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Abstract
The focus of this research is the optimization of impulsive maneuvers in the cir-
cular restricted three body problem with stochastic error sources. Two and three 
impulse transfer trajectories with corrective maneuvers are designed to minimize an 
upper statistical bound for total ΔV  , including the sum of nominal impulsive ΔV  
plus the 3 � upper bound for corrections. Error sources include an initial state disper-
sion, maneuver execution error, and random white disturbances modeled as process 
noise. Direct optimization is performed via nonlinear programming. At each step 
in the nonlinear program, the optimal location and number of trajectory correction 
maneuvers (TCM) is determined, simultaneously satisfying a set of position disper-
sion constraints along the trajectory. Analytical gradients of the nominal maneuver 
magnitude and trace of the TCM covariance are provided to the nonlinear program 
to avoid finite differencing and associated numerical errors. Partial derivatives of 
the TCM covariance require the propagation of second-order state transition tensors. 
This work incorporates process noise into the optimization problem by propagat-
ing the effect of the accumulated process noise covariance. As a result, populating 
analytical gradients requires the partial derivative of the accumulated process noise 
covariance, called the accumulated process noise covariance state sensitivity tensor, 
which is propagated similar to state transition tensors. Robust trajectory scenarios 
analyzed include a three impulse trajectory from low-Earth orbit (LEO) to a near-
rectilinear halo orbit (NRHO), and a two impulse NRHO rendezvous.
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List of Symbols
�x	� State dispersion
Δti	� Duration, segment i
ΔV 	� Nominal maneuver change in velocity
�V 	� Trajectory correction maneuver change in velocity
RTCM	� TCM execution error covariance
R
ΔV	� Nominal maneuver execution error covariance

QBM	� Q-bar matrix, ̄Q
QBT	� Q-bar tensor, 𝜕 ̄Q

𝜕x
f 	� System dynamics
F, Fi,j	� system Jacobian, �f

�x

Fi,jk	� Second partial derivative of system dynamics, �
2f

�x2

J	� Optimization cost function
G	� Mapping matrix, velocity components to state vector, 

[

03×3 I3×3
]

⊤

Mr	� Mapping matrix, position from state vector, 
[

I3×3 03×3

]

Mv	� Mapping matrix, velocity from state vector, 
[

03×3 I3×3
]

�	� Standard gravitational parameter
NLP	� Nonlinear programming
NRHO	� Near rectilinear halo orbit
P	� Covariance matrix
Pi	� Dispersion covariance matrix at node i
PLF	� Powered lunar flyby
r	� Three-dimensional position vector
RSS	� Root sum of the squares, 

√

tr(P)

S	� Trajectory parameter vector
si	� Segment parameter vector
�	� Standard deviation
TCM	� Trajectory correction maneuver
TLI	� Translunar injection
TSE	� Taylor series expansion
v	� Three-dimensional velocity vector
x	� State vector
x0,i	� Initial state, segment i
xf ,i	� Final state, segment i

1  Introduction

Optimization of deterministic impulsive maneuvers has been a topic of extensive 
study. Conway presents a thorough history and overview [1] of early influential 
works in trajectory optimization [2–6]. Indirect optimization formed a large por-
tion of the early trajectory optimization approaches prior to the advance of signifi-
cant personal computing power. Betts presents a survey of numerical methods for 
trajectory optimization to include nonlinear programming, optimal control prob-
lems, numerical analysis, shooting methods, transcription, dynamic programming, 
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and genetic algorithms [7]. Trajectory optimization algorithms that connect multi-
ple events via segments and incorporate node flexibility enable optimization trades 
across an entire mission [8, 9]. In two works by Ocampo forming the foundation for 
the COPERNICUS trajectory design tool [10], multiple impulses are simultaneously 
minimized while satisfying segment connectivity constraints as well as other con-
straint options [11, 12].

In some cases, a deterministically planned trajectory may appear to provide 
a minimum fuel path to a target. However, the same trajectory may exhibit sensi-
tivities that result in excessively expensive corrective maneuvers if not properly 
planned. On the other hand, robust trajectories that take into account uncertain-
ties may require more nominal energy to embark upon, but reduce the cost correc-
tions. The search for a robust trajectory has taken numerous forms. In one of the 
earlier examples, Nishimura and Pfeiffer utilize a dynamic programming approach 
to develop trajectories with stochastic error sources that constrain trajectory correc-
tions within a magnitude threshold and minimize dispersions at a target [13]. Jin 
et al. embedded a linear covariance analysis tool within a genetic algorithm to iden-
tify robust trajectories for rendezvous and proximity operations (RPO) that mini-
mize nominal ΔV  plus the sum of corrections [14]. Oguri and McMahon optimize 
trajectories in the presence of stochastic error sources to maximize the likelihood 
of a spacecraft’s ability to meet its mission operating parameters [15]. Geller et al. 
incorporate robustness into linear covariance analysis by triggering terminal RPO 
maneuvers with an event occurrence rather than at a specific time [16]. Jenson and 
Scheeres approach a robust optimization problem with maneuver execution error 
using indirect methods [17]. Boone and McMahon perform optimization of a non-
linear system with impulsive controls and stochastic constraints [18]. Greco et  al. 
optimize interplanetary transfers under uncertainty by abandoning the concept of a 
reference trajectory and errors with respect to the reference in favor of a more gen-
eral framework where each trajectory is a sample from a probability density function 
[19].

This paper begins by presenting supporting theory for the dynamical system, for 
the propagation of state transition matrices (STM) and second-order state transition 
tensors (STT), and a deterministic multiple-segment trajectory design problem for-
mulation with deterministic cost and constraints (Sect. 2). Next, the theory for sto-
chastic analysis along a nominal (mean) deterministic trajectory to manage a state 
dispersion via trajectory correction maneuvers (TCM) is presented (Sect.  3). The 
error sources incorporated are an initial state dispersion, maneuver execution error, 
and process noise. A stochastic constraint on the magnitude of the position disper-
sion at trajectory events and a total stochastic cost are introduced. A large part of 
the robust trajectory design method presented in this paper is designed to improve 
algorithm convergence. This includes utilizing analytical gradients of the stochastic 
cost and analytical gradients of the accumulated process noise covariance; impor-
tant aspects of their derivation are presented in Appendix A. Utilizing the stochastic 
theory presented, Sect. 4 first shows a method to optimize the number and location 
of TCMs along a nominal trajectory to minimize the 3� TCM cost and meet the 
position dispersion constraints. Next, a series of comparisons are made to demon-
strate the sensitivity of the optimal TCM solution to variations in the magnitude of 
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error sources. Section 5 presents a robust trajectory design method by combining 
multiple-segment trajectory design and TCM optimization. The robust cost that is 
minimized includes the deterministic ΔV  plus the 3� TCM cost to represent a total 
ΔV  upper bound. Robust trajectory results appear in Sect.  6. Concluding remarks 
are made in Sect. 8.

In a previous work by the authors of this work, a robust trajectory design method 
was presented that incorporated a single optimal TCM along a nominal trajectory 
[20]. Results included two-body trajectories robust to initial state dispersion only. 
Similarities between this work and the prior work include the optimization of nom-
inal cost plus a stochastic cost via nonlinear programming, multiple segment tra-
jectory design, the use of STTs in the development of analytical gradients, and the 
incorporation of an initial state dispersion as an error source. This work represents 
numerous advancements and evolutions to the previous design method through the 
additional error sources incorporated, the incorporation and optimization of mul-
tiple TCMs, the derivation of the gradient of multiple TCMs, and the discovery of 
a robust LEO to powered lunar flyby to NRHO insertion trajectory with promising 
characteristics. Specifically, novel contributions of this work include:

•	 The simultaneous optimization of deterministic cost plus a stochastic cost esti-
mate through the optimization of a nominal trajectory and TCM set via a nonlin-
ear program.

•	 The fast TCM optimization method presented in Sect. 4.
•	 The propagation and manipulation of the QBM history alongside STM for incor-

poration in linear covariance analysis.
•	 The propagation and manipulation of the QBT history alongside the QBM for 

use in the derivation of the QBM analytical gradients.
•	 The development of a trajectory that could save up to 77.8 m/s in total upper 

bound maneuver requirement for a spacecraft traveling from LEO to the 9:2 syn-
odic ratio L2 southern NRHO.

2 � Supporting Theory

2.1 � Dynamical System

The Circular Restricted Three Body Problem (CR3BP) serves as the dynamical 
system for modeling a massless spacecraft’s motion (the third body) in the Earth-
Moon system (the first and second bodies). Another CR3BP simplification is the 
circular motion of each of the two primary bodies, modeled as point masses, about 
their mutual barycenter. The coordinate frame used to describe the spacecraft’s 
motion rotates with the Earth-Moon system about the origin at the barycenter, 
the x axis pointing toward the moon and the z axis being the axis of rotation. The 
system’s units (distance and time) are generally nondimensionalized. Distance is 
scaled such that the distance between the Earth and the Moon is equal to 1 unit of 
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nondimensional distance. Time is scaled by the system mean motion n such that the 
angular velocity of the system is 1 [21]:

The system mass parameter � is defined as the ratio of the second body’s mass (or 
gravitational parameter) to total system mass:

For the Earth–Moon system, � = 0.01215 . As a result, the position of the Earth is 
(−�, 0, 0) and the position of the Moon is (1 − �, 0, 0) . In the rotating frame, the 
equations defining the motion of the spacecraft are:

where U is the pseudo-potential function

and r1 and r2 are the distances from the spacecraft to primaries 1 and 2 respectively:

2.2 � First‑order Dynamics

The six-dimensional spacecraft state represents the spacecraft position and veloc-
ity along a nominal trajectory, x =

[

x y z ẋ ẏ ż
]

 . Error sources create a disper-
sion, �x , with respect to the nominal trajectory xN . The dynamics of the dispersed 
state are a function of the nominal state and the dispersion:

(1)n =

√

G(m1 + m2)

a3

(2)� =
�2

�1 + �2

(3)ẍ =2ẏ +
𝜕U

𝜕x

(4)ÿ = − 2ẋ +
𝜕U

𝜕y

(5)z̈ =
𝜕U

𝜕z

(6)U =
1

2

(

x2 + y2
)

+
1 − �

r1
+

�

r2

(7)r1 =

√

(x + �)
2
+ y2 + z2

(8)r2 =

√

(x − 1 + �)
2
+ y2 + z2

(9)ẋ = ẋN + 𝛿ẋ = f (x + 𝛿x).
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A first-order Taylor series expansion (TSE) along the nominal trajectory provides an 
estimate for the dispersed state at a future time:

where Φ
(

t, t0
)

 is the state transition matrix (STM), which contains the first-order 
dynamics between t0 and t along the reference trajectory [22]: Φ(t, t0) =

�x(t)

�x(t0)
 . The 

linear differential equations for propagating the STM are

where F represents the Jacobian

2.3 � Second‑order Dynamics

The second-order STT derivation begins in a similar way that the (first-order) STM 
does, via a TSE corresponding to the desired order. This derivation follows the work by 
Park and Scheeres [23]. The second-order TSE of the state dispersion at a future time is

where i, p, and q are standard index notation subscripts; indices following commas 
identify a partial derivative index. �x0

p
 and �x0

q
 are both the same values numerically 

with the index summation operation applied to different indices. Φi,pq represents the 
second-order STT. The second-order TSE of the system dynamics is

where Fi,p is equivalent to Eq. 12 and Fi,pq is the second partial derivative of the sys-
tem dynamics:

Substituting Eq. 13 into Eq. 14 (and appropriately adjusting indices) results in

The next step is taking the time derivative of Eq. 13

(10)x(t) ≈ xN(t) + Φ
(

t, t0
)

�x
(

t0
)

(11)Φ̇
(

t, t0
)

= F
(

xN
)

Φ
(

t, t0
)

(12)F
(

xN
)

=
�f

�x

|

|

|

|xN

.

(13)�xi(t) ≈ Φi,p�x
0
p
+

1

2
Φi,pq�x

0
p
�x0

q
,

(14)𝛿ẋi(t) ≈ Fi,p𝛿xp +
1

2
Fi,pq𝛿xp𝛿xq

(15)Fi,pq =

�Fi,p(x)

�xq

(16)
𝛿ẋi(t) = Fi,m

(

Φm,p𝛿x
0
p
+

1

2
Φm,pq𝛿x

0
p
𝛿x0

q

)

+
1

2
Fi,mn

(

Φm,p𝛿x
0
p
+

1

2
Φm,pq𝛿x

0
p
𝛿x0

q

)(

Φn,p𝛿x
0
p
+

1

2
Φn,pq𝛿x

0
p
𝛿x0

q

)
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and equating Eqs. 16 and 17, from which the terms of equivalent order are equated. 
The first-order terms are:

which matches the traditional first-order STM time derivative equation. Collecting 
second-order terms reveals the second-order STT time derivative when common 
terms are canceled [23]:

with initial conditions

Combining second-order STTs is a bit more involved than combining sequential 
STMs. The desired STT in many situations requires sequential combination and 
inversion. Combining a second-order STT from t0 to t1 with an STT from t1 to t2 
requires STMs from the same two periods, Φ(t1, t0) and Φ

(

t2, t1
)

 , and the corre-
sponding second-order STTs, ΦII(t1, t0) and ΦII

(

t2, t1
)

 . Equation 21 shows the opera-
tion using index notation [24]:

Inverting a second-order STT requires the forward STT and inverse STM for the 
corresponding time period [24]:

2.4 � Multiple Segment Deterministic Trajectory Setup

A multiple segment trajectory is a method of modeling a trajectory as a set of dis-
crete dynamics and constraints. Each trajectory segment formulation is a boundary 
value problem that is designed to satisfy its endpoint constraints. Assembling the 
multi-segment problem involves discretizing a trajectory into n segments separated 
by n + 1 nodes that are not necessarily evenly spaced in time. Each trajectory seg-
ment is defined by the six-dimensional state at the beginning of segment i, x0,i and 
the duration of the segment, Δti . The state at the end of segment i, xf ,i is a function 
of the natural motion dynamics of the system, the state at the beginning of the seg-
ment, and the duration Δti . Numerical integration of the dynamics is used to obtain 
xf ,i.

(17)𝛿ẋi(t) = Φ̇i,p𝛿x
0
p
+

1

2
Φ̇i,pq𝛿x

0
p
𝛿x0

q

(18)Φ̇i,p = Fi,mΦm,p

(19)Φ̇i,pq = Fi,mΦm,pq + Fi,mnΦm,pΦn,q

(20)Φm,pq

(

t0, t0
)

= 06×6×6

(21)
ΦII

(

t2, t0
)

i,jk
= ΦII

(

t2, t1
)

i,pq
Φ
(

t1, t0
)

p,j
Φ
(

t1, t0
)

q,k
+ Φ

(

t2, t1
)

i,p
ΦII

(

t1, t0
)

p,jk

(22)Φ
(

t0, t1
)

i,jk
= −Φ

(

t0, t1
)

i,p
ΦII

(

t1, t0
)

p,qm
Φ
(

t0, t1
)

q,j
Φ
(

t0, t1
)

m,k
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Each trajectory segment parameter vector si is defined by its initial state and duration

and are each assembled into a parameter vector defining the trajectory:

A history of the states, the state transition matrices ( Φ ), and any other desired sen-
sitivities are propagated and saved along the nominal trajectory at the time indices 
automatically chosen by the variable-step variable-order Adams–Bashforth–Moulton 
predictor-corrector method [25]. The multiple segment approach enables the propa-
gation of all trajectory dynamics histories from the beginning of each segment. This 
results in an error reduction when computing an STM with arbitrary endpoints as it 
need not reference the beginning of the trajectory. The multiple segment approach 
also discretizes the nonlinear portions of the trajectory into smaller portions that 
can improve first-order numerical convergence when the first-order dynamics for a 
longer segment fail to result in convergence.

2.5 � Deterministic Constraints

The segment connectivity constraint enforces natural motion (a coast) across node 
i + 1 (between segments i and i + 1 ) and involves constraining the final state of seg-
ment i with the initial state of segment i + 1:

An impulsive maneuver is allowed between segments by leaving the velocity ele-
ments unconstrained (or only constraining the position elements):

The problem initial conditions are applied at the initial state of the first segment, 
x0,1 . The simplest initial condition to implement is a given initial state in the CR3BP, 
X0 , whereby the equality constraint

enforces the problem initial conditions. Constraining the final state ( n + 1 th node) of 
the final (nth) segment ensures arrival to the target orbit.

(23)xf ,i = f
(

x0,i,Δti
)

(24)si =

[

x0,i
Δti

]

(25)S =

⎡

⎢

⎢

⎣

s1
⋮

sn

⎤

⎥

⎥

⎦

(26)xf ,i = x0,i+1

(27)rf ,i = r0,i+1.

(28)x0,1 = X0

(29)xf ,n = Xtarget.
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The next deterministic constraint enables a flexible initial orbit departure and tar-
get orbit arrival. Rather than constraining a specific target orbit arrival position and 
risking a suboptimal injection into the target orbit, a combination of two constraints 
enables a flexible arrival to the target orbit. Equation 29 combined with allowing a 
ΔV  at the beginning of the final segment (Eq. 27 where i = n ) frees the arrival posi-
tion along the target orbit, as long as only coasting meets a future state in the target 
orbit, Xtarget . The result is arriving to the target orbit while simultaneously optimiz-
ing the injection location. A similar combination enables a flexible departure from 
the initial orbit where the initial state constraint is followed by a coast duration and 
an impulsive ΔV  at the end of the first segment (Eq. 27 where i = 1).

The combination of constraints described in the previous paragraph directly con-
strain the initial and final elements of the state vector. While coast durations in the 
initial and final trajectory segments enable flexibility in the specific departure and 
arrival orbits, effectively five of the six classical orbital elements (COEs) are fixed 
with the true anomaly eligible for optimization. In scenarios where there is flexibil-
ity in the initial orbital plane, the combination of Eqs. 32, 33, and 34 free the initial 
orbital plane and constrain the initial orbit to be circular of a specific radius. As a 
result, the orbital plane (inclination and right ascension) and true anomaly are free 
to be optimized. The first constraint (Eq. 32) fixes the two-body orbital energy

with respect to the planetary body B to be equal to a desired value. rsc∕B is the mag-
nitude of the position vector with respect to B, rsc∕B , and

vI
sc

 is the velocity of the spacecraft in a non-rotating frame. In this case, the velocity 
elements of the parameter vector are in the CR3BP rotating frame and the rotating 
frame velocity needs to be included. Assuming the constraint is applied to the initial 
orbit:

The constraint equation is

where �fixed in this paper generally corresponds to an initial circular orbit of a desired 
altitude.

Equation 33 enforces a specific position vector magnitude with respect to B:

Equation 34 enforces orthogonal position and velocity vectors (an apse, or a circular 
orbit):

(30)� =

(

vI
sc

)2

2
−

�body

rsc∕B

(31)rsc∕B = r0,i − rB

vI
sc∕B

= v0,1 + �S∕I × r0,1

(32)�initial − �fixed = 0

(33)rsc∕B − rfixedB = 0
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Nominal 3 ΔV  trajectories enable powered flyby scenarios, however, this scenario 
requires a flyby distance inequality constraint to produce a realistic result in some 
cases. The flyby distance constraint implementation chosen does not constrain the 
powered flyby as the apse; rather, the state history is searched for the point of clos-
est body approach (typically the moon for this analysis), and a distance constraint is 
applied at this point.

2.6 � Deterministic Cost

The deterministic cost to be minimized along a nominal trajectory is the sum of the 
magnitude of m nominal impulsive maneuvers:

3 � Stochastic Analysis Along a Nominal Trajectory

The trajectory parameter vector S defines a nominal trajectory. Altering any quan-
tity in the vector S results in a new nominal trajectory that requires a new propaga-
tion and re-assessment of the deterministic cost and constraints. The state dispersion 
covariance defines the Gaussian statistics along the nominal trajectory, as a function 
of time and of the stochastic error sources. Unlike modifications to the nominal tra-
jectory, modifications to the dispersion covariance analysis do not require the propa-
gation of a new nominal trajectory (the exception being modifications to the upcom-
ing process noise power spectral density (PSD) Q, which does require repropagation 
of the accumulated process noise covariance). As a result, a new dispersion covari-
ance analysis happens quickly when only changing a dispersion covariance modify-
ing event (initial dispersion, trajectory correction maneuver (TCM) execution time, 
maneuver execution error values).

Section 3 presents a fast linear covariance analysis-based method of TCM opti-
mization along a nominal trajectory that only requires a series of matrix multiplica-
tions versus a new trajectory propagation. Following the description of the TCM 
optimization method, a series of examples illustrates the dependence of the result on 
the magnitude of specific stochastic parameters. The stochastic parameters consid-
ered are an initial state dispersion, nominal maneuver execution error, TCM execu-
tion error, and process noise.

(34)r⊤
sc∕B

vI
sc
= 0

(35)‖rperiapse‖ ≥ dmin flyby

(36)J =

m

Σ
j=1

ΔV .
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3.1 � Initial State Dispersion

An initial state dispersion represents errors in the trajectory initial state. The initial 
state dispersion is a zero mean multivariate normal distribution with position vari-
ance �2

r
 and velocity variance �2

v
 in each direction:

The dispersion along a nominal trajectory is propagated linearly using the STM

Similarly, the state dispersion covariance is propagated linearly along the nominal 
trajectory to the next dispersion covariance modifying event:

3.2 � Trajectory Correction Maneuvers without Execution Error

The purpose of a TCM is to modify the dispersion at a target. In this analysis, the target 
is an upcoming nominal maneuver(s). Two types of TCMs are implemented: a posi-
tion dispersion-correcting TCM (Eq.  41) and a velocity dispersion-correcting TCM 
(Eq. 46). A more detailed derivation of these equations are are presented by Kelly and 
Geller in [20].

The dispersion at tc along a nominal trajectory is propagated linearly using the STM 
to the target

A position targeting TCM, �Vr , is designed to remove the position dispersion at a 
future target 

(

�r(tn) = 0
)

 via a velocity modification

where tc represents TCM execution time and tn represents the target time along a 
nominal trajectory. The covariance of �Vr is a function of the matrix T and the dis-
persion covariance at tc prior to the TCM, P−

c
:

An upper bound for the variance of the magnitude of a TCM is the square root of the 
sum of the squares (RSS) of the TCM covariance matrix diagonal terms:

The TCM dispersion update is

(37)P0 = E
[

𝛿x
(

t0
)

𝛿x
(

t0
)

⊤

]

=

[

𝜎
2
r
I3×3 03×3

03×3 𝜎
2
v
I3×3

]

(38)�x(tc) = Φ(tc, t0)�x(t0)

(39)P−

c
= E

[

𝛿x(tc)𝛿x(tc)
⊤

]

= Φ
(

tc, t0
)

P0Φ
(

tc, t0
)

⊤

(40)�x(tn) = Φ(tn, tc)�x(tc).

(41)�Vr =
[

−Φrv(tn, tc)
−1
Φrr(tn, tc) −I3×3

]

�x(tc) = T�x(tc)

(42)E
[

𝛿Vr𝛿V
⊤

r

]

= TE
[

𝛿x𝛿x⊤
]

T⊤

= TP−

c
T⊤.

(43)𝜎
𝛿Vr

=

√

tr
(

TP−

c
T⊤

)

=

√

tr
(

PTCMr

)

.
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and the post-correction dispersion covariance follows, where I is the identity matrix 

and N =

[

03×6
T

]

:

A velocity dispersion-correcting TCM directly corrects remaining velocity disper-
sion at a final time or nominal maneuver, �Vv = −Mv�x

(

tn
)

.

where Mv is 
[

03×3 I3×3
]

 , a mapping matrix that extracts the velocity dispersion 
covariance. The actual covariance update is not implemented as injection into the 
target orbit marks the end of the trajectory design.

3.3 � Trajectory Correction Maneuvers with Execution Error

Realistically, TCMs do not perfectly mitigate a future position dispersion as they are 
not perfectly executed. TCM execution error is incorporated simultaneously with the 
TCM dispersion covariance update. The execution error model is normally distributed, 
zero mean, �2

RTCM
 variance per axis, resulting in the following TCM dispersion covari-

ance update:

where RTCM = �
2
RTCM

I3×3 is the TCM execution error covariance and G is a 6 × 3 
matrix that maps the error to the velocity covariance sub-matrix. A more realistic 
model that is aligned with a specific mission’s hardware specifications, potentially 
capturing pointing error and/or thrust vector error, could be incorporated as future 
work without significant additional effort.

The TCM execution error also contributes to the stochastic cost of the TCM:

3.4 � Nominal Maneuver Execution Error

Nominal maneuvers along the nominal trajectory are also not executed perfectly and 
contribute to the dispersion covariance. The dispersion covariance update equation 
only includes the error term at the time of the nominal maneuver as it does not affect 
the covariance otherwise. The error model is also zero mean with a variance of �2

R
ΔV

 per 

(44)�x+
c
= �x−

c
+

[

03×6
T

]

�x−
c

(45)P+

c
= E

[

(

𝛿x−
c
+ N𝛿x−

c

)(

𝛿x−
c
+ N𝛿x−

c

)

⊤

]

= (I + N)P−

c
(I + N)⊤.

(46)𝜎
𝛿Vv

=

√

tr
(

MvP
−

n
M⊤

v

)

=

√

tr
(

PTCMv

)

(47)P+

c
= (I + N)P−

c
(I + N)⊤ + GRTCMG

(48)�
�V =

√

tr
(

PTCM + RTCM

)

.



1 3

The Journal of the Astronautical Sciences (2024) 71:30	 Page 13 of 46  30

axis where R
ΔV = �

2
R
ΔV
I3×3 is the nominal maneuver execution error covariance. The 

dispersion covariance update equation for a nominal maneuver is

3.5 � Corrected Nominal Maneuvers

Another option for affecting the future state dispersion covariance is combining 
a TCM with a nominal maneuver. Assuming the nominal maneuver is not per-
formed at a location that has poor sensitivity in a specific direction for the TCM 
(i.e., correcting out of plane dispersion during the first maneuver in a Hohmann 
transfer), the effect of combining vector magnitudes results in savings in many 
cases. When a nominal maneuver, ΔV , and a TCM, �Vr , are combined in a single 
maneuver, the corrected nominal maneuver vector, ΔVcr , is

where the individual �Vr components are modeled as zero mean Gaussian random 
variables with covariance matrix PTCMr

 . A first-order TSE of the magnitude of the 
corrected position-targeting maneuver, ‖ΔVcr‖ , helps to estimate the statistics of the 
correction magnitude ‖�V‖:

The mean of ΔVcr is ΔV and the variance is

where ̂i
ΔV is a unit vector in the direction of the nominal maneuver.

Similarly, the target orbit arrival ΔV can be combined with a correction to 
remove remaining velocity dispersion at the target orbit insertion. The statistics 
of the velocity dispersion cleanup components are represented by the 3 × 3 veloc-
ity submatrix of the state dispersion at target orbit insertion:

The first-order TSE produces a similar result to Eq. 53:
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One way to interpret this simplification is vector addition: the only portion of the 
TCM that adds cost to the combined maneuver is the portion in the direction of 
the nominal maneuver. This savings is only accurate in cases where the nominal 
maneuver is much larger than the correction magnitude. When the reverse is true, 
this model’s perceived savings are unrealistic.

3.6 � Random Disturbances/Process Noise

Incorporating process noise is a common technique for estimating the effect of 
continuous stochastic errors of a process. Spacecraft venting or misaligned reac-
tion control subsystem thrusters result in random impulses that may have a cumu-
lative effect on the trajectory. These random impulses can also be represented by 
an increase to the dispersion covariance with respect to the nominal trajectory. A 
simple model for random disturbances is a zero mean white continuous noise pro-
cess with PSD Q, where Q = s2

Q
I3×3 , describing the strength of the unmodeled 

accelerations. The effect of Q accumulates over time via the linear stochastic dif-
ferential equation, Eq. 56 [26]:

where ̄Q represents the accumulated state dispersion covariance from process 
noise and G maps Q to the velocity components of the state dispersion covariance 
matrix. In the current implementation, Q and G are constant so their time reference 
� is removed, however, this method still applies to time varying Q and G matrices 
(although the upcoming analytical gradient derivation in Appendix A.2 will likely 
require additional terms). ̄Q will be referred to as the Q bar matrix, or QBM.

The TCM optimization method in Sect. 4 references propagated STM histories 
along a nominal trajectory many times without repropagating between covariance 
modifying events. Similarly, a new propagation would be required to incorporate 
̄Q between covariance modifying events if Eq. 56 were utilized. Instead, the con-
tinuous QBM history is also propagated and saved, from the beginning of each 
segment, alongside the STM history. Equation  57 [26] is used to numerically 
integrate the QBM with initial condition ̄Q 

(

t0, t0
)

= 06×6:

where F is the system Jacobian.
With the QBM history along the trajectory, propagated from the beginning of 

each segment, the appropriate portion of ̄Q is extracted from the history which 
contributes to the dispersion covariance at each dispersion covariance modify-
ing event. For example, at the first correction, the dispersion covariance equals 
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the linear covariance growth via the STM plus the accumulated process noise 
covariance:

where the STM ( Φ ) and the QBM ( ̄Q ) time-histories have been previously saved.
Some manipulation of the QBM history is required as optimizing TCMs along 

a nominal trajectory allows TCMs to occur independent of segment intersec-
tion, and the QBM history is propagated from the beginning to the end of each 
segment. The first manipulation involves combining two sequential propagated 
durations of ̄Q . ̄Qt1

(

t1, t0
)

 represents the effect of process noise covariance at t1 , 
accumulated from t0 to t1 . Similarly, ̄Qt2

(

t2, t1
)

 represents the effect of process 
noise covariance at t2 , accumulated from t1 to t2 . The goal is to combine these two 
sequential portions of ̄Q to form the accumulated effect of process noise from t0 
to t2 on the covariance at t2 , ̄Qt2

(

t2, t0
)

 . Equation 59 shows the required operation:

The second term can be thought of as linear propagation of ̄Qt1

(

t1, t0
)

 to t2:

Another scenario results when the QBM history propagation begins from t0 through 
t2 but the desired quantity is ̄Qt2

(

t2, t1
)

 . Rearranging Eq.  59 produces the desired 
quantity, shown in Eq. 61.

3.7 � Stochastic Cost and Constraints

The stochastic cost represents the additional cost of managing the state dispersion 
along a nominal trajectory to meet mission requirements. The stochastic cost is the 
sum of the RSS of n

�V TCMs with execution error plus the additional cost incurred 
by correcting n

ΔVc
 nominal maneuvers, multiplied by a scalar that corresponds to the 

mission’s risk tolerance related to maneuver margin (3� is used in this analysis):

An important parameter at nominal mission events (e.g., nominal maneuvers, tar-
get orbit insertion, rendezvous) is spacecraft position relative to the plan. For the 
analysis in this paper, the nominal trajectory will exactly intersect the planned posi-
tion. The state dispersion covariance relative to the nominal trajectory represents the 
statistical deviation from the planned trajectory. TCMs manage the state dispersion 
within a reasonable level around the nominal trajectory. Said another way, TCMs 
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ensure that the state dispersion constraints are met. The main state dispersion con-
straint ensures that the RSS of the position dispersion is less than a maximum value, 
�r,max:

where Mr =
[

I3×3 03×3
]

 . Pre and post multiplying the state dispersion covariance by 
the mapping matrix Mr extracts the position dispersion (rr) submatrix. In general, 
Constraint Eq. 63 is applied in this analysis at all nominal maneuvers after the first 
nominal maneuver.

4 � Trajectory Correction Maneuver Optimization

Section 4 explores the optimization of TCMs along a fixed nominal trajectory. Sec-
tion 4.1 describes a fast method to develop a near-optimal solution to the number 
and location of multiple TCMs along the deterministic optimal trajectory that also 
ensures a dispersion constraint is met at a single target. Section 4.1 also introduces 
a second target event along a nominal trajectory and connects the covariance analy-
sis between two separate TCM target portions of the trajectory. Section 4.2 shows 
a series of optimal TCM examples along the same nominal trajectory with varia-
tions in error sources to highlight the sensitivity of the optimal TCM solution to 
variations in stochastic problem parameters/error sources. TCM optimization sig-
nificantly mitigates the total cost of corrections with varying error sources when 
compared to a default TCM solution (referred to as the “looks about right” solution). 
The stochastic parameters for the analysis in this section are shown in Fig. 1.

4.1 � Optimizing TCM Number and Location Along a Nominal Trajectory

At any time along a dispersed nominal trajectory between t0 and tfinal , it is possible 
to perform a TCM and affect the dispersion covariance at a future time. Figure 1 

(63)
√

tr
(

MrPM
⊤

r

) ≤ 𝜎r,max

Fig. 1   Sample nominal trajectory and error parameters
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shows a three impulse LEO to powered lunar flyby (PLF) to NRHO insertion (NRI) 
trajectory with a fixed initial orbital plane in the CR3BP rotating frame. The stars 
represent nominal maneuvers. For the TCM optimization example, only the portion 
of the trajectory between the first and second nominal ΔV  s is analyzed (the portion 
of the trajectory that is plotted with a thicker line and multiple colors in Fig. 1). The 
targeted position for corrections in this portion is the position at the PLF ( ΔV2 ). ΔV1 
is a corrected nominal maneuver. The colors in this trajectory and in subsequent 
trajectory figures represent the trajectory segments as described in Subsection 2.4.

When an error-free correction is performed without random disturbances, the 
desired position is achieved. In terms of dispersion covariance, the position dis-
persion at the targeted time along the nominal trajectory is zero. When an initial 
dispersion, maneuver execution error, and process noise are introduced, the posi-
tion dispersion at the target becomes a function of these error sources and the TCM 
execution time along the nominal trajectory. The blue line in Fig. 2a shows the target 
position dispersion RSS as a function of a single TCM execution time. Figure 2a 
also shows a horizontal dashed line representing a 1 km target position dispersion 
RSS constraint. This constraint restricts the feasible TCM execution time options to 
those below the dashed horizontal line. A vertical dashed red line identifies the ear-
liest TCM option that meets the target position dispersion constraint, with all later 
TCM options also meeting the target dispersion constraint.

Figure 2b shows the TCM �V  as a function of execution time for the same TCM 
options that produce Fig. 2a. The red dot represents the lowest �V  TCM that meets 
the target dispersion constraint. Generally, the earliest TCM execution time that 
meets the target position dispersion constraint is a function of TCM execution error 
and process noise. With less execution error, the TCM can be performed earlier 

Fig. 2   Side-by-side comparison of target position dispersion RSS and TCM RSS as a function of TCM 
execution time along nominal trajectory
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in the trajectory at a reduced cost. Greater execution error requires a later TCM at 
greater �V  . This TCM to meet the target dispersion constraint will be referred to as 
TCM � and is an expensive option in the current example as a sole TCM performed 
so late in the trajectory.1 Introducing an additional TCM (TCM � ) has the potential 

Fig. 3   Sequential addition and optimization of TCMs demonstration

Table 1   Gradient-based five-TCM optimization steps

Iteration t
�
 (h) t

�
 (h) t

�
 (h) t

�
 (h) t

�
 (h) Total 1� �V  (m/s)

1 0.341831 7.046474 63.633821 76.631727 82.512024 14.600527
5 0.341831 6.693965 61.32633 75.528061 82.512024 14.595893
10 0.341831 6.253329 59.255504 74.679087 82.512024 14.59385
16 0.341831 5.724565 58.072175 74.364653 82.512024 14.593563

1  Greek letters are chosen to mitigate potential confusion associated with assigning numbers to each 
TCM. TCM � is the first TCM applied in the optimization sequence, but will be the last TCM to be per-
formed along the trajectory.
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to reduce the total �V  when compared to the single TCM solution. By fixing the 
TCM � execution time, TCM � can be performed along the trajectory from t0 to tc

�

 . 
Figure 3a shows the two TCM total �V  as a function of TCM � execution time and 
a fixed TCM � execution time (represented by the vertical dashed line). Selecting 
the TCM � execution time that minimizes the total TCM �V  (the red dot in Fig. 3a) 
results in the optimal two TCM solution that simultaneously satisfies the target posi-
tion dispersion constraint.

The process can be repeated as the first step in finding the optimal three TCM 
solution. By fixing the TCM � and � execution times and introducing a third TCM 
(TCM � ), a TCM � execution time exists that again corresponds to a minimum total 
TCM �V  . An additional step in this case is required however, as the execution time 
for TCMs � and � are variable, affect one another, and affect the total TCM �V  . A 
gradient-based search, step, and re-search until a minimum value is found is imple-
mented. A test in each direction (one time increment earlier and later) of each TCM 
execution time identifies if a lower total TCM �V  solution exists. If so, a gradient 
vector is created and all TCM execution times are modified one time index in the 
appropriate direction simultaneously. Figure 3b–d respectively show the sequence of 
incorporating three, four, and five TCMs from the previous optimal solution identi-
fied. Table  1 shows the gradient search steps taken from the initial placement of 
TCM � (Fig. 3d) to the lowest five TCM total �V  solution identified.

After a certain number of TCMs are added to the maneuver plan, the total TCM 
�V  will start to increase rather than decreasing. This identifies the optimal number 
of TCMs and their optimal execution time along a nominal trajectory. The data in 
Table  2 identifies that the optimal number of TCMs corresponding to the lowest 

Table 2   Optimal total TCM RSS as a function of number of TCMs

# of TCMs 1 2 3 4 5 6

Optimal TCM 1� �V  (m/s) 103.0 15.45 14.66 14.60 14.59 14.61

Fig. 4   Baseline stochastic parameters, optimal and LAR TCMs along LEO to NRHO Trajectory
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total �V  is five, as increasing to 6 TCMs results in a total cost increase. However, an 
improvement threshold may be implemented as savings diminish prior to the cost 
increase. In this analysis, the improvement threshold chosen is 3 times the RSS of 
RTCM , equating to roughly.05 m/s resulting in four TCMs being chosen despite the 
marginal additional savings with five TCMs.

The previous analysis only considered TCMs between ΔV1 (departing LEO) and 
ΔV2 (PLF) to introduce the optimization steps. For scenarios with multiple target 
dispersion constraints (multiple target portions of the trajectory), the optimiza-
tion sequence is similar with an additional step. The additional first step is plac-
ing TCM(s) at the cheapest option to meet each target’s position dispersion con-
straint. For example, in Fig.  4, there are two TCM targets, ΔV2 (PLF) and ΔV3 
(NRHO insertion). The first TCM is placed to optimally meet the target position 
dispersion constraint at ΔV2 with a single TCM. Similarly, the second TCM is then 
placed to optimally meet the target position dispersion constraint at ΔV3 with two 
total TCMs. The remainder of the process continues as previously described, with 
eligible options for the new TCMs being across all target portions of the trajectory. 
TCMs are sequentially added at the cheapest option throughout the entire trajectory 
and re-optimized via the gradient descent method until the TCM cost increases com-
pared to the previous optimal value. Verification results for this method appear in 
Sect. 7.2.

4.2 � Optimal TCM(s) with Variations in Stochastic Parameters

The objective of this section is to highlight the sensitivity of the optimal TCM set 
to variations in stochastic parameters through a series of examples. Each example 
shows the optimal TCM set corresponding to a change in the stochastic parameters 
in Fig. 4 along the same three impulse nominal trajectory from LEO to NRI via PLF. 
Points of comparison include the stochastic cost as well as the number and location 
of TCMs along the trajectory as error sources change. Note that in Figs. 4 through 6, 
while there is an initial coast in LEO from the green dot to the departure impulsive 
maneuver (not labeled to avoid congestion) and a final NRHO coast to reach the red 
square, these only enable flexible departure from the initial orbit and arrival to the 
target orbit and are not involved in the stochastic analysis. The initial dispersion is 
applied at ΔV1 and the target dispersion constraint is applied at ΔV3 with all TCMs 
occurring between these endpoints. The TCMs in the LEO to PLF portion of the tra-
jectory aim to minimize position dispersion at ΔV2 (PLF) and the TCMs in the PLF 
to NRI portion of the trajectory target ΔV3 (NRI).

The first example in Fig. 4 shows the baseline error parameters, the optimal TCM 
cost, and a comparison to another TCM selection method that has historically been 
referred to as the LAR or “looks about right” method [27]. The authors selected a 
few TCM locations that looked about right to serve as a cost comparison to the opti-
mal TCM set (see LAR J

�
 in subsequent figures as a comparison to optimal J

�
 ). The 

LAR TCMs were selected with a few guidelines: (1) a TCM immediately follows 
nominal maneuvers to “clean up” nominal maneuver execution error; (2) the final 
TCM in each portion is placed such that it meets the same target position dispersion 
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constraint as the optimal for a fair comparison; (3) the remaining TCMs in each 
TCM targeted portion of the trajectory roughly visually subdivide the trajectory. The 
cost increase is minimal for the initial error values.

The LAR TCMs are shown as open circles in Fig. 4, while the optimal TCMs for 
the baseline error sources occur at the open triangles. The second nominal maneuver 
at PLF is not a corrected nominal maneuver for this analysis; the magnitude com-
parison between the nominal maneuver and the TCM, in some cases, is such that the 
TCM magnitude is too large compared to the size of the nominal maneuver for the 
savings in Sect. 3.5 to apply.

The next example (Fig. 5) explores the impact of increasing the effect of the 
process noise by a factor of 10. The final TCM preceding the final target moved 
closer to the target, which makes sense; additional process noise causes the state 
dispersion to grow more quickly so the final TCM must be closer to the target to 
meet the same position dispersion constraint. Additional TCMs along the trajec-
tory serve to reduce the cost of meeting the target position dispersion constraint 
as well as managing the magnitude of the trajectory dispersion along the trajec-
tory. With increased process noise, the optimal TCM solution proactively man-
ages dispersion growth throughout the trajectory with additional TCMs. The low 
TCM execution error allows the addition of more TCMs in this case prior to the 
cost increase. TCMs are grouped near the lowest nominal velocity apogee-like 
portion of the trajectory. The TCMs prior to the ΔV2 target minimize the velocity 
dispersion at PLF, which, when not properly managed, creates a very expensive 
subsequent TCM (more on this in Sect. 6.1). The total 3� correction cost compar-
ison between optimal (44.4 m/s) and LAR (156.1 m/s) in this case is noteworthy. 
The only LAR TCM change for this example is an update to the final LAR TCM 
time prior to each target to meet the target position dispersion constraint.

The next example highlights the impact of reducing the initial dispersion. A por-
tion of the total TCM cost is attributed to the corrected initial maneuver. With a 
small initial dispersion, the correction of the initial dispersion reduces in magnitude.

Fig. 5   10× process noise, optimal and LAR TCMs along LEO to NRHO trajectory
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Increasing the nominal maneuver execution error from 1  m/s to 10  m/s 1� 
increases the total cost of corrections but does not significantly change the optimal 
TCM set. The increased nominal maneuver execution error is corrected by the first 
TCM following each nominal ΔV  . This results in a large 3� TCM cost increase but 
does not significantly change the optimal TCM solution or result in significantly 
poor performance of the LAR TCMs when compared to the optimal set.

Figure 6 shows the impact of increasing the TCM execution error to 10 cm/s from 
1  cm/s. The main difference in the optimal TCM set is the introduction of addi-
tional TCMs to manage the additional error being injected by each TCM into the 
dispersion covariance. The TCM error is also included in the correction cost, which 
results in reaching the upper bound on the number of TCMs before the cost begins 
to increase with fewer TCMs. When comparing the increase of the optimal TCM 
cost (18.0 m/s initially to 42.1 m/s), the additional TCMs in the optimal set success-
fully mitigate a significant impact to the overall correction cost. On the contrary, the 
LAR method performs significantly worse regarding the increased TCM cost from 

Fig. 6   10 cm/s 1� TCM error, optimal and LAR TCMs along LEO to NRHO trajectory

Table 3   TCM sensitivity analysis along deterministic optimal LEO to PLF to NRI trajectory summary

�r0
�v0

�R
ΔV

�RTCM
sQ �r,max LAR J

�
Opt. J

�

km 1 m/s 1 m/s 1 cm/s 0.1 mm/s/
√

s 1 km 26.1 m/s 18.0 m/s

1 km 1 m/s 1 m/s 1 cm/s 1 mm/s/
√

s 1 km 156.1 m/s 44.4 m/s

10 m 1 cm/s 1 m/s 1 cm/s 0.1 mm/s/
√

s 1 km 21.1 m/s 13.1 m/s

1 km 1 m/s 10 m/s 1 cm/s 0.1 mm/s/
√

s 1 km 111.6 m/s 100.5 m/s

1 km 1 m/s 1 m/s 10 cm/s 0.1 mm/s/
√

s 1 km 138.0 m/s 42.1 m/s

1 km 1 m/s 1 m/s 1 cm/s 0.1 mm/s/
√

s 100 m 45.1 m/s 18.8 m/s

1 km 1 m/s 10 m/s 1 cm/s 1 mm/s/
√

s 1 km 213.5 m/s 123.3 m/s

1 km 1 m/s 10 m/s 10 cm/s 1 mm/s/
√

s 1 km 407.6 m/s 144.4 m/s
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26.1 to 138.0 m/s. As a result of the additional TCM execution error, the final TCM 
prior to each target also moves closer to the target to meet the same position disper-
sion RSS constraint.

The result of reducing the target position dispersion RSS constraint to 100  m 
from 1  km is a final TCM that is also closer to the target, preceded by an addi-
tional TCM to reduce the dispersion magnitude and correction magnitude for the 
final TCM of each targeting portion. The cost of the optimal TCM solution does not 
significantly increase as a result of the more stringent constraint. The performance 
of the LAR method is not terrible but poor by comparison as it does not benefit from 
additional TCMs preceding each final targeting TCM.

The final two examples show the result of increasing the magnitude of multiple 
error sources simultaneously, highlighting the importance of an optimized TCM set. 
Increasing the nominal maneuver execution error and process noise increases the 
TCM cost to 123.3 m/s for the optimized set, compared to 213.5 m/s for the LAR 
TCM set. Increasing the TCM execution error in addition to the process noise and 
nominal maneuver execution error results in only a moderate increase to the TCM 
cost to 144.4 m/s but an additional significant increase to 407.6 m/s for the LAR 
TCM set.

Table 3 summarizes the TCM sensitivity to error source magnitude results. There 
are conclusions related to modifications in each error source. Correcting initial dis-
persion is expensive whether the optimal TCM set or LAR TCM set is implemented. 
Similarly, correcting nominal maneuver execution error is also expensive, independ-
ent of the TCM set. Optimizing TCMs provides the most benefit for error sources 
that contribute to the state dispersion along the trajectory, whether continuously 
in the form of process noise, or discretely through increased TCM execution error. 
Optimizing TCMs is also beneficial in a scenario that requires a more stringent tar-
get position dispersion.

5 � Robust Trajectory Design Method

The robust trajectory design method incorporates linear covariance analysis along 
each nominal trajectory to minimize the sum of the deterministic ΔV  plus an esti-
mate for the upper bound of the optimal TCM set �V  . The resulting cost function 
represents the statistical upper bound for the total ΔV  requirement, a mission plan-
ning factor that directly correlates to on-board spacecraft propellant.

The solution method is nonlinear programming (NLP) with analytical gradients 
(Matlab’s fmincon and the interior point method). First, an initial guess trajectory 
is developed using a shooting method. It is not required that the initial guess have 
complete position continuity or satisfy the constraint equations. The authors will fre-
quently converge to the deterministic optimal trajectory as a refinement step to the 
initial guess prior to incorporating stochastics to save overall run time and to opti-
mize the initial TCM set.2 The state, STM, and QBM history along the initial guess 

2  Finding the deterministic optimal trajectory is similar to the robust trajectory design method described 
in this Section, however, with fewer required terms. The cost function only includes nominal ΔV  . With-
out stochastic covariance-based cost estimates, analytical gradients are much simpler to derive do not 
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nominal trajectory are numerically integrated. Next, the number and location of 
TCMs are optimized along the initial guess per the method described in Sect. 4. The 
TCM locations form the initial segmentation of the initial guess trajectory. Subse-
quently, corresponding TCMs are fixed to occur at the corresponding node after each 
iteration, as opposed to performing the approach in Sect. 4 each NLP iteration.

The trajectory segmentation also aids convergence, particularly for nonlinear por-
tions of the trajectory. In some cases, successful NLP convergence requires addi-
tional segmentation of particularly long segments between TCMs. Each TCM is 
tied to a specific segment intersection and additional segments are incorporated for 
long duration trajectory spans.3 In this manner, the TCM optimization algorithm is 
only run one time, on the initial guess trajectory.4 This places the optimal number 
of TCMs in the appropriate local minima for the NLP to optimize as the trajectory 
changes. This also ensures TCMs times are not limited to variable step size STM 
histories and are instead tied to NLP problem parameters, creating a direct connec-
tion to analytical gradients with a smoother solution space.

Section 4 explored the optimization of TCMs along the same nominal trajectory 
(identified by the trajectory parameter vector S ). In finding a robust trajectory, each 

Fig. 7   Robust trajectory design method flowchart

4  If the NLP steps result in significant changes to the nominal trajectory, it may be necessary to re-run 
robust optimization starting with the previously converged solution as the new initial guess. This allows 
for an update to the number of TCMs and their associated nodes.

3  If NLP convergence steps result in a disjointed and illogical trajectory, one attempt to obtain conver-
gence should be subdividing long segments into additional segments.

Footnote 2 (continued)
require STT or QBT propagation. There is more detail in [20], which followed a similar deterministic 
optimal problem setup as [8].
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NLP iteration modifies S which corresponds to a new nominal trajectory. At each 
new nominal trajectory, a new state, STM, STT, QBM ( ̄Q ), and QBT ( 𝜕 ̄Q ) is propa-
gated in order to calculate a new cost, assess the constraint set, and assemble the 
analytical gradients to provide back to the NLP to be used in determining the next 
step. Appendix A describes the steps for building the analytical gradients for each 
TCM and their total. Iterations continue until the constraints are satisfied within a 
certain tolerance and a local minimum is found (or the cost ceases to decrease with 
additional steps with a specified bound). Figure 7 shows a flowchart of the steps of 
the robust trajectory design method.

The following optimization problem describes the robust trajectory design 
method; it applies to m nominal maneuver trajectories (indexed by the letter j) along 
an n segment trajectory (indexed by the letter i).

Nominal impulsive maneuvers are allowed at the trajectory nodes identified in the 
vector d ; the vector e identifies which of nominal maneuvers in d include a cor-
rection (for n

ΔVc
 total corrected nominal maneuvers indexed by the letter q). The 

TCM optimization method identifies n
�V total position-correcting TCMs along the 
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initial guess nominal trajectory; the corresponding TCM execution nodes are stored 
in the vector c (indexed by the letter k). The cost function (Eq. 65) is the the sum 
of the nominal maneuvers plus the total 3� TCM �V  . Of the constraint equations, 
Eq. 66 is the system dynamics for each trajectory segment as a function of the initial 
state and the segment duration. Equation 67 represents the covariance propagation 
using numerically integrated STM terms along the nominal trajectory and the accu-
mulated process noise covariance between covariance updates. Equations 68 and 69 
represent the dispersion covariance update equations for a nominal maneuver with 
execution error and a TCM with execution error, respectively. Equations 70 and 71 
constrain the trajectory segments to be connected by all six state elements (a coast) 
or allow an impulsive ΔV  between segments, as identified by the nodes in the vec-
tor d . Equation 72 constrains the RSS of the position dispersion at nominal maneu-
vers after the first to be less than or equal to �r,max . The duration of each trajectory 
segment must go forward in time (Eq. 73). The total trajectory duration is uncon-
strained. Upon convergence, the optimal TCM times for the robust trajectory are 
extracted from the appropriate nodes of S.

Fig. 8   Robust NRI Trajectory with Free Initial Plane

Table 4   Robust NRI trajectory 
cost comparison

Deterministic and robust cost comparison (m/s)

Deterministic ΔV 3439.3 ‖ΔV1‖ 3052.5
Optimal TCM 3 � �V 200.86 ‖ΔV2‖ 195.6
ΔV  total upper bound 3640.2 ‖ΔV3‖ 191.2

Robust ΔV 3440.9 ‖ΔV1‖ 3052.7
Optimal TCM 3 � �V 121.49 ‖ΔV2‖ 188.9
ΔV  total upper bound 3562.4 ‖ΔV3‖ 199.3
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6 � Cislunar Robust Trajectory Results

6.1 � Robust LEO to Powered Lunar Flyby to NRHO Trajectory

The initial guess trajectory for this scenario is the same nominal trajectory used for 
TCM optimization in Sect. 4. The initial constraint set implemented is Eqs. 32, 33, 
and 34, constraining the initial Earth orbit to be circular with a radius of 450 km. 
The result effectively frees the initial Earth orbit’s right ascension, inclination, and 
true anomaly for optimization. The target orbit is the 9:2 synodic resonant member 
of the L2 Southern Halo family. Figure 8 shows the error parameters for this analysis 
as well as the converged robust trajectory. In addition to the robust trajectory, for a 
visual comparison, the deterministic optimal trajectory (without TCMs) is shown as 
a thinner red line. Table 4 shows a cost comparison of the deterministic optimal tra-
jectory with an optimal set of TCMs to the resulting robust trajectory.

The robust trajectory provides a potential 77.8 m/s in savings compared to the 
deterministic optimal trajectory. Assuming ΔV1 is performed by a launch vehicle 
upper stage, the space vehicle maneuver requirement is 509.7 m/s. Appendix C 
shows the CR3BP state at mission events and coast durations required to recreate 
this trajectory. This scenario is ideal for pursuing a robust trajectory over the deter-
ministic optimal. The risk of spending additional nominal ΔV  is low (an additional 
1.6 m/s) and the potential payoff in terms of correcting errors is meaningful.

The majority of the savings for this trajectory are realized at the TCM follow-
ing ΔV2 . In the deterministic optimal trajectory, the TCM following PLF cost is 
125.4 m/s 3� compared to 51.1 m/s for the robust trajectory. Correcting accumu-
lated velocity dispersion once attaining the target position at lunar flyby is expen-
sive; with a high velocity magnitude and a relatively low ΔV2 magnitude there are 
two compounding effects. First, velocity dispersion orthogonal to the velocity vector 
at flyby effectively requires a plane change-like maneuver to correct, which is more 
expensive with a large nominal velocity. A major optimization that occurs in the 
robust trajectory is the minimization of the velocity dispersion at lunar flyby (an 
RSS of 4.67 m/s) when compared to the deterministic optimal trajectory (RSS of 
75.2 m/s). Second, since ΔV2 is a relatively inexpensive maneuver, the corrected 
nominal savings from Eq. 53 is not applicable because the correction at ΔV2 is com-
parable in magnitude to the correction, and, in some cases greater. As a result, the 
first and third nominal maneuvers are the only corrected maneuvers incorporated in 
this problem. When modeled with the combined maneuver savings for ΔV2 , the non-
linear program leverages the savings in an unrealistic way, resulting in an unrealistic 
combined savings which fails Monte Carlo verification.

In general, robust solutions also result in an earlier arrival to the target orbit. It 
is difficult to tell in Fig. 8, but the robust NRHO insertion position occurs 1923 km 
earlier in the NRHO path compared to the deterministic optimal insertion. A shorter 
duration transfer reduces the total dispersion growth that occurs from dynamics and 
process noise. More importantly, in this case, the robust trajectory is optimizing the 
avoidance of a path sensitivity to the error sources present.
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Table 5 shows the result of a study comparing the sensitivity of multiple NRI tra-
jectories with a free initial orbital plane to variations in stochastic parameters. The 
trajectories compared are: (1) the deterministic optimal trajectory in Table 4; (2) the 
robust trajectory in Table 4; (3) a new robust trajectory created specifically for the 
new stochastic parameters. The results shown for Trajectories 1 and 2 are the TCM 
cost along the nominal trajectory using the algorithm described in Sect. 4.1 and the 
corresponding total cost upper bound. The nominal ΔV  is not shown again as it does 
not change for each test for Trajectories 1 and 2. For Trajectory 3, each row rep-
resents a new robust trajectory with a new nominal cost and TCM cost, each the 
converged result from the NLP robust trajectory design method. There are numerous 
conclusions to be made from this table, related to the sensitivity of each trajectory 
to various error sources, which error source is driving the large velocity dispersion 
after PLF, and once a robust trajectory is found for a specific set of error sources 
(Trajectory 2), whether it continues to perform well to variations in the error sources 
or is it beneficial to find a new robust trajectory for each change in error sources.

First, observe the change in cost associated with changes to the initial dispersion. 
Reducing the initial 1� position dispersion from 1 km to 100 m results in a large 
reduction in TCM cost along the deterministic optimal trajectory (200.86–139.99 
m/s). This highlights that the deterministic optimal trajectory is sensitive to initial 
position dispersion. On the other hand, the TCM cost along the robust trajectory 
is only reduced from 121.49 to 120.29 m/s with the same change in initial position 
dispersion, which leads to the conclusion that the robust trajectory is robust to initial 
position dispersion. The TCM after powered lunar flyby continues to be the major 
cost driver due to large velocity dispersion. The robust trajectory in these cases con-
tinues to minimize the velocity dispersion at PLF and the resulting 3� RSS of the 
TCM following PLF.

Second, observe the change in cost associated with changes to the nominal 
maneuver execution error. A reduction in 1� nominal maneuver execution error from 
10 to 1  m/s results in a decrease along the deterministic optimal trajectory from 
200.86 to 142.39 m/s. The same change to nominal maneuver execution error for 
the robust trajectories reduces the cost from 121.49 to 41.30 m/s, a larger difference. 
While the robust trajectory is less sensitive to initial position dispersion it appears 
to be more sensitive to nominal maneuver execution error. Both trajectories appear 
to exhibit similar sensitivity to changes in TCM execution error and process noise; 
decreases to each of these error sources results in a reduction to the cost of correc-
tions. Even in the case with the lowest error source magnitudes, the 3� TCM cost is 
reduced from 19.27 to 11.73 m/s while the nominal ΔV  increases by either 0.5 m/s 
or 1.6 m/s, further highlighting that the robust trajectory is a worthwhile pursuit 
with minimal risk of an overall increase in cost.

Third, the performance of optimal TCMs along Trajectory 2 appear to perform 
quite comparably to a new robust convergence for each reduction in error source 
values. While this phenomenon has not been extensively tested to verify its univer-
sality, in this instance, identifying a robust trajectory to larger error sources appears 
to also be robust to reductions in smaller magnitude error sources such that there are 
diminishing savings realized by finding a new robust trajectory.
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Fig. 9   NRHO Deterministic Optimal Rendezvous Trajectories

Fig. 10   Deterministic optimal rendezvous post-NRI with optimal TCMs
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6.2 � Robust NRHO Rendezvous Trajectory

The next scenario analyzes an active chaser spacecraft trailing a passive target in 
the same NRHO5 by a specified amount of time (or distance, but the specific dis-
tance for a corresponding time delay depends on the true anomaly). Two nominal 
impulsive maneuvers are allowed by the chaser with the goal of rendezvous with a 
future target position. The initial and final segments are again flexible in duration 
resulting in the optimization of the location to perform the two nominal impulsive 
maneuvers. This method explores long range rendezvous and optimization of impul-
sive ΔV  rather than terminal guidance. Effectively, two phasing maneuvers are being 
performed by the chaser, occurring within the same NRHO orbital period.

The deterministic optimal result for any initial and final position within the 
same orbital period is interesting in this case; with varying chaser trail durations, 
the location for the two nominal ΔV  s remains nearly constant. Figure  9 shows 
five different initial conditions determined by the duration of time delay between 
the chaser and the target. All initial chaser positions precede the first ΔV  . The 
nominal ΔV  total varies quite significantly from 0.265 m/s in the 5 min delay case 
to 38.9 m/s in the 12  h delay case. The transfer durations are likely unrealistic 
for manned chasers with durations between nominal ΔV  s that vary little between 
cases: 5.29 days for the 12 h delay, 5.76 days for the 5 min delay.

As a connection between the NRI trajectory and the subject NRHO rendezvous 
trajectory, Fig. 10 shows the resulting deterministic optimal trajectory with the ini-
tial state equal to the robust NRHO insertion state from Fig. 8. The delay between 
chaser and target is adjusted to 6 min and 3.77 s such that the target is 100 km in the 
lead at NRI. The deterministic cost in this scenario is quite minimal, 0.379 m/s, with 
a transfer duration of 4.90 days.

Fig. 11   Robust NRHO rendezvous trajectory, initial dispersion applied at ΔV
1

5  The NRHO utilized is the 9:2 synodic resonant member of the southern L2 family.
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Considering the minimal nominal ΔV  , the 100 km separation at NRI case with 
only 0.379 m/s deterministic ΔV  cost could potentially exhibit large variations when 
comparing the deterministic optimal trajectory to the robust equivalent. Two robust 

Fig. 12   Robust NRHO rendezvous trajectory, initial dispersion applied at trajectory node 1

Table 6   Robust NRHO 
rendezvous trajectory cost 
comparison

Deterministic and robust cost comparison (m/s)

Deterministic Nominal ΔV 0.379 ‖ΔV1‖ 0.215
Optimal TCM 3 � �V 42.5 ‖ΔV2‖ 0.164
ΔV  total upper bound 42.8

Robust—Case 1 Nominal ΔV 3.81 ‖ΔV1‖ 1.91
Optimal TCM 3 � �V 10.4 ‖ΔV2‖ 1.91
ΔV  total upper bound 14.2

Robust—Case 2 Nominal ΔV 4.46 ‖ΔV1‖ 1.94
Optimal TCM 3 � �V 13.0 ‖ΔV2‖ 2.52
ΔV  total upper bound 17.4

Table 7   Robust NRHO 
rendezvous trajectory sensitivity 
to process noise and target 
position dispersion constraint

Case 1� error sources Cost (m/s) True Anomaly

sQ �r,max at ΔV2 Nom. ΔV TCM 3 � �V TA1 TA2

1 1 100 m 3.81 10.4 179.12◦ 180.88◦

1 .1 100 m 3.00 10.2 179.12◦ 180.99◦

1 1 1 km 2.32 7.59 178.52◦ 181.44◦

2 1 100 m 4.46 13.0 163.13◦ 167.97◦

2 .1 100 m 3.61 10.6 163.00◦ 169.94◦

2 1 1 km 2.27 9.84 163.00◦ 168.68◦
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comparisons that apply the initial dispersion covariance at different locations are 
presented that answer slightly different questions. In Case 1, the initial dispersion 
covariance is applied at ΔV1 . This scenario finds the optimal robust combination 
without increasing the stochastic cost through additional coast in the first segment. 
In Case 2, the initial dispersion covariance is applied at the beginning of the trajec-
tory and grows throughout the coast prior to ΔV1 . Case 2 finds the optimal robust 
rendezvous trajectory given the initial conditions at NRI and accounts for the sto-
chastic cost increase of coasting in the first segment.

Figure 10 shows the error sources utilized in both robust trajectory cases. Due to 
the small nominal ΔV  magnitude, the nominal ΔV  error is reduced to 10 cm/s 1� ; 
such a small maneuver would likely be performed by a spacecraft RCS subsystem. 
Process noise is the larger of the values frequently used in this dissertation, simu-
lating disturbances from a manned vehicle. The initial position dispersion matches 
the NRI target position dispersion constraint as a connection to the NRI trajectory 
development problem.

Figure 11 shows the robust trajectory result for Case 1 where the initial dispersion 
covariance is applied at ΔV1 . Figure 12 shows the robust trajectory result for Case 2 
where the initial dispersion is applied at trajectory node 1 (the initial chaser posi-
tion). Table 6 shows the cost comparison of the deterministic optimal with optimal 
TCMs, the Case 1 robust, and Case 2 robust trajectories. Transfer durations decrease 
from the deterministic optimal’s 4.90 days to 5.20 h for Case 1 and 9.14 h for Case 
2.

A small study was performed to compare the sensitivity of the robust trajectory 
to variations in process noise and target dispersion constraint. Figure 10 shows the 
baseline error sources for Case 1 and Case 2 which appear in the first and fourth 
rows of Table 7. Less process noise and a larger target position dispersion are tested 
to observe the sensitivity of the robust results to error sources. The initial dispersion 
and maneuver execution error remain unchanged from Fig. 10. Rather than replot-
ting each trajectory, the NRHO true anomaly (TA) for ΔV1 (TA1) and ΔV2 (TA2) is 
shown to define the nominal trajectory. As the stochastic cost increases with more 
process noise or a more stringent target dispersion constraint, the optimal robust 
solution slides toward a more expensive (and shorter duration) nominal trajectory. 
The opposite is true for the case with less process noise and a less stringent target 
position dispersion constraint.

The ratio of nominal ΔV  to TCM �V  in this scenario is skewed heavily toward 
the TCM cost. As a result, there is a large opportunity to spend a little more nominal 
ΔV  in exchange for significant TCM savings resulting in a drastic change to the opti-
mal trajectory. The robust trajectory exhibits similar modifications but on a larger 
scale for this example: a shorter transfer duration and earlier arrival to the target 
state minimizes state dispersion growth through problem dynamics and random dis-
turbances. Also, while not explicitly shown through additional figures, optimizing 
the number and locations of TCMs mitigates a significant increase in TCM �V  with 
changes in error source magnitudes when compared to a fixed TCM set.
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7 � Results Verification

7.1 � Stochastic Results Verification via Monte Carlo Analysis

The first comparison verifies that the modeled stochastic TCM estimates are repre-
sentative of realistic magnitudes when compared to a Monte Carlo analysis. Each 
Monte Carlo sample represents a full pass through the nominal trajectory with error 
sources incorporated as samples of random Gaussian error sources of the appro-
priate variance. In more detail, at the beginning of each trajectory, the initial state 
serves as the mean position and velocity. The initial state dispersion is incorporated 
prior to propagating the appropriate Δt to the next random trajectory event. Once 
at the appropriate time along the trajectory, the actual ΔV  magnitude of a correc-
tion that achieves the target position is iteratively calculated (using Matlab’s fsolve). 
The correction error or nominal maneuver error is incorporated in the current dis-
persed trajectory state and the process is repeated. Each propagation also incorpo-
rates random accelerations (process noise) discretely at each time step of a fixed 
Runge–Kutta 4th-order integration. Following the modeling of 1000 individual dis-
persed trajectories, the statistics of the magnitude of each correction form the metric 
by which the modeled results in this dissertation will be compared. The magnitude 
of a vector is no longer a Gaussian random variable: all values are positive (it is not 
zero mean) and it is not symmetric about the mean. As such, to produce a 3�-equiva-
lent value for comparison, a percentile calculation is used to compute a value that 
contains 99.7% of the sample magnitudes.

Table 8 shows the results of a 1000 run Monte Carlo analysis alongside the sto-
chastic estimates for the robust NRHO insertion trajectory with a free initial orbital 
plane in Sect. 6.1 (Fig. 8). The linear covariance-based estimates are conservative, 

Table 8   Robust NRI Monte 
Carlo verification results

Correction Monte Carlo 99.7% Mag-
nitude (m/s)

Linear covariance-
based 3 RSS (m/s)

ΔV1 Corr 5.23 3.84
TCM 1 37.4 42.8
TCM 2 1.73 1.78
TCM 3 2.17 2.88
TCM 4 1.89 2.63
TCM 5 1.57 2.30
TCM 6 1.60 2.03
TCM 7 1.47 1.79
TCM 8 1.24 1.63
TCM 9 37.5 51.1
TCM 10 2.57 2.84
TCM 11 1.78 2.44
TCM 12 1.54 2.17
ΔV3 �v 1.14 1.30
Total 99.8 121.5
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however not excessively large. The conservatism of the results is expected; 3 RSS 
of the TCM covariance matrix bounds the worst case direction of covariance align-
ment [28]. These results verify that the robust trajectory design method is producing 
results that are representative stochastic estimates given the error sources present. 
The magnitude of the correction to ΔV1 appears to be the only outlier in the trend of 
conservatism with the linear covariance-based estimates.

7.2 � Optimal TCM Set Verification

The purpose of this verification step is to test the optimality of the TCM set chosen 
using a genetic algorithm. Two sets of results are verified: first, whether the TCM 
optimization scheme along a nominal trajectory described in Sect. 4.1 finds the opti-
mal TCM set; second, if the nonlinear program converges to the optimal set when 
finding the robust trajectory. As a reminder, the nonlinear program starts with an 
initial guess trajectory with the number and location of TCMs identified by the fast 
optimization algorithm described in Sect. 4.1. The initial trajectory nodes are placed 
at the TCMs and fixed there. The nonlinear program adjusts the segment durations, 
which in turn modifieds the location of the TCMs, such that the TCMs continue to 
be optimized as the NLP iterations occur. The total number of TCMs is not modified 
in the genetic algorithm search. Each of the following genetic algorithm searches is 
allowed 500 generations with a population size of 100.

The TCM set verification is along the robust LEO to powered lunar flyby to 
NRI trajectory with free initial orbital plane (Fig. 8). Table 9 shows the compari-
son between the fast optimization method along the robust trajectory and the genetic 

Table 9   Optimal TCM set 
verification using genetic 
algorithm

Correction NLP converged 
TCM time (h)

Fast Opt 
TCM time 
(h)

GA TCM time (h)

TCM 1 0.02157 0.02158 0.02174
TCM 2 6.281 6.2225 5.1273
TCM 3 45.311 49.351 43.946
TCM 4 75.927 83.769 75.377
TCM 5 95.037 - 94.933
TCM 6 105.68 103.15 105.68
TCM 7 110.67 110.38 110.68
TCM 8 112.69 112.69 112.69
TCM 9 114.06 114.09 114.06
TCM 10 126.89 126.59 127.87
TCM 12 135.80 135.63 136.01
TCM 13 139.13 139.13 139.13
Total 3� TCM 

magnitude 
(m/s)

121.49 122.05 121.47
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algorithm results as well as the nonlinear program converged TCM set. As another 
clarification, the fast optimization method was run as a test following NLP conver-
gence of the robust trajectory to produce the results in Table 9, but that is not the 
normal order of operations. The fast optimization method results in a total 3� TCM 
magnitude of 122.0 m/s while the genetic algorithm produces a TCM set that costs 
121.5 m/s. The fast TCM optimization in this case runs in 39 s without parallel pro-
cessing while the genetic algorithm takes 126 s with parallel processing on 7 cores. 
All of the results are within 0.5% of each other. This instills confidence in the fast 
TCM optimization method and the accuracy of previous results presented.

7.3 � Robust Trajectory Verification

The purpose of this section is to verify a converged trajectory’s optimality via a dif-
ferent optimization method. The trajectory chosen to verify is the two-burn NRHO 
rendezvous trajectory from Sect. 6.2, specifically “Robust - Case 2” from Table 6. 
This trajectory was chosen because it can be simplified to a problem of two inde-
pendent variables with an associated cost. A mission map displaying the cost on 
the z-axis enables visual verification of two independent problem variables: coast 
duration in the first segment prior to nominal ΔV1 and coast duration in the final 
segment following ΔV2 (the rendezvous maneuver). The target begins 100  km in 
the lead in each scenario and follows the natural motion trajectory throughout the 
scenario. By prescribing the first and last segments’ coast times the location of the 
nominal maneuvers is determined. The result is a fixed rendezvous time for each 
specific combination, but the transfer time and rendezvous location are variable 
across combinations. Each individual combination then represents a prescribed ΔV1 
and ΔV2 position and fixed transfer duration, which has a single solution (similar to 
Lambert’s problem). The cost associated with each combination’s singular solution 

Fig. 13   Nominal ΔV  optimization via mission map—NRHO Rendezvous
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is displayed on the mission map. Single differential correction method is used to 
adjust the chaser velocity to meet the target position at the specified time.

The first step is verification of the deterministic optimal rendezvous trajectory 
and comparison to the NLP-converged solution in Fig. 12. Figure 13 shows the con-
tour plot for the deterministic rendezvous cost as a function of the coast time in 
the first and last segment and the corresponding minimum impulse trajectory. The 
contour represents an ideal solution space for use by a gradient-based solver with a 
single minimum value and a monotonic decrease toward the minimum. Validation 

Fig. 14   Optimal 3� TCM cost mission map

Fig. 15   Robust optimization via mission map—NRHO rendezvous
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of the optimal solution is successful as the result matches the NLP-converged deter-
ministic optimal trajectory in Fig. 10.

Next, the optimal TCM set cost is computed along each nominal trajectory in 
the mission map (Fig. 13a). Figure 14 shows the contour of total 3� TCM cost. One 
immediate observation is a nearly opposite cost incentive compared to nominal ΔV  ; 
an increase in the duration of coast in segment n increases the nominal ΔV  cost 
while the opposite is true for 3� TCM cost. Another observation is the apparent sub-
structure and lack of smoothness in the TCM cost contour. This is an artifact of the 
optimal TCM set being limited to the set of discretized time increments generated 
during numerical integration and demonstrates the need for assigning TCMs at seg-
ment intersections during optimization. This plot was attempted to be smoothed by 
increasing the number of nonlinear integration time steps, however, it does not com-
pletely rectify the issue. Without the attempted smoothing as shown (which is oth-
erwise costly in terms of additional computation required), the gradient frequently 
changes sign in an unpredictable way, preventing gradient-based convergence.

Finally, the robust mission map shows the combination of nominal ΔV  plus 
3� TCM �V  for the purpose of verifying the robust trajectory results in Fig. 12 
and Table 6. Figure 15a shows the robust mission map contour representing the 
total cost upper bound for each trajectory. The minimum value is identified on the 
contour plot and the corresponding robust trajectory is shown in Fig.  15b. The 
results successfully verify the robust NRHO rendezvous trajectory identified in 
Sect. 6.2 is the two-impulse local minimum cost solution. The solution space is 
mostly monotonically decreasing toward the minimum value with the exception 
of a ridge that forms with long duration coasts in segments 1 and n (representing 
short duration transfers near apolune).

8 � Conclusion

This paper ultimately presented a robust trajectory design method and two sets of 
robust trajectory results. As a foundation for the robust trajectory design method, 
supporting theory for system dynamics, multiple segment trajectory design, and 
stochastic analysis along a nominal trajectory was presented. Next, a trajectory 
correction maneuver (TCM) fast optimization method was presented alongside 
a sensitivity analysis comparing the total TCM cost with changes in error source 
magnitudes. Error sources included an initial state dispersion, maneuver execu-
tion error, and random white disturbances modeled as process noise. The TCM 
sensitivity analysis also supported building intuition on the correction of error 
sources, and which error sources benefit the most from an optimized TCM set. 
Next, the robust trajectory design method was presented where the nominal tra-
jectory and TCMs were then simultaneously optimized using nonlinear program-
ming. Finally, two robust trajectory results were presented: a LEO to powered 
lunar flyby to NRHO insertion trajectory and a two impulse NRHO rendezvous 
trajectory. A final section verified results via Monte Carlo analysis, genetic algo-
rithm verification, and manual optimization via mission maps.
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The first robust trajectory result was an expensive LEO to PLF to NRHO inser-
tion trajectory that provided a noteworthy amount of savings for a space vehicle. Sav-
ings was acquired by avoiding path sensitivities that were amplified by error sources, 
in addition to minor savings through shortening the overall trajectory duration. A 
study was performed to determine if the robust trajectory found with the largest error 
sources is a viable choice for smaller magnitude error sources. In this case, it turned 
out that there were minimal additional gains to be had by developing a new robust 
trajectory to new error sources and that the original robust trajectory performed well.

The second robust trajectory result was an NRHO rendezvous scenario where the 
deterministic optimal trajectory had a very minimal nominal cost. The robust trajectory 
optimization resulted in a significant change to the trajectory and significant savings per-
centage-wise managing state dispersion. The majority of the savings in the second case 
is attributed to shortening a long duration transfer and the corresponding error growth.

Additionally, it was shown that robust trajectories and the corresponding TCM cost 
of managing state dispersion is dependent on mission-specific error sources. Various 
sets of error sources were applied to the optimal deterministic LEO to PLF to NRHO 
insertion trajectory. The TCM cost of the optimal TCM set was compared with another 
method of selecting TCMs that visually looks about right. Considering the optimal 
TCM set, there was variation in the total TCM cost with variation in error sources, 
which in turn affects the robust trajectory. The magnitude of TCM cost increase with 
increased error sources was mitigated in many cases by optimizing the number and 
location of TCMs, demonstrated by the comparison with the LAR TCM cost.

The method developed to converge to the robust trajectory was presented using 
a multisegment approach and nonlinear programming. The most time consuming 
aspect of the method was implementation of analytical gradients of the problem 
cost and constraints. A new method to optimize the number and location of TCMs 
along a nominal trajectory was presented and implemented. Once the optimal 
TCM set was found along the initial guess trajectory, the trajectory segmentation 
was performed such that the optimal TCM locations are tied to specific nodes, 
allowing simultaneous optimization of the nominal trajectory and the TCM loca-
tions with NLP iterations. Convergence to the robust trajectory was guided by a 
cost function which considered the ΔV  upper bound: the sum of the deterministic 
trajectory cost plus the stochastic cost of an optimal TCM set.

Appendix A: Analytical Gradients

The design method in this paper computes, propagates required values, and provides 
analytical gradients of the cost function and constraints with respect to the problem 
parameters, S , to the NLP. Many stochastic cost terms involve STMs, which require 
the propagation of second-order STTs to compute the gradient analytically. Similar 
to propagating second-order STTs, the gradient of QBM terms requires propagating 
a tensor that characterizes the state sensitivity of the accumulated process noise 
covariance, 𝜕

̄Q(t1,t0)

𝜕x0,i
 . This will be referred to as the Q bar tensor, or QBT. This section 
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provides an overview of two gradient formulations: first, a sequential method for 
assembling the gradient of multiple TCMs and second, the propagation and manipu-
lation of the QBT.

A.1 Multiple TCM Cost Analytical Gradient

The partial derivative of the deterministic cost, deterministic constraints, a single TCM 
RSS magnitude, and the target position dispersion covariance constraint are derived 
in more detail in [20]. This paper incorporates multiple TCMs, maneuver execution 
error, and process noise. A portion of the derivation for a single TCM is repeated here.

The approach used to calculate the gradient of multiple TCMs starts with the gra-
dient of a single TCM. The partial derivative of the RSS of a single TCM’s covari-
ance, �

�Vr
 , with respect to a segment parameter vector si is an application of matrix 

differentiation rules.

Showing the partial derivative of �2
�Vr

 with respect to a segment initial state makes 
the following derivation slightly cleaner. Maneuver execution error and process 
noise are also assumed to be zero for this derivation and will be subsequently 
included.

where index notation is used, combined with brackets to avoid confusion when indi-
ces are adjacent to other subscripts. The subscripts on the trace operator ( trbg ) iden-
tify the indices that the trace is performed on, resulting in the corresponding matrix 
indices collapsing to a scalar. Additionally, when segment i is relevant to the STM 
terms inside T1 or P−

c1
 , their partial derivative requires propagated STT terms:

(75)
��

�Vr,1

�si
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The rr and rv subscripts identify top-left and top-right 3 × 3 submatrices of the STM 
terms. When applied to STT terms, the result is a 3 × 3 × 6 tensor, with no cropping 
occurring in the third dimension.

An application of the matrix inverse derivative property and STT terms are required 
to evaluate the partial derivative of Φ−1

rv

(

tn1 , tc1

)

:

The same fundamental steps apply when evaluating the partial derivative with 
respect to Δti but the results are simplified by the fact that tensors are not required. 
Equation 11 is applied for STM time sensitivity rather than utilizing STTs for STM 
state sensitivity.

Some creative manipulation of STM endpoints is required to obtain the appro-
priate sensitivity in many cases. As segments are propagated independently of 
one another each NLP iteration, from the beginning of each segment for the cor-
responding duration, care must be taken to only incorporate the sensitivity of 
modifications to the appropriate time indices for the corresponding segment, and 
not the entire STM sensitivity between endpoints (when the time between correc-
tions and/or a target might span multiple segments).

When multiple TCMs are performed along a nominal trajectory, each at tck with 
execution error covariance RTCM , the total TCM RSS �

�V gradient requires gra-
dients of each individual �

�Vr,k
 plus the gradient of �

�Vv
 . Modifications to TCMs 

have impacts to the dispersion covariance that affect the gradient of subsequent 
TCMs. The sequential nature of the following formulation maintains the sensi-
tivity of each TCM to modifications in elements that have an impact on the pre-
ceding dispersion covariance. Said differently, each TCM affects the dispersion 
covariance at all future TCMs. The following sequential covariance sensitivity 
formulation simplifies this operation.

The first TCM, k = 1 , mirrors the single TCM scenario with the addition of 
RTCM . The RSS of the first TCM, �

�Vr,1
 , is
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The post-TCM covariance is defined by Eq. 47. To simplify notation, the gradient 
of �

�Vr,1
 with respect to a segment initial state will be represented by the function D , 

where D and the partials being passed represent the application of the single TCM 
gradient derivation in Eqs. 75 through 82:

The second TCM ( k = 2 ) now incorporates the effects of TCM 1 to the next covari-
ance update P−

c2
 ; assuming the next covariance update is another TCM:

The state sensitivity of the dispersion before TCM 2, 
�P−

c2

�x0,i
 , can be expressed as 

another function J  , shortening another lengthy application of matrix differentiation. 
Evaluating Eq. 87 is similar to Eq. 75 with the addition of the partial derivative of 
the TCM execution error term, which is nonzero due to being multiplied by STMs.

Now 
�P−
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�x0,i
 is expressed as a function of gradients at TCM 1 and the dynamics between 

TCMs 1 and 2. Calculating the dispersion covariance sensitivities sequentially ena-
bles subsequent TCMs and their gradients to be expressed as a function of values at 
the previous dispersion covariance update.

For corrected nominal maneuvers, the gradient of Eqs.  53 and  55 follows a 
similar process. The only new term is now the partial derivative of the unit vector 
in the direction of the nominal maneuver, ̂i

ΔV.
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Suppose the nominal maneuver occurs at the mth trajectory node. The corresponding ΔV 
is only sensitive to modifications in segments m − 1 and m. Therefore, the only nonzero 
gradients are with respect to x0,m−1 , which is shown below, and x0,m , which is trivial.

where Φm−1 corresponds to the STM from the beginning to the end of segment m − 1 
and subscripts vr and vv are its corresponding bottom-left and bottom-right 3 × 3 
sub-matrices.

The gradient of the total stochastic cost is the sum of each individual gradient.

A.2 Accumulated Process Noise Covariance Gradient

When including the effect of process noise and evaluating 
𝜕P−

c1

𝜕x̄0,i
 in Eq. 58, 

𝜕
̄Q
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tc1
,t0

)

𝜕x0,i
 , 

the QBT, becomes a required term. These QBM state sensitivities are obtained 
via numerical integration of Eq. 91, with a brief derivation following. The first 
step involves taking the partial derivative of ̇̄Q (Eq. 57) with respect to the initial 
state. Applying the product rule results in Eq. 91 which is numerically integrated 
to obtain the QBT, similar to an STT, with initial conditions 𝜕

̄Q(t0,t0)

𝜕x(t0)
= 06×6×6:

where F(t)i,j is the system jacobian. A chain rule application utilizes the second 
derivative of the system dynamics with respect to the state, F(t)i,jk:

Similar to the QBM, some manipulation of the QBT is also required to obtain the 
appropriate QBT endpoints and its effect at the appropriate time. Finding the equa-
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Subtracting a contribution involves taking the partial derivative of Eq. 61, perform-
ing a product rule and two chain rule applications, and collecting terms:

Appendix B: Parameter Values Used

•	 Earth gravitational parameter: �E = 398600.4415 km3
∕s2.

•	 Moon gravitational parameter: �M = 4902.8 km3
∕s2.

•	 Circular lunar orbit radius: 384,400 km.

Appendix C: Robust LEO to PLF to NRHO Insertion Trajectory 
Parameters

See Table 10.
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Table 10   Robust NRI with flexible initial orbital plane trajectory states and durations in the CR3BP

Positions, velocities, and time in non-dimensional CR3BP units

Initial Pos. (ND) −0.0195140726104922 TLI Pos. (ND) −0.0195135906158413
−0.0162187067684891 −0.0162189127918011
−0.000332044828317289 −0.000332608222350025

Initial Vel. (ND) 4.66444762574509 TLI Vel. After ΔV1 
(ND)

6.51582635545753
−1.99394107575154 −2.83385415712864
−5.45226120271818 −7.63049481038387

LEO Coast (ND) 1.03332236237512e−07 ΔV1 to ΔV2 Coast (ND) 1.09343788419489
Flyby Position (ND) 0.988009871564714 NRI Pos. (ND) 1.00668674681398

−0.00495904123495611 0.0374930477196215
0.0015405279628845 −0.121392669208028

Flyby Vel. After ΔV2 
(ND)

0.229999903493435 NRI Vel. After ΔV3 
(ND)

0.101654785242203
−1.24045668752913 0.149338745117038
−1.73619605339098 −0.269420048398715

ΔV2 to ΔV3 Coast (ND) 0.255697143169389
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Data availability  The data necessary to recreate the presented robust trajectories is included in this paper.
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