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Abstract
This work is the third in a series on point mascon lunar gravity models. Point 
mascon models are computationally-efficient replacements for the standard spherical 
harmonics gravity models used in astrodynamics applications. Weighted cubed-
sphere mascon gravity models are introduced as runtime-efficient alternatives to the 
spherical harmonics representation that do not impose the extreme memory costs 
imposed by other interpolated gravity modeling schemes. Localized models for the 
lunar gravity field are generated using sets of point-mass potentials and referenced 
to a cubed-sphere grid. Adjacent localized point mascon gravity models are 
combined using Junkins weighting functions to form a smooth global model. Three 
demonstration models are generated that reproduce the GRGM1200A lunar gravity 
model with equivalent fidelity to degree 70, 300, and 550 spherical harmonics 
truncation levels. The weighted cubed-sphere models are benchmarked for runtime 
and memory cost against the standard spherical harmonics models and two recently-
introduced types of globally-defined mascon models. The benchmarking results 
show that the weighted cubed-sphere mascon models enable significant runtime 
improvements with reasonable memory costs, especially when using OpenMP 
parallelization. Comparing acceleration runtime with spherical harmonics, the 
degree 300 equivalent weighted cubed-sphere model shows up to a 30-fold speedup 
with an 89 megabyte memory footprint and the degree 550 equivalent model shows 
up to a 90-fold speedup with a 170 megabyte memory footprint. Order of magnitude 
speedups are demonstrated without parallelization. The runtime models and driver 
code are available online.
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1  Introduction

The goal of this research is to develop high-fidelity, computationally-efficient gravity 
field representations for large celestial bodies, with a particular focus on the Moon.31 
Nonspherical gravity is especially important at the Moon for two main reasons: first, 
the lunar gravity field is uneven compared to the gravity fields of other large celestial 
bodies. Second, because the Moon has a negligible atmospheric density, objects can 
orbit extremely close to the lunar surface, where localized anomalies in the gravity 
field are especially impactful on motion. Nonspherical gravity is a critical effect to 
include in cislunar dynamics models, and is therefore useful for applications where 
such dynamics models are required, including mission design, orbit determination, 
and guidance navigation and control.

Spherical harmonics (SH) models are the most common representations for 
gravity fields in astrodynamics. Kaula provides a foundational text on the application 
of SH models to gravity modeling [11], and Fantino and Casotto survey a variety of 
modern SH model evaluation techniques [2]. SH models can be used in analytic orbit 
theories for trajectory prediction, such as the recent technique presented by Mahajan 
and Alfriend [13]. SH models are also commonly used to compute accelerations 
due to nonspherical gravity for numerically propagated trajectories. SH gravity 
models have a few notable drawbacks. The fidelity of a SH model is quantified 
by its truncation degree L, and the quantity of terms in the SH series increases 
quadratically with increasing degree. In the context of this work, SH models are 
referred to by their degree only, with the understanding that the full order is used 
in all cases. A study on appropriate SH truncation degree at the Moon presented 
in McArdle, et. al. [17] indicates that the appropriate SH truncation degree can be 
substantially greater than L = 100 at low lunar altitudes. This large recommended 
SH truncation degree agrees with analysis from a recent mission design study for the 
Sustained Low-Altitude Lunar Orbiter Mission (SLALOM), where a degree 400 SH 
truncation is found to be necessary for sufficient trajectory prediction accuracy in a 
10 km lunar altitude orbit [19]. A degree L = 400 SH series contains about 160,000 
terms. SH models require many recursive associated Legendre function calculations, 
and mitigating this large processing burden is non-trivial.

Interpolated gravity representations have been developed as more runtime-
efficient alternatives to SH models. Junkins applied weighting functions to smoothly 
combine adjacent local gravity models [8–10]. Jones, Born, and Belkyn applied 
the cubed-sphere discretization and local B-splines to develop interpolated gravity 
models [7]. Arora and Russell adapted the Junkins weighting function approach 
with adaptive local polynomials for their Fetch interpolated gravity models [1]. 
One drawback of these interpolated gravity model approaches is that the memory 
footprints for high-resolution interpolated models are quite large, with the Fetch 
models (for the Earth) requiring more than two gigabytes to represent a gravity 
fidelity equivalent to a degree L = 360 SH truncation.

1  Presented as Paper 22-827 at the AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North 
Carolina, August 2022 [18]. Excerpts of this work are included in the dissertation by the author [14].
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As another alternative to SH models, point mascon, or mass concentration, 
models reproduce the gravity field using an ensemble of point mass potentials 
buried under the surface of the celestial body. Earlier investigations, such as 
the study by Woodburn, et. al. successfully applied geometrically simple mass 
objects to model Earth’s gravity [22]. One advantage of point mascon models is 
that they are easy to parallelize, since the contribution from each mascon can be 
computed independently at the evaluation point. Preceeding articles in this series 
present fixed-mass models, where all the masses are equal and the gravity field is 
reproduced by selecting mascon locations [15], and free-mass models, where the 
gravity field is reproduced by selecting mascon masses [16]. Weighted cubed-
sphere (WCS) mascon models are introduced in this current work as runtime-
efficient gravity representations that incur a smaller memory cost than previous 
interpolated gravity models for the same fidelity. WCS models divide the 
sphere into local patches using the cubed-sphere discretization, and use Junkins 
weighting functions to smoothly join locally-accurate point mascon models. By 
concentrating mascons in the local region and distributing mascons more sparsely 
in distant locations, the local gravity field can be accurately modeled with 
significantly fewer mascons than would be required to model the global gravity 
field to the same fidelity.

Using mascons as the basis function for each local patch also has a physical 
significance: the inverse-squared law of gravity naturally dissipates in the radial 
direction, avoiding the need to discretize the space in the radial direction. The same 
set of mascons can achieve a desired level of accuracy over a range of altitudes, 
allowing the WCS mascon models to use a two-dimensional, rather than three-
dimensional, discretization. The gravitational potential and its gradients can be 
recovered from a mascon model up to an arbitrary derivative order, so there is no 
need to represent the gradients with separate sets of parameters: only the potential 
function is modeled. For each evaluation of the WCS mascon model, four local 
mascon models are combined using Junkins weighting functions to ensure global 
smoothness [9]. As a serendipitous statistical result, combining four local models 
reduces error in the overall result, which allows fewer mascons to be used than 
would be necessary to represent the local gravity field using a single model.

During the development of the WCS gravity modeling technique, early design 
iterations were inspired by large-scale N-body gravity modeling methods for 
simulating large cosmological structures [5]. Fast multipole method (FMM) 
techniques were applied to consolidate mascons distant from a local region-of-
interest. For the particular gravity field application presented in this current work, 
consolidating distant mascons into their center of mass caused unacceptably high 
errors in the region-of-interest, due mainly to a different scale of parallax when 
compared to the galaxy modelling application. Using higher-order multipole 
expansions of distant mascons did reduce the errors in the region-of-interest, but 
required a complicated two-step process: First the global gravity field would be 
modeled using mascons and then this global mascon model would be consolidated at 
each local patch using multipole expansions. The final configuration chosen for the 
local mascon modeling technique uses a simpler approach, where the local mascon 
models are fit directly to a reference SH model.
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The organization of this paper is as follows: First the structure of the WCS point 
mascon models is explained in detail, including a description of the cubed-sphere 
discretization, the Junkins weighting functions, and the WCS model generation 
method. Then a set of three WCS demonstration models is presented, with a 
comparison of the accuracy of accelerations derived from the WCS models and SH 
models, an evaluation runtime analysis, and a trajectory propagation error study 
using the new WCS models. Finally concluding remarks are made with suggestions 
for future work and recommendations for use cases of all three types of lunar 
mascon models: global free-mass, global fixed-mass, and local WCS models. All 
the mascon models developed in this series, including demonstration WCS mascon 
models are publicly disseminated with Fortran driver code in an online database. 2

2 � Methods

In this section, the cubed-sphere discretization and the Junkins weighting function 
technique are explained, and the structure and generation technique for the local 
point mascon models are presented.

2.1 � Cubed‑Sphere Discretization

Locally-valid models are defined in regions of the sphere segmented by a cubed-
sphere discretization [20]. The cubed-sphere discretization splits the sphere into 
patches with nearly equal areas. This discretization does not exhibit the severe dis-
tortions that arise from a naive spherical coordinate grid due to the singularities at 
the poles. The cubed-sphere patches are aligned across face boundaries, so it is pos-
sible to obtain smooth transitions between patches on adjacent faces.

The cubed-sphere discretization defines a grid on each of the six faces of a cube 
and projects these grids onto the surface of the sphere. The areas between grid lines 
are denoted patches, and the intersections of grid lines are denoted nodes. A location 
on the sphere can be fully defined in terms of cubed-sphere coordinates, where f 
is the face index, h is the horizontal patch index, v is the vertical patch index, 
xp ∈ [0, 1] is the local horizontal coordinate within the patch, and yp ∈ [0, 1] is the 
local vertical coordinate within the patch.

Figure  1 illustrates the patches defined by the cubed-sphere discretization. 
Figure  1a shows coarse patches to accentuate the shape of the cubed-sphere 
discretization, and Fig.  1b shows a much finer discretization representative of 
the gravity models presented in the current work. The parameter ncs defines the 
discretization level. The number of patches spanning a face horizontally or vertically 
is

2  The weighted cubed sphere mascon model database and accompanying driver software are available at 
https://​doi.​org/​10.​5281/​zenodo.​57251​20.

https://doi.org/10.5281/zenodo.5725120


The Journal of the Astronautical Sciences           (2024) 71:36 	 Page 5 of 31     36 

The number of patches on a single face is m2
cs

 , and the total number of patches on 
the sphere is 6m2

cs
 . One node is assigned to each corner of a patch. Adjacent patches 

share nodes. The full sphere has 6m2
cs
+ 2 unique nodes.

Algorithm 1   Mapping from Cartesian to cubed-sphere coordinates

Algorithm 1 describes the procedure to map a point in Cartesian coordinates to 
a point in cubed-sphere coordinates. Starting with a position vector r in Cartesian 
space, the face index is located by finding the nearest neighbor to six points 
defined in the positive and negative directions along each of the three axes. Once 
the face index is determined, the position vector is rotated into a coordinate frame 

(1)mcs = 2(ncs + 1).

Fig. 1   Cube-sphere discretization
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aligned with the current face. Then the horizontal �h and vertical �v angles are 
calculated between the rotated position vector and the xB axis. The horizontal and 
vertical angles are scaled such that the grid lines are located at integer distances 
from the edge of the face.

The specific implementation outlined in Algorithm  1 does include relatively 
expensive operations, including inverse trigonometric functions, and could likely 
be replaced with a faster alternative implementation in applications where the 
Cartesian to cubed-sphere mapping becomes a bottleneck. In the context of the 
WCS mascon models presented here, the implementation shown in Algorithm 1 
has a negligible runtime compared to the local mascon model summation runtime.

Figures 2 and 3 illustrate the cubed-sphere discretization indices. The cubed-
sphere indices are shown on a sphere in Cartesian space and on a longitude/
latitude map for comparison. The colors on the Cartesian and longitude/latitude 
representations are consistent. The global index

is calculated for visualization purposes. The node locations are indicated by black 
dots. Figures  2 and 3 demonstrate the alignment of the cube-sphere patch edges 

(2)c = m2
cs
f + mcsv + h

Fig. 2   Cube-sphere indices in Cartesian space ( n
cs
= 1)
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across each of the six faces. Each patch has eight adjacent patches, other than the 
patches abutting the cube corners, which have seven adjacent patches.

2.2 � Local Model Evaluation Frame

A different local point mascon gravity model is assigned to each node. The 
gravitational parameters for the local mascon models are defined uniquely for each 
node, but each node shares a single set of local mascon locations in the evaluation 
frame. The evaluation frame is defined by rotation matrices from each node. The 
rotation matrix to rotate node center location n̂ = [nx, ny, nz]

T to the evaluation frame 
is provided by Frisvald [3]:

The single set of mascon locations shared by all nodes is aligned with a notional 
North Pole in the evaluation frame.

The rotation matrix for each node is precomputed and stored when generating 
the model. This rotation matrix is valid for all node locations other than the node 
location at the South Pole, where the diagonal rotation matrix Rcs = diag(1, 1,−1) 
is used. For an arbitrarily-fine discretization (very large ncs ) the evaluation of the 

(3)Rcs =

⎡
⎢⎢⎢⎣

1 −
n2
x

1+nz
−

nxny

1+nz
− nx

−
nxny

1+nz
1 −

n2
y

1+nz
− ny

nx ny nz

⎤
⎥⎥⎥⎦
.

Fig. 3   Cube-sphere indices in spherical coordinates ( n
cs
= 1)
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points closest to the South Pole may experience numerical instability due to the 
singularity in the 1∕(1 + nz) factors of Rcs . This issue is not observed with the WCS 
models generated in this work.

Earlier iterations of the WCS mascon model technique stored unique positions for 
the mascons at each node. However, this approach resulted in an extreme memory cost, 
with finely-discretized models occupying memory footprints on the order of gigabytes. 
The mascon locations are consolidated to a single point distribution in the evaluation 
frame in order to dramatically reduce memory consumption.

2.3 � Junkins Weighting Functions

The Junkins weighting functions are defined such that the modeled global function and 
its derivatives up to a specified order are continuous across patch and face boundaries 
[6, 9]. The Junkins weighting function method allows for an arbitrary number of 
dimensions, but the WCS mascon model approach only requires two dimensions.

Each weighting function is defined using the same base weight function, with 
transformed inputs based on which corner node the weighting function corresponds,

Figure 4 shows the placement of the node locations on a single patch and illustrates 
the local horizontal and vertical coordinates xp and yp . The local horizontal and vertical 
coordinates xp and yp span the valid patch area. The local horizontal and vertical coor-
dinates are xp = 0 and yp = 0 at the origin and xp = 1 and yp = 1 at the top right corner 
of the patch area, as oriented in Fig. 4. The four weighting functions are defined such 
that the sum of the weighting functions is unity over the entire area of the patch and 
that the weighting functions and their derivatives up to the specified continuity order d 
are zero at the two edges opposite to the weighting functions’ corners.

The weighting function for continuity order d in one dimension is [6],

where the relation between x̃ and xp is node-dependent according to the input 
transformations specified in Eqs. 4-7, or:

(4)w
(d)

0
(xp, yp) = w(d)(xp, yp),

(5)w
(d)

1
(xp, yp) = w(d)(1 − xp, yp),

(6)w
(d)

2
(xp, yp) = w(d)(1 − xp, 1 − yp),

(7)w
(d)

3
(xp, yp) = w(d)(xp, 1 − yp).

(8)
w(d)(x̃) =

(2d + 1)!(−1)d

(d!)2

d∑
r=0

(−1)r
(
d

r

)

2d − r + 1
x̃2d−r+1,

(9)Node 0: x̃ = xp,
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Eq. 8 has a corresponding equation for ỹ , where the relation between ỹ and yp 
is similarly node-dependent according to the input transformations specified in 
Eqs. 4–7, or:

The weighting function for continuity order d in two dimensions is simply the 
product of the one-dimensional weighting functions,

The four contour plots in Fig. 4 illustrate the Junkins weighting functions for the 
four nodes of a patch. Note how the value of the weighting function is unity at each 
weighting function’s corner, and the value of the weighting function is zero at the 

(10)Node 1: x̃ = 1 − xp,

(11)Node 2: x̃ = 1 − xp,

(12)Node 3: x̃ = xp.

(13)Node 0: ỹ = yp,

(14)Node 1: ỹ = yp,

(15)Node 2: ỹ = 1 − yp,

(16)Node 3: ỹ = 1 − yp.

(17)w(d)(x̃, ỹ) = w(d)(x̃)w(d)(ỹ).

Fig. 4   Diagram of locally-valid region for Junkins weighting functions
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opposite edges from each weighting functions’ corner. The consequence of this weight-
ing approach is that the global function is exactly equivalent to each local function 
when the evaluation point is coincident with the local function node. Also, the mod-
eled function and its gradients up to order d smoothly transition across patch and face 
boundaries. The smooth transitions across patch and face boundaries also occur at the 
cubed-sphere face corners, as demonstrated in Sect. 3.2.

Table 1 shows explicit formulas for two-dimensional Junkins weighting functions 
with various continuity orders d. In the context of WCS mascon gravity models, 
the runtime overhead from evaluating the Junkins weighting functions is negligible 
compared to the runtime required to evaluate the local mascon model summations. 
The maximum derivative order desired for applications of the weighted cubed sphere 
model is three, so the d = 3 continuity level is used unless otherwise specified.

2.4 � Evaluating the Global Gravity Field

The global gravitational potential within a patch is expressed as a weighted sum of 
four local potential functions Vi(x, y, z) , with each local potential function assigned 
to one of the four corners of the patch,

For the WCS mascon models, the local potential function is computed for each 
node using the summation for individual mascon models presented in References 
[14] and [16]. This local potential computation is performed after rotating into the 
evaluation frame using Rcs:

where Ve
i
(⋅) is the local potential computed in the evaluation frame.

The gradient of the global potential is found by applying the chain rule to Eq. 
(18),

(18)V(x, y, z) =

3∑
i=0

w
(d)

i
(xp, yp)Vi(x, y, z).

(19)Vi(r) = Ve
i
(Rcsr),

(20)
dV

dx
=

3∑
i=0

[
dw

(d)

i

dx
Vi + w

(d)

i

�Vi

�x

]
,

Table 1   Weighting functions for 
various continuity orders d 

d w(d)(x̃, ỹ)

0 x̃ỹ

1 x̃2ỹ2(−2x̃ + 3)(−2ỹ + 3)

2 x̃3ỹ3(6x̃2 − 15x̃ + 10)(6ỹ2 − 15ỹ + 10)

3 x̃4ỹ4(−20x̃3 + 70x̃2 − 84x̃ + 35)(−20ỹ3 + 70ỹ2 − 84ỹ + 35)
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Expressions for higher-order gradients of WCS models are found in Ref. [14] 
and included in the online code (see footnote in the introduction). The higher order 
gradients are useful for applications requiring first and second order partials of the 
acceleration. As with the computation of the local potential function, the computation 
of the local gradient function must be preceded by rotating the position into the node 
evaluation frame using Rcs . Additionally, the local gradient must be rotated from the 
node evaluation frame back to the original frame using RT

cs
:

The first-order total derivatives of the weighting functions in terms of the global 
coordinates are

Table 2 shows the values of the first-order partial derivatives for the weighting 
functions in terms of the local coordinates.

The derivatives in Table 2 are shown in terms of the local horizontal coordinates. 
The corresponding expressions for the local vertical coordinates are similar, 
switching x̃ and ỹ . In order to obtain the full derivatives of the weighting function, 
the chain rule must be applied to each node:

(21)
dV

dy
=

3∑
i=0

[
dw

(d)

i

dy
Vi + w

(d)

i

�Vi

�y

]
,

(22)
dV

dz
=

3∑
i=0

[
dw

(d)

i

dz
Vi + w

(d)

i

�Vi

�z

]
.

(23)
[
�Vi

�x

�Vi

�y

�Vi

�z

]T
= RT

cs
∇Ve

i
(Rcsr).

(24)
dw

(d)

i

dx
=

�w
(d)

i

�xp

�xp

�x
+

�w
(d)

i

�yp

�yp

�x
,

(25)
dw

(d)

i

dy
=

�w
(d)

i

�xp

�xp

�y
+

�w
(d)

i

�yp

�yp

�y
,

(26)
dw

(d)

i

dz
=

�w
(d)

i

�xp

�xp

�z
+

�w
(d)

i

�yp

�yp

�z
.

Table 2   First-order x̃ derivatives 
of weighting functions

d 𝜕w(d) (x̃,ỹ)

𝜕x̃

0 ỹ

1 −6x̃(x̃ − 1)ỹ2(−2ỹ + 3)

2 6x̃2(x̃ − 1)(2x̃2 + 5x̃ − 5)ỹ3(6ỹ2 − 15ỹ + 10)

3 −140x̃3(x̃ − 1)3ỹ4(−20ỹ3 + 70ỹ2 − 84ỹ + 35)
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where the relationship between x̃ , ỹ and xp , yp depends on node index i, specified in 
Eqs. (4–7).

Table 3 shows the partial derivatives of the local coordinates with respect to the 
global Cartesian coordinates. Since each face is oriented differently, the derivatives 
of the local coordinates are different depending on the current face index f. All the 
derivative expressions in this section are verified using complex step differentiation.

2.5 � Local Point Mascon Model Generation

The local mascon model generation technique presented here leads to models that 
perform well in terms of evaluation runtime compared to SH models with equiva-
lent fidelity. However, this particular approach to mascon placement and weighting 
requires a moderate amount of manual tuning and is not guaranteed to be the most 
efficient allocation of mascons.

The positions of the mascons are defined such that there is a dense concentration 
of mascons on a spherical cap centered on the node location and a sparse 
concentration of mascons outside this spherical cap. Figure 5 illustrates the layout 
of the local mascon distribution. Note that the hypothetical model shown in Fig. 5 
uses exaggerated spherical cap sizes to better illustrate the setup. Many variations of 
the final placement strategy were considered, including multiple levels of decreasing 
density. In the end, the selected two- level approach performed well and was the 
simplest to implement.

The size of the mascon spherical cap is defined by angle

This heuristic method to choose the spherical cap size adjusts the area of the 
spherical cap based on the cubed-sphere patch size. The quantity �K is a tuning 
parameter that determines how much area to occupy with the spherical cap. 

(27)
𝜕w

(d)

i

𝜕xp
=

𝜕w(d)(x̃, ỹ)

𝜕x̃

𝜕x̃

𝜕xp
,

(28)�K = cos−1
(
1 −

�K

3m2
cs

)
.

Table 3   First-order derivatives 
of local coordinates, f is face 
index

f 0 1 2 3 4 5

�

4(ncs+1)

�xp

�x
−

y

x2+y2
−

y

x2+y2
−

y

x2+y2
−

y

x2+y2
0 0

�

4(ncs+1)

�xp

�y

x

x2+y2
x

x2+y2
x

x2+y2
x

x2+y2
z

y2+z2
−

z

y2+z2

�

4(ncs+1)

�xp

�z

0 0 0 0 −
y

y2+z2
y

y2+z2

�

4(ncs+1)

�yp

�x

−
z

x2+z2
0 z

x2+z2
0 −

z

x2+z2
−

z

x2+z2

�

4(ncs+1)

�yp

�y

0 −
z

y2+z2
0 z

y2+z2
0 0

�

4(ncs+1)

�yp

�z

x

x2+z2
y

y2+z2
−

x

x2+z2
−

y

y2+z2
x

x2+z2
x

x2+z2
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Choosing �K = 4.0 sizes the spherical cap such that it will cover roughly the 
same area as four patches, which is the locally-valid area for each node (other 
than the corner nodes). The mascon positions within the spherical cap are chosen 
according to a spiral distribution with Knear total points, and the mascon positions 
outside the spherical cap are chosen according to a spiral distribution with Kfar 
points. The spiral distribution is a nearly-uniform distribution of points on a 
sphere [21].

The local mascon masses are defined by solving a minimum-norm linear 
system consisting of simulated gravitational potential measurements and direct-
fit Stokes coefficients as outlined in Ref. [14]. The gravitational potential 
measurements are evaluated at specified locations using the GRGM1200A [4, 
12] SH model with truth degree Lt,gen and a selection of Stokes coefficients up 
to degree Lf  . The truth degree Lt is used to perform the altitude vs. error and 
trajectory error studies.

The first set of gravitational potential measurement locations are distributed 
on the surface according to a spiral distribution with Mnear total points. Similar to 
the local mascon placement, the simulated measurements are placed on a dense 
spherical cap defined by an angle �M defined by Eq.  (28), substituting and �M 
for �K as a tuning parameter, and �M for �K as the resulting angle. Additional 
sets of gravitational potential measurement locations are placed on nh spherical 
caps with altitudes from hmin to hmax using equal log-spacing. The measurement 
locations above the surface are distributed using spiral distributions with

total points where h is the altitude measured in kilometers, and �h is a tuning 
parameter that controls how quickly the number of measurements is reduced with 
increasing altitude.

The mascon and measurement locations for each node are determined by 
rotating the base mascon and measurement locations to center on the node 

(29)Mh = floor

(
Mnear

(h∕1738.0 + 1)�h

)

Fig. 5   Local mascon (blue) and 
measurement locations (red) 
(Color figure online)
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location using Eq. (3). The minimum-norm systems at each node are solved using 
the Intel Math Kernel Library (MKL) implementation of LAPACK’s dgelsd, 
which solves the system using singular value decomposition. The effective rank of 
the system is defined using a minimum singular value of rcond=1.0 × 10−16 . The 
solution process is parallelized over each node using Message Passing Interface 
(MPI) parallelization, allowing even the largest of the three demonstration models 
to be completed within one hour of wall-clock time.

2.6 � Model Naming Convention

The WCS model naming convention is given by,

where Le refers to the degree of the equivalent SH model. For example, a WCS 
model corresponding to a degree 70 truncation of the GRGM1200A reference model 
would be denoted GRGM1200A_WCS_70.

The equivalent size of SH model is determined using the error analysis described 
in Ref.  [17] and Sect. 3.3 of Ref. [14]. This error analysis includes the acceleration 
error from the published uncertainties of the included Stokes coefficients, denoted 
commission error, and the acceleration error from the Stokes coefficients that have 
been truncated from the full model, denoted omission error. The WCS model’s 
acceleration error averaged over the reference sphere is less than the averaged 
commission and omission error of its equivalent SH model truncation.

3 � Results

Three example WCS gravity models for the Moon are presented and compared to 
equivalent SH models in sequential and CPU-parallelized computing environments.

3.1 � Demonstration Models

Table 4 shows the tuning parameters selected for each of the three WCS models pre-
sented in this work. The discretization level ncs = 17 is selected for all three models.

The three demonstration models are configured to have equivalent fidelity to 
Le = 70 , 300, and 550 degree SH models. For the three demonstration models, 
Table  5 reports the number of mascons and gravitational potential measurements 
used by the local mascon representations. The number of equivalent SH coefficients 
divided by four times the number of local mascons is a rough proxy for the 
WCS runtime improvement over SH if no overhead existed for the WCS models. 
Figure 6 shows the actual distributions of the mascons and gravitational potential 
measurement locations for each demonstration model in the evaluation frame.

(30){Reference Model}_WCS_
{
Le
}
,
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3.2 � Smoothness Demonstration

Figures 7, 8, 9, 10 demonstrate the continuity across patch boundaries enabled using 
the Junkins weighting function approach by showing the value of the gravitational 

Table 4   Tuning parameters for weighted cubed-sphere models

Equivalent degree Le 70 300 550

Truth degree for error analysis Lt 140 600 1100
Truth degree during model generation Lt,gen 84 360 660
Direct-fit degree Lf 7 18 22
Mascon cap density Knear 14112 194400 544500
Mascon shell density Kfar 196 600 1210
Mascon shell radius (LU) rk 0.92 0.975 0.985
Mascon cap area �K 52.0 36.0 24.0
Measurement cap density Mnear 14112 77760 174240
Measurement cap area �M 11.0 9.0 8.0
Quantity of measurement caps nh 11 10 10
Min. measurement altitude (km) hmin 200.0 10.0 10.0
Max. measurement altitude (km) hmax 8107.0 1710.0 1279.2
Measurement quantity altitude modifier �h 0.8 2.0 7.0

Fig. 6   Weighted cubed-sphere mascons (blue) and measurements (red) (Color figure online)

Table 5   Weighted cubed-sphere 
model summary

Le 70 300 550

Local Mascons K 289 1497 2887
Local Measurements M 143 701 1077
Memory (MB) 17.6 88.6 170.4
Equivalent SH Coefficients 5041 90601 303601
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potential and its derivatives evaluated along the surface of the reference sphere. Fig-
ure 7 shows the transition across a vertical face boundary, Fig. 8 shows the transition 
across a horizontal face boundary, Fig. 9 shows the transition across a corner bound-
ary between three faces, and Fig. 10 shows the transition across a patch boundary at 
the South Pole.

In the line illustrations, the line of evaluation locations is red and the faces are 
colored according to their face indices consistent with Fig.  3. The zoomed line 
illustration in Fig. 10b includes black lines of constant latitude (− 85 deg, − 80 deg, 
and − 75 deg) and longitude (45 deg, 135 deg, 225 deg, and 315 deg) to show that 

Fig. 7   Smoothness across vertical face boundary

Fig. 8   Smoothness across horizontal face boundary
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the smoothness test line passes directly through the South Pole. On the plots of the 
gravitational potential and its gradients, the horizontal axes represent the angular 
distance from the first point on each line and vertical dashed lines are shown at patch 
boundaries. The visualized model is GRGM1200A_WCS_70. The other two models 
demonstrate similar smoothness behavior.

The results from Figs. 7, 8, 9, 10 show that continuity is achieved up to order 
d. Above order d, continuity is not guaranteed by the Junkins weighting func-
tions. Fig. 7 is a particularly striking example of a case where the d = 0 Junkins 
weighting functions do not enforce continuity in the derivatives, with a notice-
able kink in the curve for the gravitational potential. The d = 3 Junkins weight-
ing functions yield smooth curves, because the curves shown are only up to the 
second-order gradients.

3.3 � Gravity Potential and Acceleration

Figures 11, 12, and 13 show the RMS acceleration errors for the degree Le = 70 , 
Le = 300 , and Le = 550 WCS models over a range of altitudes, as compared to the 
RMS acceleration errors of their equivalent SH models. The RMS acceleration 
errors for Figs. 11, 12, 13 are computed using evaluation points spanning the full 
sphere in spiral distributions. The number of RMS evaluation points in the spiral 
distributions are 78,400, 1,440,000, and 4,840,000 for the Le = 70 , Le = 300 , and 
Le = 550 models, respectively. For all three demonstration models, the RMS accel-
eration error curves for the WCS models are close to the corresponding curves for 
their equivalent SH models. Achieving such closely tracking curves across all alti-
tude ranges in Figs.  11, 12, 13 required significant tuning efforts, resulting in the 
parameters provided in Table 4.

Fig. 9   Smoothness across corner
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Fig. 10   Smoothness across South Pole

Fig. 11   Weighted cubed-sphere altitude vs. error study, L
e
= 70
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Figures 14 and 15 shows the gravitational potential and acceleration magnitude 
for GRGM1200A_WCS_300 over all longitudes/latitudes at 50  km altitude. The 
figures also show the residuals between the WCS model and its Le = 300 equivalent 
SH model. The WCS model reproduces the potential and acceleration values 
smoothly.

3.4 � Trajectory Error Study

A trajectory propagation error study is performed by integrating several example 
trajectories with the WCS model, with the equivalent-fidelity SH model truncation, 
and with the truth SH model truncated to the specified Lt value from Table 4. The 
Stokes coefficients for the truth SH model are perturbed using their published 
uncertainties to simulate the gravity modeling error in the Stokes coefficients. 
The differences between the final positions of the trajectory computed using the 
WCS model and using the truth SH model are considered the WCS position error. 
Corresponding differences between trajectories computed using the equivalent-
fidelity SH model and using the truth SH model are considered the equivalent-
fidelity SH position error.

Six classes of example trajectories are used, including four sets of polar orbits 
with initial altitudes ranging from 25  to 300  km, a Near Rectilinear Halo Orbit 

Fig. 12   Weighted cubed-sphere altitude vs. error study, L
e
= 300

Fig. 13   Weighted cubed-sphere altitude vs. error study, L
e
= 550
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(NRHO), and a Distant Retrograde Orbit (DRO). The sets of polar orbits include 
orbits with varying initial longitude of the ascending node Ω0 values to ensure that 
the polar orbits cover all latitudes and longitudes. Table 6 summarizes the six sets of 
orbits used in the trajectory error study. See Chapter 4 in Ref. [14] for more details 

Fig. 14   GRGM1200A_WCS_300 potential, 50 km altitude
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on the trajectory error study setup. Some minor typos in the time-of-flight (TOF) 
values from Table 6 have been corrected since the corresponding table appeared in 
Ref. [14].

Figures 16 and 17 show the results of the trajectory error study performed on 
the WCS mascon models. The horizontal lines in Fig. 16 span the range of values 

Fig. 15   GRGM1200A_WCS_300 acceleration, 50 km altitude
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for the final position error, the box spans the 25th to 75th percentiles, and the ver-
tical lines indicate the median values, which are also reported in the vertical axis 
labels. The red boxes in Fig.  16 represent the WCS models and the blue boxes 
represent the eqiuvalent SH models.

The same box plot format is used for Fig.  17, except this figure shows the 
differences between the WCS models and their equivalent SH models instead of the 
errors against the truth model.

The errors for the WCS models are comparable or lower than their equivalent-
fidelity SH models in all orbital regimes, in agreement with the acceleration error 
vs. altitude curves shown in Figs.  11, 12, 13. The highest-fidelity Le = 550 WCS 
model is extremely accurate, with centimeter-level final position errors in the lowest 
25 km altitude polar orbits.

3.5 � Evaluation Runtime Benchmarking

Tables 7 and 8 show the sequential evaluation runtime speedup for the WCS models 
compared to their equivalent SH models. The runtime analysis is performed using 
Fortran driver routines on the same Linux workstation and Stampede2 Skylake 
compute node as the runtime analysis presented in Ref. [14].

The evaluations for the runtime analysis are performed at random locations on 
the sphere to avoid a possible unfair advantage for the WCS models that would arise 
from repeatedly accessing the same local mascon model in the CPU cache. Note that 
for many applications, such as trajectory propagation, the same local model would 
in fact be accessed repeatedly, potentially granting better runtime improvements 
than presented here.

Tables  9 and 10 show the parallel evaluation runtime speedups for the 
WCS models compared to their equivalent SH models when using OpenMP 
parallelization. The speedup from the best choice of OMP_NUM_THREADS is shown 
and the selected value for the number of threads is reported in parentheses. As 
indicated by the entries where zero threads are found to be optimal, the 70 degree 
equivalent WCS model does not benefit from OMP parallelization on Stampede2. 
The larger models only benefit from a modest number of processors, since the local 
models are not large enough to justify the overhead from managing a large amount 
of threads.

Table 6   Summary of trajectories used for error study

Orbit Type hmin , km Revs TOF, days # Ω0 Trials per. IC Total Runs

25 km polar 23.7 ≈ 6 0.458 60 100 6000
50 km polar 48.0 ≈ 6 0.464 60 100 6000
100 km polar 99.2 ≈ 6 0.477 60 100 6000
300 km polar 298.7 ≈ 6 0.529 60 100 6000
NRHO 1506.7 1 6.581 N/A 6000 6000
DRO 68491.8 1 13.982 N/A 6000 6000
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Fig. 16   WCS trajectory error study final position errors compared to the truth (see L
t
 in Table 4 for size 

of SH truth field)
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Fig. 17   WCS trajectory error study final position differences

Table 7   WCS sequential 
runtime analysis on Linux 
workstation

Equiv. SH Deg WCS vs. SH Speedup

V ∇V ∇∇V ∇∇∇V

70 2.11 3.07 4.26 5.19
300 6.35 10.48 22.44 27.40
550 12.00 28.02 50.46 105.55

Table 8   WCS sequential 
runtime analysis on Stampede2

Equiv. SH Deg WCS vs. SH Speedup

V ∇V ∇∇V ∇∇∇V

70 4.05 4.10 4.87 7.71
300 15.82 21.64 28.70 40.77
550 24.73 52.51 56.28 91.18
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Figures 18, 19, 20, 21 report the evaluation runtimes and parallel runtime analy-
ses for the degree 300 and degree 550 equivalent WCS models. The WCS models 
demonstrate favorable runtime performance compared to their equivalent SH mod-
els when evaluated using both sequential and CPU-parallelized code (using a mod-
est number of processors). With parallelization, the WCS mascon models achieve a 
two order of magnitude speedup for the second- and third-order gradients.

Notably, the speedup performance is comparable on the Linux personal 
workstation and Stampede2 for the WCS models. The WCS models reduce the large 
global model down into relatively small local models, so the high-performance 
AVX512 registers on Stampede2 have a smaller influence on the runtime 
performance. The effect of OpenMP parallelization is also somewhat diminished 
by the small local model sizes, which is especially apparent in the relatively low 
parallel speedup values reported in Fig. 21.

Table 9   WCS OpenMP parallel 
runtime analysis on Linux 
workstation

Equiv. SH Deg WCS vs. SH speedup (# Threads)

V ∇V ∇∇V ∇∇∇V

70 3.57 (4) 5.06 (4) 6.91 (4) 10.21 (4)
300 18.00 (4) 29.74 (4) 63.58 (4) 84.73 (4)
550 38.80 (4) 90.09 (4) 162.33 (4) 356.88 (4)

Table 10   WCS OpenMP 
parallel runtime analysis on 
Stampede2

Equiv. SH Deg WCS vs. SH speedup (# Threads)

V ∇V ∇∇V ∇∇∇V

70 4.05 (0) 4.10 (0) 4.87 (0) 7.71 (0)
300 17.99 (3) 36.83 (3) 43.25 (24) 64.72 (4)
550 57.63 (3) 86.42 (20) 134.02 (7) 238.12 (11)

Fig. 18   WCS OpenMP parallel runtimes, Linux workstation
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3.6 � Comparison with Previous Mascon Models

Figure  22 illustrates a runtime and memory benchmarking analysis carried 
out for highlighted fixed-mass models from Ref. [15] (square: GRGM1200A_
PMC_EQM), free-mass models from Ref. [16] (circle: GRGM1200A_PMC), 
and WCS models from this work (diamond: GRGM1200A_WCS). All three 

Fig. 19   WCS OpenMP parallelization analysis, Linux workstation

Fig. 20   WCS OpenMP parallel runtimes, Stampede2
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types of mascon models are compared to their equivalent SH models (triangle: 
GRGM1200A). Table 11 shows the recommended model types used for differ-
ent levels of fidelity. Memory indicates the ratio of the memory occupied by the 
suggested model divided by the memory occupied by its equivalent-fidelity SH 
model. Speedup indicates the ratio of the acceleration evaluation runtime speed 
for the equivalent-fidelity SH model divided by the runtime speed for the sug-
gested model.

4 � Conclusion

This paper introduces the WCS mascon modeling technique, enabling a more 
widespread use of higher-fidelity gravity models for the Moon. The WCS 
demonstration models presented in this work yield similar runtime speedups to 
previous interpolated gravity representations with lower memory footprints (on the 
order of hundreds of megabytes, rather than gigabytes, for high-resolutions). The 
presented WCS models are useful for astrodynamics practitioners who require high-
fidelity gravity models with low evaluation runtime costs. Using CPU multithreading 
parallelization yields additional runtime advantages, typically not available to SH 
models. The Le = 550 WCS model achieves a nearly two order of magnitude faster 
acceleration evaluation runtime than SH. As the final of three papers in a series 
on mascon models at the moon, a comprehensive comparison is also performed, 
leading to various recommendations for models depending on the desired resolution 

Fig. 21   WCS OpenMP parallelization analysis, Stampede2
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of gravity field and computer architecture. As a rule of thumb, the global fixed-mass 
models are ideal for low fidelity in non-parallel computing environments, the global 
free-mass models are ideal for medium fidelity when parallelization is available, and 
the WCS mascon models are ideal for the highest fidelity as well as medium fidelity 
when parallelization is not available.

One potential disadvantage of mascon gravity formulations over the standard SH 
formulation is that it is more straightforward to adjust the fidelity of a SH model 
than a mascon model. Since the terms in a SH model are orthogonal to each other, 

Fig. 22   Memory footprint and evaluation runtime, filled markers are Pareto-optimal, dashed lines con-
nect models of the same type, colors discriminate resolution
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the fidelity of a SH model can be reduced by simply truncating Stokes coefficients. 
Adding and removing arbitrary mascons from an existing mascon model does not 
result in an accurate representation of the gravity field. As the required gravity 
model fidelity varies with changing altitudes, the user of a mascon model would 
need to switch between models to use the most runtime-efficient model for the cur-
rent accuracy needs.

There are a number of opportunities for future work. The generation process 
for the local mascon models could be improved, with a more systematic selection 
of mascon positions and masses. The demonstration models presented here are 
not necessarily the most efficient models possible in terms of the quantity of 
mascons used to represent gravity with a given level of fidelity.

The WCS models generated in this work are based on the existing 
GRGM1200A lunar gravity model, however it may be preferable to generate 
WCS models using direct measurements of the gravity field, rather than using a 
SH reference model. Generating WCS mascon models using direct measurements 
of the gravity field would resolve two disadvantages of the current approach: first, 
an additional source of error from the necessarily imperfect fit to the SH model 
would be avoided. Second, the uncertainty of the WCS model parameters could 
be computed during model generation, given the known errors in the gravity field 
measurements. This quantification of WCS model parameter uncertainty could be 
then mapped to the resulting orbital state uncertainty when using the WCS model 
to propagate trajectories.

The WCS representation could be applied to other gravity models besides the 
Moon, with the Earth, Mars, and Venus being the prime candidates. The WCS 
interpolation method could be immediately applied with basis functions other 
than point mascons to smoothly combine locally-valid models into a global 
function for gravity or other functions of interest. The models and runtime drivers 
presented in this paper are available online.
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Table 11   Recommended point mascon models from database

Equivalent Linux Workstation Stampede2

Degree/Order Sequential OpenMP Parallelization

Type Memory Speedup Type Memory Speedup

8 Fixed 1.0 4.3 Fixed 1.0 6.2
60 Fixed 1.0 2.3 Fixed 1.0 4.8
300 WCS 123.6 10.5 Free 4.2 14.6
550 WCS 70.2 28.0 WCS 70.2 86.4
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