time when the 
Sun’s elevation relative to the local horizon drops below −12◦ . The telescope remains 
active for a total time of Δtmax , typically extending throughout the entire night until the 
subsequent nautical twilight when the Sun’s elevation rises above −12◦ again. Once 
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the telescope is initiated at epoch t0 , it promptly goes to its designated “home” position 
marked as H. This home position is characterized by a specific azimuth �H and altitude 
�H.

Throughout the night, from time t0 to time t0 + Δtmax , the telescope is tasked with 
conducting a series of optical observations of artificial objects in Earth’s orbit using a 
camera affixed to it. To be more specific, a collection l = l1,… , lL of L known objects 
positioned in sub-GEO (LEO / MEO) and another collection g = g1,… , gG of G 
known objects in GEO are intended to be scheduled for observation during the 
aforementioned night. Each of these objects di ∈ l ∪ g is supposed to be observable at 
least once from the telescope during that night, and it is associated with a designated 
count of exposures, denoted as Edi

 , to be realized with the camera, each with the same 
total duration Δtexp

di
.

Each object in the sub-GEO category, denoted as li ∈ l , undergoes Pli
 passes across 

the telescope’s field of view within the observation time Δtmax . These passes are 
designated by the indices p = 1,… ,Pli

 , and each starts at time ts
li,p

 , reaches the 
maximum elevation point at time th

li,p
 , and ends at time te

li,p
 . The starting and ending 

epochs mark the times when the object reaches its minimum elevation angle �min for 
visibility above the local horizon. The positions of the object li at these times are 
denoted as (�s

li,p
,� s

li,p
) , (�h

li,p
,�h

li,p
) , and (�e

li,p
,�e

li,p
) , respectively. Should the sub-GEO 

object li ∈ l be observed during its p-th pass, p = 1,… ,Pli
 , the telescope will 

continuously track the object during an arc of his trajectory in the sky centered about 
the highest elevation point and with duration

The initial and final time of the observed arc are then

The corresponding position of the spacecraft, i.e., the pointing direction of the 
telescope, can be obtained starting from the azimuth and elevation rates of the 
spacecraft

(1)Δtobs
li,p

= max
{
Eli

Δt
exp

li
, te
li,p

− ts
li,p

}

(2)t
s,obs
li,p

= th
li,p

− 0.5Δtobs
li,p

(3)t
e,obs
li,p

= th
li,p

+ 0.5Δtobs
li,p

(4)𝜃
s,obs
li,p

= 𝜃h
li,p

− 0.5 �̇�s,h
li,p
Δtobs

li,p

(5)𝜓
s,obs
li,p

= 𝜓h
li,p

− 0.5 �̇� s,h
li,p
Δtobs

li,p

(6)𝜃
e,obs
li,p

= 𝜃h
li,p

+ 0.5 �̇�h,e
li,p
Δtobs

li,p
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Those rates, in turn, can be estimated for the two halves of the observed arc by 
knowing the initial, highest elevation point, and final object position along the p-th 
pass

The score sli linked to the sub-GEO object li is collected when the object is observed 
during any of its Pli

 passes.
On the other hand, the GEO objects are regarded as observable at all times 

throughout the night due to their fixed position in the sky (�gi ,�gi
) relative to 

the observatory site. Therefore, a GEO object has the potential to be observed 
on multiple occasions during the night, with each observation lasting a fraction 
of the remaining total exposure time. If a GEO object gi ∈ g is observed for an 
integer fraction p of the total exposures Egi

 , p = 1,… ,Egi
 , the duration of the 

observation and the resultant collected score will be as follows

The time required to slew the telescope from the last position of the object di during 
the observation arc along its j-th sky pass to the initial position of the next object dk 
during the observation arc of its l-th sky pass amounts to

where

(7)𝜓
e,obs
li,p

= 𝜓h
li,p

+ 0.5 �̇�h,e
li,p
Δtobs

li,p

(8)�̇�
s,h
li,p

= 2
𝜃h
li,p

− 𝜃s
li,p

Δtobs
li,p

(9)�̇�
s,h
li,p

= 2
𝜓h
li,p

− 𝜓 s
li,p

Δtobs
li,p

(10)�̇�
h,e
li,p

= 2
𝜃e
li,p

− 𝜃h
li,p

Δtobs
li,p

(11)�̇�
h,e
li,p

= 2
𝜓e
li,p

− 𝜓h
li,p

Δtobs
li,p

(12)Δtobs
gi,p

= pΔtexp
gi

(13)sgi,p = p
sgi

Egi

(14)Δtslew
di,j,dk ,l

=
cos−1

(
r
s,obs
di,j

⋅ r
e,obs
dk ,l

)

�max
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with a = s, e.
Before starting to actually take exposures of an object, the telescope must stay in 

place at the initial position of that object in the sky for a preparation time equal to 
Δt

prep
sgeo , for sub-GEO objects, and Δtprepgeo  , for GEO objects. This preparation time is 

necessary to focus the camera, change the filter, and propagate the object’s TLEs to 
correctly lock the telescope onto its orbit.

2.2  Search Problem

The TTP can be formulated as a search problem within a graph. A search problem 
encompasses a set of potential states, an initial state, a successor or transition 
function that maps from any given state to a collection of new states (referred to 
as successors), a goal test that determines whether a state qualifies as a goal state, 
that is, a final state within the search, and an objective function linked to either 
the states themselves or the path traversed within the graph. The goal of a search 
algorithm is to determine a sequence of transitions that initiates from the initial state 
of the problem, culminates in a goal state, and maximizes the value of the objective 
function.

By effectively defining the state space, initial state, successor function, goal test, 
and objective function, the TTP can be formulated as a search problem. Specifically, 
each state � is a sequence of pairs 

(
di, pi

)
 , each giving the label of the object 

observed di , and either the pass number pi (for sub-GEO objects) or the number of 
exposures taken pi (for GEO objects):

Each observation 
(
di, pi

)
 in � , i = 1,… ,N , can be associated with a starting and 

ending time ts
�,i

 , te
�,i

:

and with a corresponding score:

The total score of a state � is

(15)r
a,obs
di,j

=

{
[ cos 𝜃a,obs

di,j
cos𝜓a,obs

di,j
, cos 𝜃a,obs

di,j
sin𝜓a,obs

di,j
, sin 𝜃a,obs

di,j
]⊤ di ∈ l

[ cos 𝜃di cos𝜓di
, cos 𝜃di sin𝜓di

, sin 𝜃di]
⊤ di ∈ g

(16)� =
{(

d1, p1
)
,… ,

(
dN , pN

)}

(17)ts
�,i

=

{
t
s,obs
di,pi

di ∈ l

te
�,i−1

+ Δtslew
di−1,pi−1,di,pi

+ Δt
prep
geo di ∈ g

(18)te
�,i

=

{
t
e,obs
di,pi

di ∈ l

ts
�,i

+ Δtobs
di,pi

di ∈ g

(19)s
�,i =

{
sdi di ∈ l

sdi,pi di ∈ g
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while the total exposure time Δtobs,� (i.e., total time spent taking exposures), 
total slewing time Δtslew,� (i.e., total time spent moving the telescope) and total 
observation time Δttot,� (i.e., total duration of the observation session) are

Let us define with d
�
= {di}|i=1,…,N the set of objects in � . For each object di ∈ d

�
 , 

the set k
�,i is the set of indices in {1,… ,N} ⧵ i that refer to observations of the same 

object di:

State � is an admissible state if the following conditions are satisfied

The number of different objects observed in state � is

(20)s
�
=

N∑
i=1

s
�,i

(21)Δtobs,� =

N∑
i=1

Δtobs
di,pi

(22)Δtslew
tot,�

=

N∑
i=1

Δtslew
di−1,pi−1,di,pi

(23)Δttot,� = te
�,N

− t0

(24)k
�,i = {k ∈ {1,… ,N} ⧵ i ∶ dk = di ∈ d

�
}

(25)di ∈ l ∪ g, i = 1,… ,N

(26)pi ∈ ℕ
+, i = 1,… ,N

(27)di ≠ di+1, i = 1,… ,N − 1

(28)k
�,i = Ø, di ∈ l, i = 1,… ,N

(29)pi ≤

⎧⎪⎨⎪⎩

Pdi
di ∈ l

Edi
−

∑
k ∈ k

�,i

k < i

pk di ∈ g
, i = 1,… ,N

(30)ts
�,i

≥ te
�,i−1

+ Δtslew
di−1,pi−1,di,pi

+ Δtprep
sgeo

, di ∈ l, i = 2,… ,N

(31)Δttot,� ≤ Δtmax
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So, the state space of the search problem is:

The initial state of the search is the state �0 containing just the “fake” observation 
(H, 1), that is, the telescope at its home position at the initial epoch t0:

Any successor state �′ of state � is obtained by adding to the sequence a new 
observation 

(
dN+1, pN+1

)
 . The pair 

(
dN+1, pN+1

)
 has to be selected so that �′ is still 

an admissible state, i.e., it belongs to set S . Hence, the set of successor states of the 
state � is:

Let us introduce the set of unscheduled observations associated with a state �:

This set contains all the pairs (d̃i, p̃i) meeting the following conditions:

(32)Nobj,� = N −

N∑
i=1

|k
�,i|

|k
�,i| + 1

(33)S = {� ∶ (16)–(32)}

(34)�0 = {(H, 1)}

(35)ts
�0

= t0

(36)te
�0

= t0

(37)s
�0

= 0

(38)C(�) =
{
�

�

∶ �

�

= � ∪
(
dN+1, pN+1

)
, �

�

∈ S
}

(39)u
�
= {(d̃1, p̃1),… , (d̃U , p̃U)}

(40)d̃i ∈ l ∪ g, i = 1,… ,U

(41)d̃i ∉ l ∩ d
�
, i = 1,… ,U

(42)d̃i ∉ {dj ∈ g ∩ d
�
∶ pmax{k

�,j}
= Edj

}, i = 1,… ,U

(43)p̃i ∈ ℕ
+, i = 1,… ,U

(44)p̃i ≤ Pd̃i
, d̃i ∈ l, i = 1,… ,U

(45)p̃i ≠ p̃k, d̃i = d̃k ∈ l, i ≠ k = 1,… ,U
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The score associated with each unscheduled object d̃i , i = 1,… ,U , is

The total observation time left associated with state � is

A state � is considered a goal state if the set of unscheduled object referred to � is 
empty:

This situation arises when either all the planned objects have already been observed 
for their total exposure time or when there is no possibility of observing any 
additional object without exceeding the maximum observation time.

Hence, the set of goal states of the search problem is

The objective function of the problem is just a function of the last state � reached by 
the search process and is defined as

This objective function has been devised to prioritize solutions based on total score 
first, followed by total observation time in case of ties, and lastly by the number of 
observed objects. The three scaling factors 103 , 1, and 10−6 have been specifically 
selected to prevent the components from mixing and to keep their contributions 
separate. Indeed, given the typical application scenarios, the ranges of the score 
s
�
 , observation time Δttot,� , and number of objects Nobj,� will be approximately 

(0.01–300), ( 10−5–0.35), and (1–100), respectively. By multiplying them by the 
scaling factors in Eq.  (52), their ranges become (10–300,000), ( 10−4–0.35), and 
( 10−6–10−4 ), respectively. This ensures that the ranges do not overlap; thus, a 
solution with a lower observation time but also a lower score, or a solution with the 
same score, a higher number of objects but a lower observation time, will not have a 
higher merit index.

A goal state is said to be optimal if no other goal state in G has a higher objective 
function value. The goal of a search algorithm is to find a sequence of transitions 
that, starting from the initial state of the problem, reaches an optimal goal state. 

(46)p̃i =

⎧
⎪⎨⎪⎩

Ed̃i
d̃i ∈ g ⧵ (g ∩ d

�
)

Ed̃i
−

∑
k ∈ k

�,i

pk d̃i ∈ g ∩ d
�

, i = 1,… ,U

(47)t
s,obs

d̃i,p̃i
≥ te

�,N
+ Δtslew

dN ,pN ,d̃i,p̃i
+ Δtprep

sgeo
, d̃i ∈ l, i = 1,… ,U

(48)su
�
,i =

{
sd̃i d̃i ∈ l

sd̃i,p̃i d̃i ∈ g

(49)Δtleft,� = Δtmax − Δttot,�

(50)u
�
= Ø

(51)G = {� ∶ � ∈ S, (39)–(48), (50)}

(52)J
�
= 103s

�
− Δttot,� + 10−6Nobj,�
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If � =
{
�1,�2,… ,�K

}
 represents the sequence of visited states along the optimal 

path, then the search problem can be stated as follows:

3  Solution Approach

This section outlines the beam A*-search technique used to address the search 
problem in Eq.  (53). Diverse heuristics are also presented to accelerate the search 
process when confronted with either just sub-GEO objects, GEO objects, or a 
combination of both types of objects.

3.1  A* Search

A* is a widely employed algorithm in the realm of artificial intelligence (AI), first 
developed during the Shakey project at the Stanford Research Institute in 1968 [6]. 
Presently, A* finds applications in various AI domains, such as parsing in natural 
language processing [8], path planning for robots and UAVs [9], and pathfinding in 
video games [10].

The A* algorithm solves search problems by constructing a search tree. Each 
node of the tree corresponds to a problem state, and the connections between nodes 
represent state-to-state transitions. The search procedure starts by generating all the 
successor nodes of the root node, which corresponds to the initial problem state 
�0 . These newly generated states become leaf nodes and are added to the frontier, 
a prioritized collection of all leaf nodes at a specific point of the search process. 
During each iteration, the algorithm removes the topmost leaf node from the frontier 
and evaluates it against the goal test. If the node’s state matches a goal state, the 
search is concluded, and that state is returned as the problem’s solution. If not, the 
node is expanded by generating successors based on its state. These new leaf nodes 
are appended to the frontier, initiating a new iteration. The search is terminated 
either when a goal node is reached or when no further nodes can be generated. In 
this last case, the last expanded node is returned as the problem solution.

In A*, the frontier is organized as a priority queue using an evaluation function 
f
�
 combining the state’s objective function J

�
 with a heuristic function h

�
 as the 

ordering criterion. In problems aiming to maximize a state-dependent objective 
function, like the one examined in this paper, the heuristic function h

�
 estimates the 

potential improvement in the objective function obtained by reaching the nearest goal 
node from state � . Hence, during each iteration, the algorithm selects the node with 
the highest evaluation function for expansion. If the heuristic function is admissible, 
meaning it never underestimates the actual objective function improvement towards 

(53)

max
�

J
�K

s.t. �i ∈ S, i = 1,… ,K

�K ∈ G,

�i ∈ C(�i−1), i = 1,… ,K
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the closest goal node, A* ensures both optimality and optimal efficiency. Optimality 
means that the first expanded goal node is the global optimal solution, while optimal 
efficiency implies that no other search algorithm is guaranteed to explore fewer 
nodes than A* for the same problem. The admissibility condition can be formulated 
as follows, by supposing that �g is the nearest reachable goal node from �:

Being an optimal algorithm, when dealing with NP-hard problems, A*’s time 
and space complexity tend to grow exponentially with the problem dimension. 
This may make A* impractical for handling large-scale problems. However, this 
limitation can be alleviated by applying well-designed heuristics, which reduce the 
number of nodes that need to be expanded to find the optimal solution. Indeed, the 
more accurate the heuristic, that is, the closer its value to the actual merit index 
improvement to the closest goal node, the fewer nodes are expanded during the 
search. If the heuristic were perfect, no search iterations would be necessary, as 
A* would consistently choose the subsequent state in the solution of the problem 
� for expansion. Indeed, knowing a perfect heuristic implies knowing the problem 
solution itself. Hence, a trade-off emerges between the accuracy of the heuristic 
and its computational demands, which encompass considerations both on memory 
utilization and speed.

3.2  Heuristics

In this paper, three admissible heuristics are introduced. These heuristics are exact 
solutions derived from relaxed versions of the TTP when focusing exclusively on 
either sub-GEO or GEO objects or both kinds of objects. The following sections 
delve into the presentation of these heuristics.

3.2.1  Base Heuristic

To establish a benchmark for performance assessment of the heuristics that will be 
presented afterward, a “base” heuristic is introduced. The base heuristic is derived 
by straightforwardly summing the number of remaining observations and the scores 
and the overall observation and preparation time of all unscheduled objects. In 
cases where the cumulative observation time of unscheduled objects surpasses the 
remaining observation time, the latter is used in the heuristic. Thus,

This heuristic is admissible, as it assumes that all unscheduled objects are 
observed for their complete exposure time within the remaining observation time. 
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Additionally, it assumes that there are no waiting times or slewing times between 
successive observations. As such, the heuristic both overestimates the total score 
improvement and number of objects observed and underestimates the time required 
to execute the pending observations, thus producing a value of the objective function 
always higher than the one achievable from state �.

3.2.2  Sub‑GEO Heuristic

In situations where just sub-GEO objects are still unscheduled ( ̃di ∈ l , i = 1,… ,U ), 
the TTP transforms into a pure orienteering problem (OP) [11]. The OP is built 
around a weighted graph consisting of n nodes, labeled from 1 to n , each associated 
with a score si , linked by arcs with weights wij ( i, j = 1,… , n ). A designated root 
node r ∈ {1,… , n} is also part of the graph. The primary objective of the OP is 
determining the optimal path, initiating from r , that maximizes the cumulative 
score of the visited nodes, while maintaining a total weight that does not exceed 
a predefined maximum value wmax . In the specific variant of TTP focused solely 
on sub-GEO objects, each node within the graph symbolizes a distinct object-pass 
combination among the unscheduled objects ( i = (d̃i, p̃i) , i = 1,… ,U ), along with 
the last observation in the state � , which corresponds to the root node ( r = (dN , pN) ). 
Consequently, if observation j can indeed follow observation i , an arc is established 
in the graph, connecting node i to node j . This condition is met if:

The corresponding arc weight will be

The maximum path weight is instead

When exclusively addressing observations of sub-GEO objects, the resulting graph 
forms a directed acyclic graph (DAG). An example of DAG is shown in Fig. 1a. In 
a DAG, each arc is directed from one node to the subsequent one in such a way that 
following these directions will never create a closed loop. This graph arrangement 
stems from the temporal order of non-GEO object passes, as it is impossible to 
backtrack to a prior object pass and thus create a loop.

If all objects possess equal scores, the OP problem on a DAG simplifies into the 
longest shorter path (LSP) problem, previously introduced by Federici et  al. for 
planning active debris removal missions [12]. In the LSP problem, the objective 
is to find the highest integer q for which the shortest path (i.e., the one with the 
minimum cumulative weight) originating from the root r and traversing q nodes 
has a cumulative weight wlsp lower than a predetermined upper limit wmax . By 
supposing that the weights represent distances between the nodes, the name given to 
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this problem stems from its focus on identifying the longest path (i.e., which passes 
through the maximum number of nodes) in a graph that is shorter than a given 
distance.

The LSP problem can be efficiently tackled using dynamic programming. Its 
time complexity is O

(
n2q2

)
 , thus belonging to the P-hard class of problems. The 

approach involves iterating over the count of nodes k within the path, spanning from 
1 to n . During each iteration, the shortest path originating from r to any other node, 
while traversing exactly k nodes, is calculated. If the cumulative weight of this path 
surpasses wmax , the solution becomes k − 1 . Thus, solving the LSP problem reduces 
to addressing q(q + 1)∕2 shortest path problems, which are known to be P-hard.

Upon resolving the LSP problem, the heuristic can be obtained by multiplying 
the count of observed objects q by the average score s̄ of the q unscheduled sub-
GEO objects in u

�
 with the highest scores. Subsequently, the total observation time 

corresponding to these objects is subtracted and the number of observed objects q is 
summed, yielding to

This heuristic is also admissible. Supposing that the actual optimal solution 
comprises M ≤ U observations, as defined by the set of indices m ⊂ {1,… ,U} , the 
following inequalities hold:
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Indeed, q denotes an upper limit on the maximum number of observations feasible 
within the remaining observation time, and s̄ is the average score of the q highest-
scoring objects.

3.2.3  GEO Heuristic

In scenarios where just GEO objects are still unscheduled ( ̃di ∈ g , i = 1,… ,U ), 
the TTP again reduces into an OP, as the optimal solution still involves observing 
each object just once for the whole exposure time (i.e., collecting the total score 
associated to it), as this requires a lower total preparation time (just one per object, 
instead of one per exposure). However, in this case, the OP takes place on a complete 
directed graph (CDG), a graph where every distinct pair of nodes is interconnected 
by two arcs. This kind of graph is shown in Fig.  1b. This structure derives from 
the telescope’s capability of slewing from any GEO object to any other GEO object 
at any given time during the observation session (thus, loops are indeed possible). 
Due to this graph structure, the LSP problem heuristic becomes less precise, 
although it remains admissible. This is because the LSP problem solution could 
potentially involve multiple traversals through the same graph arcs if their weights 
are particularly low.

To derive a more accurate and admissible heuristic for GEO object scheduling, 
the simplifying assumption that all of the unscheduled objects are observable in the 
remaining observation time is employed. If the exposure times are sufficiently small 
compared to the time length of the observation session, this assumption holds more 
reliably when just GEO objects are considered, as there are no mandatory waiting 
times between consecutive object observations, and the telescope slewing time 
between the satellites is extremely short. Therefore, the problem can be posed as a 
minimum-weight Hamiltonian path problem to accurately estimate the total required 
observation time, which, in this case, is the only factor influencing the value of the 
objective function.

This problem is a variant of the TSP that does not require closing the tour. In this 
context, given a weighted graph comprising n nodes, labeled from 1 to n , connected 
by arcs with weights wij ( i, j = 1,… , n ), and a designated root node r ∈ {1,… , n} , 
the objective is identifying the minimum-weight path commencing from r and 
passing through each graph node exactly once. In the GEO-only TTP, each node 
within the graph corresponds to a distinct GEO object in the unscheduled objects 
( i = (d̃i, p̃i) , i = 1,… , n ), in addition to the last observation in the state � , which 
serves as the root ( r = (dN , pN) ). As for the weight of the arc going from observation 
i to j, it will be:

Although the minimum-weight Hamiltonian path problem remains NP-hard, a 
recognized admissible heuristic is the minimum spanning arborescence (MSA). 
An arborescence is a directed graph where, if r is the root, there exists exactly 
one directed path from r to v for every node v . An MSA is an arborescence 
encompassing all graph nodes and with the minimum overall weight. This MSA 
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total weight constitutes as a lower bound for the total weight of the minimum-
weight Hamiltonian path. Indeed, the MSA solution arises from a relaxed problem 
formulation, which assumes that more than two arcs can insist on each node in the 
solution. Distinct from the minimum-weight Hamiltonian path problem, the MSA 
problem can be solved in polynomial time O(mn) , with m = n2 representing the 
number of arcs in the graph. Edmonds’ algorithm [13] is used for this purpose in 
this paper. By indicating with wmsa the total weight of the MSA, the value of the 
heuristic in state � will be

3.2.4  General Heuristic

The LSP and MSA heuristics can be integrated to formulate a novel admissible 
heuristic in the general scenario encompassing both sub-GEO and GEO satellites. 
The underlying assumption of this composite heuristic is that the GEO satellites 
can be observed during the time intervals between successive sub-GEO object 
passes in the optimal solution. If the total observation time attributed to GEO 
objects, represented by the weight wmsa of the MSA, is either less than or equal to 
the cumulative waiting time between the different sub-GEO object observations, 
denoted as

where q ⊂ {1,… ,U} is the set of indices identifying the sub-GEO objects in the 
LSP problem solution, then it is assumed that all GEO objects can be observed 
within that time window. Otherwise, only a subset of GEO objects can be actually 
observed between the LEO object passes, and the remaining ones must be scheduled 
afterward, within the maximum available observation time Δtleft,�.

Given Gu
�

 as the number of GEO satellites within the unscheduled objects u
�
 , the 

combined heuristic in state � is

3.3  Search Space Pruning

Several pruning techniques have been incorporated to reduce the search space size 
throughout the search procedure, thereby enhancing the overall efficiency of the 
algorithm. These pruning techniques can be categorized into optimality-preserving 
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ones, i.e., which do not hinder the global optimality of the solution, and beam search 
techniques, to quickly eliminate large portions of the search space at the cost of 
losing global optimality guarantees.

3.3.1  Optimality‑Preserving Pruning

Two optimality-preserving pruning techniques have been implemented. The first 
one, occurring before the search procedure is initiated, involves removing from the 
list of unscheduled observations referred to the initial state of the problem, u

�0
 , all 

the passes of the sub-GEO objects that are not completely observable for the desired 
exposure time within the considered observation window, that is, the object-pass 
pairs (d̃i, p̃i) for which the following condition is verified

The second pruning technique involves using a graph version of the A* algorithm 
to avoid visiting the same nodes again. In this context, in addition to maintaining 
the frontier, the set of nodes that have been explored up to the current iteration 
is also retained in memory during the search. If a node is already present in the 
explored set, it is disregarded, and its potential successors are not generated. Nodes 
are considered equal (i.e., already explored) if the corresponding states share the 
same score, total observation time, and list of objects observed. Furthermore, each 
object within the states of the two nodes must possess the same cumulative count 
of exposures. It is important to remark that two nodes are considered equal even if 
their associated states are distinct. For instance, this could occur if the same set of 
sub-GEO objects, but for the final one, is observed in a different order or if the same 
count of exposures of one or more GEO objects occurring between the same sub-
GEO object passes are taken over different numbers of successive observations.

3.3.2  Beam Search

Despite the effectiveness of the A* search algorithm, it may never converge to the 
optimal solution when (i) dealing with problem instances with extensive object lists 
or (ii) a combination of different orbital regimes (sub-GEO and GEO) because of 
the lower accuracy of the corresponding heuristic. In both cases, the main reason 
for failure is A* high time and space complexity. A sub-optimal variant of A*, 
named beam A*-search (BA*), has been devised to address these challenges. BA* 
is obtained by combining standard beam search [7] and A*, and it can be seen as a 
heuristic-powered version of the beam best-first algorithm proposed by Zavoli et al. 
[14] for handling the multi-rendezvous problem released in the 10th global trajec-
tory optimization competition (GTOC X).

In BA*, only a fixed number bw of nodes, named the beam width, is retained in 
memory inside the frontier at each iteration. If the frontier width is lower than the 
beam width, BA* works exactly like A*. When the frontier width reaches the beam 
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width, any additional leaf node, associated with an arbitrary state � , is chosen to be 
included in the frontier according to the following rules: 

 (i) With a probability pb , named inclusion probability, the node is added in place 
of the last (i.e., worst) node �w in the frontier if f

�
> f

�w
;

 (ii) With a probability 1 − pb , the node is added in place of the last node �w in the 
frontier with a probability equal to 

 So, the higher the value of the evaluation function of state � compared to the 
one of the worst state �w , the higher the probability of being included in the 
frontier.

This biased replacement based on the evaluation function is used to avoid filling the 
frontier with just the newly generated nodes. In BA*, a maximum CPU time is also 
enforced by terminating the search when a predefined maximum number of nodes 
Dmax has been expanded. The best solution found so far, i.e., the one with the highest 
J, is returned as the problem solution.

Differently from the standard breadth-first or uniform-cost version of the beam 
search, the BA* version here adopted relies on the evaluation function f, which 
includes the heuristic contribute h. So, the biased replacement within the frontier 
is also based on how promising the states are and not just on their current value of 
the objective function, thus reducing the likelihood of discarding potentially good 
solutions and increasing the chances of approaching a goal state close to the global 
optimum of the problem.

Figure 2 shows a comparison between the search tree generated by A* and BA* 
on the same example problem. Here, states are numbered based on their generation 
sequence, and evaluation function values are numbered in descending order (lower 
subscripts indicate higher function values and, thus, better solutions).

4  Numerical Results

This section delves into the numerical results of the manuscript. The pool of sub-
GEO and GEO objects of interest is introduced, as well as the characteristics of the 
telescope and the relevant information about the night of observation. First, the per-
formance of the A* algorithm by varying the heuristic and the object score range 
are compared in terms of the number of visited nodes and total computing time. 
Then, the main hyperparameters of the BA* search algorithm are tuned by look-
ing at the average error with respect to the optimal solution and number of visited 
nodes obtained in both the sub-GEO-only and GEO-only scenarios. Afterward, the 
performance of the BA* search algorithm, in terms of total computing time and 
quality of the obtained solutions, is compared against a standard A* search by vary-
ing the number of objects and the total observation time. Eventually, we present the 
results of both the A* and BA* search algorithms when considering sub-GEO-only, 
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GEO-only, and mixed object sets by analyzing the number of observed satellites, 
the cumulative score, and the actual observations realized for different values of the 
available observation time.

4.1  Study Cases

The telescope considered in this study is Raptors-2, a member of the telescope array 
within the Space4 Center at the University of Arizona. Raptors-2 is classified as 
a Newtonian telescope and features an aperture measuring 608.9  mm and a focal 
length of 2831  mm. This telescope is situated at Biosphere 2, a facility affiliated 
with the University of Arizona, located 25 miles north of Tucson, Arizona, USA.

For precise details regarding the telescope’s specifics and its geographical 
coordinates, please refer to Table 1.

The observation session starts on July 24th, 2023, at 8:30 pm Pacific time (PT) 
and is extended for a total duration of 8.5 h. During this nighttime session, the focus 
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is on observing satellites from the Globalstar and Iridium constellations in LEO and 
satellites from the Intelsat and Galaxy constellations in GEO.

Relevant parameters such as the epoch, azimuth, and altitude of the objects 
at the beginning, highest-elevation point, and conclusion of all their passes over 
the telescope’s location are precomputed, right before the nautical twilight of the 
observation day, by forward-propagating, with the SGP4 model, their most up-to-
date TLEs sourced from the Norad catalog via SpaceTrack.com.

At the beginning of the observation session, the telescope is assumed to be 
positioned at its home location and prepared to initiate exposures 2 min before 
the first scheduled pass of one of the LEO objects.

Detailed specifics about the beginning of the observation session, the total 
count of visible LEO and GEO satellites from Raptors-2, the required exposures 
and exposure duration for GEO satellites, as well as the preparatory time before 
capturing exposures of LEO and GEO satellites, are outlined in Table 2. For the 
sake of simplicity, the exposure time associated with each of the LEO objects 
has been assumed to be slightly longer than its longest pass time, so that they are 
always observed for the whole pass time, that is

The implementation of the A* and BA* search algorithms has been realized in 
C++, and the execution was performed on a workstation housing an AMD Ryzen 9 
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Parameter Value Unit
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7950X 16-core processor operating at 5.8 GHz and equipped with 128 GB of RAM. 
The execution was parallelized across the 32 logical cores of the processor using 
OpenMP directives.

4.2  A* Heuristic Performance Analysis

The exact (i.e., optimal) version of the A* algorithm has been considered first to 
study the performance of the proposed heuristics with different sets of target object, 
score ranges, and total observation times.

4.2.1  Effect of the Problem Dimension

First, the scores of the objects have been fixed (all equal to 1) and the performance 
of the heuristics has been analyzed on increasingly harder instances of the TTP by 
considering only GEO or LEO satellites.

Specifically, Fig. 3 shows the trends of the number of visited nodes (Fig. 3a) and 
total CPU time (Fig. 3b) obtained with the two heuristics for GEO objects (base and 
MSA) by varying the pool of GEO satellites G from 2 to 32 and keeping the total 
observation time fixed to Δtmax = 8.5 h . It is easy to note that both the number of 
explored nodes and the corresponding CPU time grow exponentially with the num-
ber of objects when the base heuristic is used. In this case, the algorithm is not even 
able to solve problem instances with more than 9 objects because of complete mem-
ory saturation. Conversely, when the MSA heuristic is used, the two figures of merit 
feature a much slower growth with the problem dimension, and the A* code can find 
a globally optimal solution for every problem instance considered. The maximum 
CPU time required for scheduling 32 GEO satellites with the MSA heuristic is about 
20 min, which confirms the necessity of introducing an approximate version of the 
algorithm to cope with bigger problem instances in reasonable times.

Figure 4 shows the trends of the number of visited nodes (Fig. 4a) and total CPU 
time (Fig. 4b) that are instead obtained with the two heuristics for LEO objects (base 
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and LSP) by varying the total observation time Δtmax from 1 h to 8.5 h, and always 
considering all the L = 90 satellites. As before, the A* algorithm with the base 
heuristic features a larger number of visited nodes and total CPU time, up to one 
order of magnitude higher than the LSP heuristic. However, their growth with the 
observation time is slower than in the GEO case, thanks to the use of a graph search 
version of the algorithm, which removes all the LEO object permutations that yield 
the same value of the merit index. The results obtained with the ad-hoc designed 
heuristic (LSP) are even better in this case, as the two figures of merit increase just 
linearly with the observation time. In this case, the CPU time is always lower than 
0.2 s, even when the entire night and all the 90 target objects are considered.

It is worth mentioning that an analysis of the A* performance when varying 
the number of sub-GEO objects, as done in the GEO object scheduling scenarios, 
has not been conducted. This is because this effect is implicitly considered in the 
analysis focused on variations in the total observation time. Altering the total 
observation time influences the visibility of certain sub-GEO object passes, thereby 
excluding specific sub-GEO satellites from the search due to the preliminary object 
pruning detailed in Sect.  3.3.1. Specifically, varying the total observation time 
from 1 to 8.5  h corresponds to a change in the number of observable sub-GEO 
satellites from 18 to 90, with an increase of approximately 10 objects per additional 
observation hour.

4.2.2  Effect of the Score Range

Then, the effect of varying the scores of the target objects on the LSP heuristic per-
formance has been analyzed for LEO objects only. Results with the MSA heuristic 
for the GEO-only case have been omitted as they produce identical metric trends, 
as, given the exposure times here considered, all the GEO objects are always sched-
uled during the 8-hour observation session, so the scores do not have an impact on 
the heuristic accuracy. Figure  5 shows the trends of the number of visited nodes 
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(Fig. 5a) and total CPU time (Fig. 5b) obtained with the LSP heuristic by varying 
the total observation time Δtmax from 1 to 8.5  h and with different scores for the 
L = 90 LEO satellites (all scores equal to 1, random scores in [1, 2], and random 
scores in [1, 3]).

As expected, being the LSP heuristic based on an equal-score assumption, its 
accuracy worsens when tackling problems with different scores: the more scattered 
the scores, the slower the search process. However, it is worth noting that, while 
both the number of visited nodes and the CPU time increase considerably when 
switching from an equal-score to a different-score scenario, the same performance 
metrics do not change much when widening the score range from [1, 2] to [1, 3], 
thus showing a good degree of robustness of the heuristic against a larger scattering 
of the object scores, which, in a normal operative scenario, are not expected to be 
too much different between each other.

4.3  BA* Algorithm Performance Analysis

The beam version of the A* algorithm (BA*) has been then considered, and its 
efficiency and accuracy have been assessed against the optimal version of A* on 
different sets of target objects.

4.3.1  Hyperparameter Tuning

First, the effect of the two hyperparameters of BA*, namely the beam width bw 
and the inclusion probability pb , on the algorithm performance has been analyzed 
by considering two instances of the TTP involving either all the GEO satellites or 
the LEO satellites, a maximum observation time Δtmax = 8.5 h , and random object 
scores sampled in the interval [1, 3].

Figures 6 and 7 show the trends of the algorithm performance measure (Fig. 6a and 
7a) and average number of explored nodes (Fig. 6b and 7b) obtained by both varying 
the beam width and the inclusion probability when only GEO or LEO objects are 
considered, respectively. For each pair of values (bw, ps) , 50 independent runs have been 

100

101

102

103

104

105

1 2 3 4 5 6 7 8 9

N
od

es

∆tmax [h]

equal scores
scores in 1-2
scores in 1-3

(a) Explored nodes vs observation time.

10−4

10−3

10−2

10−1

100
101
102
103
104

1 2 3 4 5 6 7 8 9
∆tmax [h]

equal scores
scores in 1-2
scores in 1-3

(b) CPU time vs observation time.

C
P

U
 t

im
e 

[s
]

Fig. 5  LSP heuristic performance comparison by varying the LEO satellite score range with A*



 The Journal of the Astronautical Sciences (2024) 71:3434 Page 24 of 34

realized to mitigate the stochastic nature of the algorithm and collect statistics. The 
maximum number of explored nodes has been fixed to Dmax = 25000 . Two different 
performance measures or error metrics have been used when scheduling GEO or LEO 
objects, respectively. Let us name with s⋆ and Δt⋆

tot
 the score and total observation time 

of the optimal solution, retrieved via standard A*. With GEO objects, the performance 
measure corresponds to the average relative error in total observation time with respect 
to the optimal solution:

being the score always the same between the A* and BA* solutions as all scheduled 
GEO objects are always observed. Conversely, with LEO objects, the performance 
measure is the average relative error in the cumulative score with respect to the 
optimal solution:

(69)eΔt =
|Δt⋆

tot
− Δttot,�|
Δt⋆tot
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An alternative and more precise error metric could be the relative error in the objec-
tive function J

�
 in Eq. (52), which accounts for the score, the total observation time, 

and the number of objects. However, the scaling factors used to weigh the last two 
terms make it difficult to discern differences in these values. To address this, the 
effects have been separated, and only the leading one (score for LEO objects and 
observation time for GEOs) has been used to define the error metrics. This approach 
ensures that the most significant factors for each type of object are appropriately 
emphasized in the error analysis that follows.

Figures 6b and 7b confirm that, in either case (GEO and LEO object scheduling), 
the number of explored nodes grows exponentially with the beam width bw , as a 
direct consequence of the NP-hardness of the combinatorial problem. The count of 
nodes reaches its maximum value, denoted as Dmax = 25000 , when the beam width 
surpasses 50 times the count of scheduled objects. By looking at Figs. 6a and 7a, one 
can notice that, with such values of bw , the errors increase rapidly in both the GEO-
only and LEO-only scenarios. In these cases, the BA* algorithm fails to reach a goal 
node within the available computational time, yielding an incomplete solution with 
a consistently lower score compared to the optimal one. Thus, as expected, the best 
value of the beam width is highly dependent on the available computational budget, 
that is, on the value of Dmax . For lower values of the beam width ( bw ≤ 50G and 
bw ≤ 50 L respectively), the behavior of BA* diverges between the GEO and LEO 
scenarios. In the former, as expected, errors exhibit a monotonous decline as both 
the beam width and inclusion probability increase. This decline leads to an error 
value below 0.1%, which corresponds to approximately 10  s in total observation 
time. This level of accuracy is achieved when utilizing pb = 0.8 with either bw = 5G 
or bw = 10G . However, for the LEO case, the error features a minimum point that 
is dependent on the value of pb . With lower inclusion probabilities ( pb = 0 and 
pb = 0.2 ), a higher beam width ( bw = 50 L ) is required to converge to a good quality 
solution, as the broader pool of nodes that are kept in memory at each iteration 
mitigates the effect of the higher probability of discarding promising solutions. 
Conversely, with higher inclusion probabilities ( pb = 0.6 and pb = 0.8 ), a relatively 
low value of the beam width ( bw = 5L ) is sufficient to find solutions closer to the 
optimal one. In any case, also with LEO target objects, the minimum error value 
( es < 3% ) is achieved with pb = 0.8 and bw = 5 L . For this reason, the analyses in 
the following sections have been conducted using this specific configuration of the 
algorithm.

4.4  Performance Statistics

The performance of the best BA* configuration found so far has then been assessed 
on increasingly harder instances of the telescope tasking problem, using only 
GEO or LEO satellites and random scores in the interval [1, 3]. For each problem 
instance, 100 independent runs of BA* have been performed to collect statistics.

(70)es =
|s⋆ − s

�
|

s⋆
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Figure 8 presents the boxplots generated from 100 BA* runs, depicting the CPU 
time (Fig. 8a) and the total slewing time (Fig. 8b) for GEO object scheduling. The 
pool of GEO satellites G varies from 2 to 32, while the total observation time is fixed 
at Δtmax = 8.5 h . The total slewing time Δtslew

tot
 has been selected as a performance 

metric in this case because it allows us to better appreciate differences between 
subsequent runs, as the total exposure time Δtobs,� and preparation time GΔtprepgeo  
remain the same across all solutions.

Conversely, Fig. 9 displays the boxplots for CPU time (Fig. 9a) and cumulative 
score (Fig. 9b) for LEO object scheduling. In this case, the total observation time 
Δtmax varies from 1  h to 8.5  h, consistently considering all L = 90 satellites. The 
boxplots corresponding to problem instances with fewer than 6 satellites for GEO 
object scheduling and with a total time of less than 5 h for LEO object scheduling 
have not been included in Figs. 8b and  9b because BA* was able to find the optimal 
solution in every run, as will be shown in the next section.

The results indicate that the variability in total CPU time is more pronounced in 
percentage terms for the easiest problem instances, where the average value is small 
(less than 0.1 s). However, as the problem becomes more complex, this variability 

Fig. 8  Performance statistics of BA* for GEO satellites scheduling

Fig. 9  Performance statistics of BA* for LEO satellites scheduling
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decreases, demonstrating that BA* consistently finds solutions by exploring a 
similar number of search nodes. In both cases (GEO and LEO object scheduling), 
the average CPU time increases exponentially with the problem size, but with a 
much lower slope compared to A*.

The variability in performance differs between the GEO and LEO cases. For GEO 
scheduling, the variability is broader in some test cases and includes some distant 
outliers. It is important to note, however, that the differences between solutions 
are on the order of a few seconds in total observation time over several hours of 
telescope usage. For LEO scheduling, the variability is almost absent, with BA* 
consistently finding solutions with very similar scores, highlighting the robustness 
of the proposed approach against randomness.

4.5  Performance Comparison with A*

BA* has then been systematically compared against standard A* on the same prob-
lem instances. In this case, the best solution over 50 runs of BA* has been used for 
comparison with A*.

Figure  10 shows the trends of the CPU time (Fig.  10a) and of the error on 
the total observation time (Fig.  10b) obtained with BA* and A* for GEO object 
scheduling by varying the pool of GEO satellites G from 2 to 32 and keeping the 
total observation time fixed to Δtmax = 8.5 h . Figure 11, instead, shows the trends 
of the CPU time (Fig.  11a) and of the error on the cumulative score (Fig.  11b) 
that are obtained with BA* and A* for LEO object scheduling by varying the total 
observation time Δtmax from 1  h to 8.5  h, and always considering all the L = 90 
satellites.

In both scenarios, it is evident that BA* consistently reduces the overall time 
needed to reach a goal state (Figs. 10a and 11a). Specifically, the CPU time needed 
to schedule all of the GEO objects within the maximum observation time diminishes 
by almost two orders of magnitude, going from 16 min with A* to 23 s with BA*. 
For LEO satellites, the time drops from 5 min with A* to less than 30 s with BA*, 
which corresponds to a reduction of almost one order of magnitude.
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While this significant improvement in computational speed does come at the 
expense of sacrificing the guarantee of a globally optimal solution, the trade-off is 
justified. This justification is particularly clear when looking at Figs. 10b and  11b, 
which illustrate that the solutions produced by BA* deviate by less than 0.08% in the 
case of scheduling GEO objects, and by less than 3.5% when it comes to scheduling 
LEO objects. This level of difference in the merit index values supports the use 
of BA* instead of standard A* or similar exact solution algorithms, especially 
when dealing with extensive lists of target objects. It’s worth highlighting that the 
errors introduced by the BA* algorithm do not increase alongside the problem’s 
complexity. Instead, the errors are almost zero when sufficiently small sets of objects 
are considered, then rise quickly and converge towards a fixed value with larger 
object pools.

4.6  Optimal Observation Schedules

Eventually, this section presents and discusses the optimal observation schedules 
obtained with either A* or BA* when considering only GEO, LEO, or both GEO 
and LEO satellites together as target objects, and the entire night as observation 
session.

4.6.1  GEO Object Scheduling

Figure 12 shows the path of the telescope pointing direction in the sky for the opti-
mal solution obtained with A* all the 33 GEO satellites. The total observation time 
is 2.21 h , with 2.06 h being the actual cumulative exposition time. It is interesting 
to note that the GEO objects do not follow a simple ordering in azimuth, which is 
the most commonly used in sensor tasking applications. Instead, they are arranged 
in a more complex way to minimize the total telescope slewing time, that is, the 
cumulative path in the sky. The obtained solution indeed corresponds to the solution 
of the TSP referred to the target GEO objects, departing from the telescope’s home 
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position. This time-optimal solution is also the most convenient from an energy con-
sumption point of view, as it allows reducing the movements of the mount motors to 
a minimum.

4.6.2  LEO Object Scheduling

Figure 13 shows the trends of the number of observed satellites (Fig. 13a) and total 
score (Fig. 13b) obtained with A* and the LSP heuristic by varying the observation 
time Δtmax from 1 h to 8.5 h and using different scores for the 90 LEO satellites (all 
scores equal to 1, random scores in [1, 2], and random scores in [1, 3]). The corre-
sponding solutions are reported in Table 3, where, for either score distribution, the 
list of Norad IDs, the corresponding object scores, and the time passed till the end of 
the observations, are listed.

Of course, both the number of observed satellites and the total score increase with 
the observation time, and the wider the score range, the higher the cumulative score 

Fig. 12  GEO object observa-
tion. The concentric circles 
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achieved. It is interesting to note that, with either equal scores or scores in [1, 2], the 
number of observed satellites is the same for every observation time Δtmax . How-
ever, by looking at the optimal sequences for Δtmax = 8.5 h (Table 3), they just share 
7 satellites out of 20, thus confirming that the objects with highest scores indeed 
drove the search in the latter case. With scores in [1, 3], although the optimal solu-
tions have one satellite less, the cumulative score is always higher than in the other 
two cases. So, the algorithm preferred to sacrifice one of the satellites to be able to 
observe objects with a higher score, but which also require longer waiting and/or 
pass times. Indeed, one can notice that, in the optimal solution with Δtmax = 8.5 h , 
although the last 17 objects are observed in the same order and at the same epochs 
as in the solution with scores in [1, 2], the time used to observe the first three objects 
in this latter solution is exploited in the solution with scores in [1, 3] to track just 
two high-scoring objects.

4.6.3  Mixed LEO–GEO Object Scheduling

Figure 14 shows the trends of the number of observed satellites (Fig. 14a) and the 
total score (Fig.  14b) obtained with BA* by varying the observation time Δtmax 
from 1 h to 8.5 h and by considering both the LEO and GEO objects together, with 

Table 3  Optimal LEO object observation schedules with different score distributions by A*

Equal scores Scores in [1, 2] Scores in [1, 3]

ID s t
e − t

0
 [h] ID s t

e − t
0
 [h] ID s t

e − t
0
 [h]

43929 1 0.33 37190 1.46 0.38 32264 2.87 0.43
42807 1 0.63 42807 1.07 0.63 43927 2.86 0.78
25273 1 0.84 24944 1.65 0.85 24948 2.97 1.07
24948 1 1.07 24948 1.98 1.07 31574 2.77 1.40
43922 1 1.38 31574 1.88 1.40 31573 2.80 1.96
37744 1 1.89 31573 1.90 1.96 25946 1.99 2.42
25676 1 2.35 25946 1.49 2.42 25306 2.83 2.83
25306 1 2.82 25306 1.91 2.83 25943 2.78 3.75
25307 1 3.60 25943 1.89 3.75 39076 2.69 4.32
25853 1 4.30 39076 1.85 4.32 37743 1.83 4.74
37743 1 4.74 37743 1.42 4.74 25910 2.14 5.17
25623 1 5.14 25910 1.57 5.17 25963 2.78 5.57
31571 1 5.47 25963 1.89 5.57 25944 1.26 6.03
38044 1 5.85 25944 1.13 6.03 32265 2.42 6.47
25679 1 6.20 32265 1.71 6.47 43478 1.78 6.70
41923 1 6.66 43478 1.39 6.70 41919 2.13 6.98
41919 1 6.98 41919 1.56 6.98 43479 2.61 7.27
43479 1 7.27 43479 1.80 7.27 43481 2.77 7.57
43481 1 7.57 43481 1.89 7.57 43254 1.91 8.44
37741 1 8.25 43254 1.46 8.44 – – –
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random scores in the interval [1, 3]. For the sake of comparison, the same solutions 
but by just considering the LEO objects have been also reported.

It is interesting to note that, when objects in both orbital regimes are 
considered, the count of observed satellites does not increase monotonically with 
the observation time, as, for some observation times, the algorithm was able to 
find a solution where some low-scoring satellites are replaced by a lower number 
of higher-scoring objects, thus anyway leading to an improved cumulative score. 
In this case, the telescope is able to observe a higher number of satellites and 
collect a higher cumulative score in the same observation time by efficiently 
scheduling GEO objects between successive passes of LEO objects. Thus, the 
contemporary scheduling of both LEO and GEO objects optimizes the utilization 
of the available observation time. Specifically, in 8.5 h, the telescope can observe 
a total of 53 objects, which include all 33 GEO satellites plus 20 LEO satellites. 
Figure  15 shows the number of observations and number of observed satellites 
for the mixed LEO–GEO scenario for different observation times Δtmax . It 
is interesting to note that the number of observations realized differs from the 
number of distinct satellites tracked, especially for longer observation times 
(in 8.5 h, 61 observations of 53 distinct satellites), as opposed to the LEO-only 
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scenario. This phenomenon occurs since some of the GEO objects are observed 
multiple times for fractions of the total number of exposures to better exploit 
the waiting time between LEO observations and further optimize the cumulative 
score collected.

5  Conclusion

This paper addressed the problem of optimal telescope tasking for space 
domain awareness purposes. The main focus was the prioritized scheduling of 
observations for known Earth-orbiting satellites using a single telescope. The 
problem was posed as a purely combinatorial problem and solved with the 
application of a beam variant of the A* search algorithm, termed beam A*-search 
(BA*).

Three novel heuristics were introduced to expedite the scheduling process via 
A*, each tailored to specifically deal with a distinct orbital regime (sub-GEO, 
GEO) or with all of them. These heuristics were devised as exact solutions 
of relaxed versions of the underlying combinatorial problem, ensuring their 
admissibility and, thus, the global optimality of the search procedure. Different 
pruning techniques were also proposed to reduce the dimension of the solution 
space and further speed up the search process. Among them, the beam search 
framework was applied to standard A* search to create a sub-optimal variant of 
the algorithm, wherein only a fixed number of promising solutions is retained 
in memory at each iteration. The solutions to be included within the frontier are 
chosen according to a biased random sampling based on the value of the node 
evaluation function, which contains information coming both from the problem 
objective function and A* heuristic.

The results obtained showcase the effectiveness of the proposed heuristics in 
terms of time complexity, as compared to a benchmark heuristic tailored for the 
specific problem when using the exact version of A* algorithm. Specifically, the 
proposed heuristics lead to a decrease of one order of magnitude in overall run 
time when scheduling LEO objects, and of up to four orders of magnitude when 
observing GEO objects. The effect of varying the range of priority indices, or 
scores, for the scheduled objects, is also investigated in detail to understand how 
it affects the performance of the different A* heuristics. Results show that, while 
broader ranges do increase the problem complexity, the A* search algorithm 
remains capable of finding optimal solutions within a reasonable amount of time.

The effectiveness and accuracy of the beam version of A* algorithm, BA*, 
have been then investigated. First, the main hyperparameters of the BA* search 
method, namely the beam width and the inclusion probability, have been properly 
tuned to identify the pair of values that corresponds to the best compromise 
between the quality of the obtained solution and the cumulative run time of the 
search. The results obtained show that a value of inclusion probability of 0.8 and 
a beam width equal to five times the number of scheduled objects yield the best 
results when considering only GEO objects or LEO objects.
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BA* has been then compared against standard A* in terms of computing time 
and solution accuracy on object sets of different sizes involving just LEO or GEO 
satellites and by also varying the total observation time. Results showcase that, at 
the cost of converging to a sub-optimal solution with a value of the merit index 
that is less than 0.08% lower than the optimal one in the GEO-only case, and less 
than 3% lower in the LEO-only case, BA* can cut down the overall run time up to 
a factor 100 in the hardest problem scenarios considered.

A test set including all the target LEO and GEO objects has been eventually 
considered to understand how it affects the number of objects observed, the number 
of observations realized, and the total score collected. The obtained solutions show 
that when LEO and GEO objects are considered together, the latter kind of satellites 
are scheduled within successive passes of LEO objects, thus yielding a more 
efficient use of the available observation time.

As possible future research directions, it would be worthwhile to investigate 
alternative heuristics that can potentially perform better on different test sets. For 
example, when larger sets of GEO objects (in the order of hundreds) are considered, 
using the undirected version of the minimum spanning arborescence, called the 
minimum spanning tree, may yield faster solutions. This is because it is quicker 
to compute, albeit slightly less accurate. Additionally, if some GEO objects are 
associated with very long total exposure times, a new possible heuristic could be 
based on solving the knapsack problem. This approach prioritizes scores over total 
observation time, better fitting the situation where the assumption that all GEO 
objects are observable no longer holds.
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