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Abstract
With the growing volume of traffic within the Cislunar region, there is an increasing 
need for efficient techniques to propagate trajectories of spacecraft in the circular 
restricted three-body problem. A low-complexity algorithm utilizing interpolation 
and incorporating boundary conditions is introduced for generating accurate trajec-
tories and periodic orbits within the Cislunar domain. The proposed approach offers 
a distinct advantage over existing iterative techniques, as it yields favorable results in 
terms of arithmetic and time complexities. Once the reliable low-complexity algo-
rithm is developed, it is applied to relevant Cislunar trajectories. Finally, we have 
compared the time complexity of the proposed algorithm with that of a traditional 
orbit propagator. The algorithm achieves significant improvements in time complex-
ity for various types of orbital trajectories compared to traditional iterative methods. 
It demonstrates approximately a 50% enhancement of time efficiency for low-Lunar, 
Lyapunov, near-rectilinear halo, and distant retrograde orbital trajectories.
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1 Introduction

The Cislunar region, shown in Fig. 1, is gaining increased attention throughout the 
past few years, as 90 missions to the Moon are projected by 2030 [1], with addi-
tional missions to Mars. Many upcoming Cislunar missions are focused on the 
Lunar South pole, as well as periodic orbits about L 1 and L 2 of the Earth-Moon 
circular restricted three-body problem (CR3BP) system [2]. Here, L 1 and L 2 are the 
equilibrium points of the Earth-Moon system. Russia’s Luna 25 (2022) [3], South 
Korea’s KPLO (2022) [4], Japan and India’s joint LUPEX (2023) [5], and India’s 
Chandrayaan-3 (2024) [6] all are missions to observe, or land on, polar regions of 
the Moon. Additionally, NASA has multiple commercial Lunar payload services 
(CLPS) missions to the Lunar polar region. NASA’s Artemis program is a multi-
stage program to reestablish a presence on the Moon; the first Artemis mission 
traveled in a distant retrograde orbit (DRO) about the Moon at the end of 2022 [7].

The dynamics that govern the motion in the CR3BP are highly non-linear and no 
closed-form solution has yet been derived. To be able to design trajectories in such 
a model, different numerical methods are required to analyze spacecraft trajectories 
that satisfy desired behaviors. Many different formulations of differential correc-
tions algorithms exist within the context of targeting schemes [8, 9]. In recent times, 
with evolving computational techniques, many are based on free variables and con-
straints for trajectories that need to meet a certain set of conditions. One example 
consists of a method for generating long baseline solutions using multiple shoot-
ing techniques [10]. Therefore, following ongoing work on trajectory generation 
[11–17], the objective is to find an approximated solution to determine trajectories 
of the CR3BP with a low-complexity algorithm. To propagate orbits and uncertainty 
within the context of this non-linear realm, typical numerical integration techniques 
including Gauss–Legendre, Dormand–Prince, Chebyshev–Picard algorithms [18], 
Gragg–Bulirsch–Stoer [19], and the Adams–Bashforth method [20] are used. Each 

Fig. 1  Cislunar region
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technique has its own benefits and disadvantages. Using a higher-order Runge–Kutta 
integrator (ODE45 in this investigation), the solution is usually more accurate. How-
ever, these techniques are typically computationally expensive. It is thus important 
to reduce the complexity of the problem.

Finite element methods (FEM) and finite difference methods (FDM) are con-
ventional techniques in astrodynamics for solving equations by discretizing spatial 
data [21, 22]. A trade-off exists between resolution and speed when employing these 
approaches: coarse discretization provides faster results but sacrifices accuracy, 
whereas fine discretization improves accuracy at the cost of slower computations. 
When it comes to solving the equations involved in the CR3BP, traditional solvers 
face significant challenges due to the requirement of very fine discretization in both 
time and space. This results in a time-consuming process that can be daunting to 
handle. We propose a technique that utilizes fine discretization in time and space to 
determine trajectories in the CR3BP. This offers a more efficient alternative to tradi-
tional methods that are more challenging and time-consuming.

Efforts to address the need for efficient propagation methods in the CR3BP have 
extended beyond typical numerical techniques (see [23–25] and references therein). 
Researchers provided detailed explanations of the need for low-complexity algo-
rithms [26], and utilized high-dimensional Poincaré maps for spacecraft orbit design 
in the CR3BP. Existing propagation methods have been compared in [27], including 
the polynomial approach and the authors designed a differential algebraic method 
to guarantee access to any point of a family without any numerical propagation. 
Additional advancements include the utilization of Gaussian process regression for 
propagation, efficient algorithms for computing invariant manifolds, orbit classifica-
tion techniques, and nonlinear stability analysis of periodic orbits. In general, these 
approaches have enabled more precise predictions and analyses in the CR3BP. How-
ever, the existing literature and gap indicate the need for further improvements and 
low-complexity methods dedicated to efficient CR3BP propagation. This paper aims 
to bridge this gap by proposing a novel technique that incorporates innovative math-
ematical strategies to enhance efficiency in orbital propagation within the CR3BP 
framework.

The primary objective of this investigation is thus to develop a low-complexity 
algorithm that enables efficient trajectory determination within the Cislunar domain, 
including periodic orbits. This algorithm utilizes predefined boundary conditions 
instead of iterative methods based on initial conditions. High-fidelity discrete solu-
tions are extracted at finite time steps, constructing a low-complexity propagation 
between these boundary conditions. The accuracy of the trajectory generated is dem-
onstrated using analytical evidence within the given set of boundary conditions. A 
comprehensive description of the algorithm derivation and analysis of the arithmetic 
and time cost savings are provided. To produce analytical solutions and algorithms 
that are computationally tractable and inexpensive, particularly in the complex and 
chaotic three-body dynamics, it is important to address system structures in relevant 
equations, develop novel theories, and design low-complexity and reliable (in the 
sense of accuracy and stability) algorithms. For obtaining the position, velocity, and 
acceleration of the spacecraft within the three-body dynamics at defined finite time 
steps, ODE45 is utilized. The output data from this integration is then identified as 
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predefined boundary conditions. Subsequently, the low-complexity algorithm in this 
study is employed to construct the trajectory of the spacecraft within the CR3BP. 
The study leverages the traditional equations of the CR3BP. Numerical tests are per-
formed for several orbits, including a near-rectilinear halo orbit (NRHO) represent-
ing Gateway’s orbit, a direct retrograde orbit (DRO) representing part of the Artemis 
I trajectory, a low-Lunar orbit (LLO), and a Lyapunov orbit about L 2 . The numerical 
results show that the proposed algorithm achieves approximately 50% improvement 
in time complexity for all these cases. Therefore, a ground-breaking model for orbit 
determination in the Cislunar region is achieved.

The paper is structured as follows.1 First, Sect.  2 presents the dynamics of the 
circular restricted three-body problem, including  supplemental information about 
differential corrections and the state transition matrix in Appendix A. Then, Sect. 3 
develops the theory to obtain a low-complexity and reliable algorithm to describe 
smooth trajectories of the moving body in the presence of multiple gravitational 
fields. In Sec. 4, a numerical analysis based on the time complexity of the proposed 
algorithm is developed. Results are compared with a traditional method of orbit 
integration (i.e., ODE45) for all suggested orbits. Finally, we conclude the paper in 
Sect. 5.

2  Dynamical Model

To model the problem, a system of differential equations in the CR3BP is written 
in dimensionless form [28], in such a way that the characteristic distance is defined 
as the time-averaged distance between the Earth and the Moon; and the character-
istic time is selected to guarantee a dimensionless mean motion of the primaries 
with a value equal to unity. The mass ratio � = mM∕(mM + mE) is defined for the 
system, with mM and mE being the masses of the Moon and the Earth, respectively. 
A barycentric rotating frame is defined with the x̂-axis directed from the Earth-
Moon barycenter to the Moon, and the ẑ-axis from the barycenter in the direction 
of the system angular momentum vector. Figure  2 presents a schematic represen-
tation of the model. The Earth and Moon are located at positions r̄p = [−𝜇, 0, 0]T 
and r̄m = [1 − 𝜇, 0, 0]T , respectively. The evolution of a spacecraft (s/c) position 
r̄rot = [x, y, z]T and velocity ̇̄rrot = [ẋ, ẏ, ż]T is governed by the following equations of 
motion [29]:

where dots indicate derivatives with respect to dimensionless time. Then, 
U∗ =

1−�

rp−s∕c
+

�

rm−s∕c
+

1

2
(x2 + y2) represents the pseudo-potential function for the sys-

tem of differential equations; rp−s∕c and rm−s∕c are the distances of the s/c to the Earth 

(1)ẍ − 2ẏ =
𝜕U∗

𝜕x
; ÿ + 2ẋ =

𝜕U∗

𝜕y
; z̈ =

𝜕U∗

𝜕z

1 Part of this investigation was presented in 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, 
TX, 2022.
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and the Moon, respectively. The Jacobi constant (JC) is the only scalar integral for 
the given system which gives information of the energy of the s/c, i.e., 
JC = 2U∗ − (ẋ2 + ẏ2 + ż2) . Finally, note that motion exists in the vicinity of five 
equilibrium solutions in the given formulation. Such equilibrium solutions are 
denoted as L1 to L5 in Fig. 2. Such motion can be categorized by families of periodic 
orbits [30–32]. These orbits are usually leveraged for many distinct types of mission 
scenarios. In this research, different periodic orbits are propagated both using a clas-
sical integrator as well as the low-complexity algorithm proposed by the authors in 
the following section. Appendix A provides more information about the targetting 
scheme used to compute periodic orbits in this research.

3  Low‑Complexity Algorithm for Smooth and Continuous Trajectory 
Determination

Trajectory propagation methods, such as Gauss–Legendre and Dormand–Prince 
[18], typically generate a trajectory in discrete steps based on a given set of condi-
tions. In contrast, our proposed algorithm generates a trajectory by interpolating a 
function between a set of boundary conditions. While existing iterative techniques 
offer accurate solutions, they can be computationally expensive due to the need to 
compute all predecessors for each different time step. In contrast, the proposed tech-
nique generates a trajectory at a given time stamp without the need to compute all 
previous states from the beginning. This is achieved by using a piecewise continuous 
function based on polynomial interpolation, which offers a low-complexity solution 
compared to existing iterative methods. For the dynamics of the spacecraft in the 
CR3BP, the proposed interpolated polynomial function provides greater accuracy 

Fig. 2  The CR3BP model represented in the barycentric rotating reference frame with the primaries, the 
third body and the 5 equilibrium points



 The Journal of the Astronautical Sciences (2023) 70:46

1 3

46 Page 6 of 22

and computational efficiency than linear functions [33]. The differences between the 
proposed interpolation technique and iterative methods are represented in Table 1. 
To achieve computationally efficient and time-effective algorithms, particularly for 
complex and chaotic three-body dynamics, it is essential to consider system struc-
tures that result in low-complexity and reliable (in terms of accuracy and stabil-
ity) algorithms. In this section, novel piecewise-defined functions are proposed to 
describe smooth trajectories of the spacecraft in CR3BP. While a linear trajectory is 
often assumed over a given time interval, in reality, trajectories are polynomials in 
time due to changes in position, velocity, and acceleration at each time stamp. The 
proposed algorithm can be extended to fully determine trajectories of the n-body 
problem at each time step, offering a low-complexity solution, but this investigation 
is limited to the CR3BP. Figure 3 presents a visual flowchart comparing the different 
trajectory propagation methods.

In the context of the CR3BP formulation discussed in the previous sec-
tion, to obtain the position, velocity, and acceleration of the spacecraft within 
the three-body dynamics at each defined finite time step, ODE45 is employed, 
and the resulting data is used as predefined boundary conditions. In the CR3BP, 
the position, velocity, and acceleration data for the spacecraft are known, pro-
viding boundary conditions for each time interval. This would be equivalent to 
having measured states of spacecraft in regards to orbit determination. Using 
the Lagrange interpolation theorem with the six data points at the interval’s start 
and end, a unique degree-five polynomial is obtained that best fits or interpo-
lates the data within the interval. Therefore, each body’s trajectory at any given 

Table 1  Comparison between 
interpolation and iterative 
trajectory propagation methods

Interpolation (proposed) Iterative (existing)

Solve in continuous domain Solves in discrete domain
Closed-form accurate solution Approximated solution
Low-complexity Computationally expensive

Fig. 3  Trajectory propagation using iterative and interpolation techniques
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time interval are uniquely determined as a degree-five polynomial in time, rather 
than linear in time. The trajectories of the spacecraft in CR3BP are described as 
piecewise-defined functions in time, ensuring continuity and differentiability for 
smoothness and curvature at any time domain of interest. To fully describe these 
functions explicitly and via a low-complexity algorithm, the proposed technique 
produces smooth, continuous, and differentiable trajectories of the spacecraft in 
CR3BP for any time domain of interest. Once these trajectories are fully deter-
mined, the position, velocity, and acceleration data of any object at any time are 
retrieved, even in continuous time changes. In this project, two types of complex-
ities are considered: arithmetic and time complexities. The arithmetic complexity 
is determined by the number of floating-point operations required to execute the 
algorithm, whereas the time complexity is primarily related to the GPU execution 
time. These two types of complexities are interdependent, and any reduction in 
arithmetic complexity leads to a decrease in the GPU execution time. As demon-
strated next, the proposed algorithm significantly reduces both complexities.

Let us consider a scenario where the position, velocity, and acceleration 
vectors, i.e., x̄(ti), ̇̄x(ti) , ̈̄x(ti) in ℝ3 , of the spacecraft are known at time ti for 
i = 0, 1,… , n and t0 < t1 < ⋯ < tn . Thus, the trajectories of the spacecraft over 
n time intervals are described via n piecewise-defined functions. Moreover, these 
functions are defined at each interval [tk, tk+1] , where k = 0, 1,… , n − 1 , and from 
ℝ

3 to ℝ such that the position functions (i.e. trajectories of the spacecraft) are 
expressed via

and the corresponding velocity and acceleration functions of the spacecraft at each 
given time interval, respectively, are denoted via,

where tk ≤ t ≤ tk+1 , x(t) is the dimensionless quantity of the vector x̄(t) , and 
g0,k, g1,k,… , g5,k are dimensionless quantities depend on the position, velocity, and 
acceleration of the spacecraft at each n time intervals. To accurately describe the 
trajectories of the spacecraft over n time intervals, it is necessary to explicitly deter-
mine the variables g0,k, g1,k,… , g5,k for n time intervals. To do so, one has to solve 
a system of 6n equations. The brute-force method of calculating these variables in 
each time interval followed by n intervals yields the explicit equations describing 
the spacecraft’s trajectories at any time t with O(n3) complexity. Therefore, a low-
complexity algorithm is proposed that requires only O(n2) operations, and hence to 
obtain these variables and describe the spacecraft’s trajectories at any time.

To achieve this, the following technique for determining the spacecraft’s trajec-
tories is suggested. To begin with, the known vectors at the specific time values tk 
and tk+1 are utilized, which serve as the boundary conditions for the (k + 1) th time 
interval. These are expressed as:

(2)Gk(x(t)) = g0,k + g1,kt + g2,kt
2 + g3,kt

3 + g4,kt
4 + g5,kt

5,

(3)
Ġk(x(t)) =g1,k + 2g2,kt + 3g3,kt

2 + 4g4,kt
3 + 5g5,kt

4,

G̈k(x(t)) =2g2,k + 6g3,kt + 12g4,kt
2 + 20g5,kt

3



 The Journal of the Astronautical Sciences (2023) 70:46

1 3

46 Page 8 of 22

 where x(tk), ẋ(tk) , and ẍ(tk) are position, velocity, and acceleration dimensionless 
quantities of the vectors x̄(tk), ̇̄x(tk) , and ̈̄x(tk) , respectively. Hence, within the time 
interval [tk, tk+1] , the motion of the spacecraft is expressed, as illustrated in Equa-
tions (2) and (3) adhering the boundary conditions Eq. (4). This allows to rewrite 
the set of equations as a matrix equation in the interval [tk, tk+1] (note that there are n 
time intervals) s.t.

We note here that a brute-force calculation in determining the vectors b
k
 for all k’s 

over n time intervals cost O(n3) operations. More specifically, the unknown trajec-
tory coefficients for the (k + 1) th time interval, i.e., [tk, tk+1] are obtained by tak-
ing the explicit inverse of Ak and multiplying it with the boundary conditions vec-
tor b

k
 . Hence, to fully solve the system this process needs to be repeated for each 

subsequent time interval, until all n time intervals have been considered, thereby 
fully determining the satellite’s trajectories at any given time. However, as men-
tioned earlier this approach is computationally expensive, and more specifically 
the explicit inverse of dense matrices is rarely computed [34]. To mitigate this and 
reduce the complexity, LU decomposition is used to factor the coefficient matrix Ak 
in the system of Eq. (5). Then, the bidiagonal lower triangular matrices L̃r are used 
s.t. L̃r = L−1

r
 to compute the matrix–vector product from L̃1bk and multiplying the 

resultant vector in order L̃2,… , L̃5 followed by the backward substitution to reduce 
the computational burden. By adopting this approach, the trajectory coefficients are 
obtained for all n time intervals having O(n2) as opposed to O(n3) complexity algo-
rithm. Let us, therefore, utilize the LU decomposition of the coefficient matrix Ak in 
Eq. (5):

(4)

Gk(x(tk)) =x(tk)

Gk(x(tk+1)) =x(tk+1)

Ġk(x(tk)) =ẋ(tk)

Ġk(x(tk+1)) =ẋ(tk+1)

G̈k(x(tk)) =ẍ(tk)

G̈k(x(tk+1)) =ẍ(tk+1),

(5)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 tk t2
k

t3
k

t4
k

t5
k

1 tk+1 t2
k+1

t3
k+1

t4
k+1

t5
k+1

0 1 2tk 3t2
k

4t3
k

5t4
k

0 1 2tk+1 3t2
k+1

4t3
k+1

5t4
k+1

0 0 2 6tk 12t2
k

20t3
k

0 0 2 6tk+1 12t2
k+1

20t3
k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

���������������������������������������������������
Ak

⎡
⎢⎢⎢⎢⎢⎢⎣

g0,k
g1,k
g2,k
g3,k
g4,k
g5,k

⎤
⎥⎥⎥⎥⎥⎥⎦

���
x
k

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x(tk)

x(tk+1)

ẋ(tk)

ẋ(tk+1)

ẍ(tk)

ẍ(tk+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

�����
b
k

.

(6)

(
5∏

r=1

Lr

)
Ukxk = b

k
, where Ak =

(
5∏

r=1

Lr

)
Uk
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where Lr ∈ ℝ
6×6 , r = 1, 2,… , 5 are bidiagonal lower triangular matrices, and 

Uk ∈ ℝ
6×6 is an upper triangular matrix. Moreover, these bidiagonal and upper trian-

gular matrices are explicitly given via

where the pre-computed entries are given by

(7)

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1 dk
1

1 dk
1

1 dk

⎤
⎥⎥⎥⎥⎥⎥⎦

, L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1

1 − dk
1

1 − dk
1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1

1

2 dk
1

2 dk

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L4 =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

3 − dk
1

⎤⎥⎥⎥⎥⎥⎥⎦

,

L5 =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

2 dk

⎤⎥⎥⎥⎥⎥⎥⎦

, Uk =

⎡⎢⎢⎢⎢⎢⎢⎣

1 t0 t2
0

t3
0

t4
0

t5
0

1 c1,k c2,k c3,k c4,k
1 e1,k e2,k e3,k

1 2c1,k fk
2 2mk

2

⎤⎥⎥⎥⎥⎥⎥⎦

(8)

dk =tk+1 − tk,

c1,k =tk+1 + tk,

c2,k =t
2

k+1
+ tk+1tk + t2

k
,

c3,k =t
3

k+1
+ t2

k+1
tk + tk+1t

2

k
+ t3

k
,

c4,k =t
4

k+1
+ t3

k+1
tk + t2

k+1
t2
k
+ tk+1t

3

k
+ t4

k
,

e1,k =tk+1 + 2tk,

e2,k =t
2

k+1
+ 2tk+1tk + 3t2

k
,

e3,k =t
3

k+1
+ 2t2

k+1
tk + 3tk+1t

2

k
+ 4t3

k
,

fk =3t
2

k+1
+ 4tk+1tk + 3t2

k
,

mk =2tk+1 + 3tk.
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The subscript k corresponds to the (k + 1) th time interval which is [tk, tk+1] , and the 
empty spaces of the matrices represent zero elements. Even for all n time intervals, 
thepre-computation cost of the entries in Eq. (8) cost O(n) operations as it is an 
update of the consecutive vectors. After obtaining g0,k,… , g5,k for k = 0, 1,… , n − 1 , 
the trajectory of the spacecraft can fully be described via Eq. (3) over n time inter-
vals using O(n2) as opposed to a O(n3) algorithm. Furthermore, to ensure the reli-
ability of this algorithm, refer to matrix decomposition techniques that have been 
successfully applied in trajectory determination for a quadcopter [16] and a servic-
ing robotic arm [17]. In conclusion, these trajectories serve as reference trajectories 
at any given time, and can even be extrapolated to predict the future motion of the 
spacecraft.

4  Results

This section shows the accuracy and time complexity of the proposed algorithm 
while comparing it with the ODE45 which is a well-known, traditional, and accurate 
orbit propagator. The analysis is performed for a LLO, NRHO, DRO and a Lyapu-
nov orbit. The proposed low-complexity algorithm first requires the position, veloc-
ity, and acceleration of the six boundary conditions. Then, the conditions are input-
ted into the algorithm and the algorithm produces the polynomial that represents 
the motion of the object. Finally, the process is repeated for the remaining dimen-
sions, and the state at a desired time is found using the generated polynomials. An 
overview of the process is shown in Fig. 4. The algorithm is tested on a number of 
important orbit trajectories within the Cislunar region using the CR3BP model. The 
Artemis I mission traveled in a partial DRO around the Moon at the end of 2022, 
and the complete DRO will be the first trajectory of interest [7]. Next, low-Lunar 
orbits are orbits with very low altitudes over the Moon, resulting in motion very sim-
ilar to two-body motion as the Moon’s gravity dominates the spacecraft’s trajectory. 
Missions such as KPLO and other Lunar surface surveying missions will fly in low-
Lunar orbits, marking the second trajectory of interest [4]. The third trajectory to be 
tested will be an L 2 Lyapunov orbit. Finally, NASA’s Gateway station will be a vital 
location for missions in the Cislunar region, acting as a staging point for Lunar sur-
face missions [35]. Gateway will orbit the Moon in a southern NRHO, identifying 

Fig. 4  Propagation of each orbit using respective methods
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the fourth trajectory of interest. The algorithm is completed using seven boundary 
conditions, marking six time intervals of a desired trajectory, over one orbit period. 
The initial conditions of the trajectory are known, and the periodic orbits are origi-
nally propagated using ODE45. The boundary conditions are then retrieved from the 
ODE45 results and used in the low-complexity algorithm (LCA). Finally, the result-
ing trajectories are represented in the dimensional CR3BP rotating frame.

The DRO orbit is propagated using the LCA and compared to the ODE45 results. 
Figure  5a shows the DRO orbit constructed using both ODE45 and the LCA. 
The trajectories are difficult to distinguish because of how close the algorithm’s 
and ODE45’s trajectories are to one another. Therefore, the difference in position 
between the LCA and the ODE45 trajectory for the DRO is shown in Fig. 5b. Since 
the algorithm must meet the boundary conditions outlined by ODE45, the intervals 
in which the algorithm is broken into are typically distinguished by a difference 
of 0 between the LCA and ODE45 trajectory. The algorithm matches the ODE45 
resolved trajectory extremely closely, deviating up to 27 km. A difference of 27 kms 
between ODE45 and the LCA is insignificant in reference to the 100,000 kms the 
DRO stretches across.

The analysis between the LCA and ODE45 is completed for LLO next. For the 
analysis, a sample LLO trajectory is used with a perilune of 100 kms. The result-
ant trajectories are seen in Fig. 6a and the difference between the LCA and ODE45 
trajectories is presented in Fig. 6b. The LLO has a peak difference of 2.3 kms occur-
ring in the fifth time interval of the algorithm. The 2.3 kms difference is also insig-
nificant even though the orbit traverses a smaller distance of around 1000 kms.

The L 2 Lyapunov orbit constructed by the LCA is presented in Fig. 7a, and the 
difference from the ODE45 propagation is observed in Fig. 7b. The LCA’s model of 
the sample Lyapunov orbit has the closest resemblance to the ODE45 trajectory out 
of all the tested orbits. The peak difference occurs in the third time interval set by 
the boundary conditions, only reaching right over 2.5 kms.

Finally, Fig.  8a shows the LCA’s model of the NRHO orbit and Fig.  8b con-
veys the difference of the LCA and ODE45 propagated trajectories for the NRHO 
orbit. Out of the selected sample trajectories, the NRHO is found to be the most 

Fig. 5  Distant retrograde orbit (DRO) analysis
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Fig. 6  Low-Lunar orbit (LLO) analysis

Fig. 7  L
2
 Lyapunov analysis

Fig. 8  Near-recilinear halo orbit (NRHO) analysis
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challenging to construct accurately using the LCA. The NRHO is the only trajectory 
in which the ODE45 and LCA models can be distinguished from one another at cer-
tain times, as seen in Fig. 8a. The NRHO has the largest difference from the ODE45 
path, peaking at about 1800 kms. The large difference is partially a result of how the 
boundary conditions are spread throughout the trajectory. Points in the trajectory 
that change rapidly, such as perilune, have tighter spaced boundary conditions to 
prevent drastic changes in the algorithm. Alternatively, the boundary conditions are 
more spread out through points in the NRHO where conditions change more slowly, 
such as apolune, so the algorithm has more of a gradual change over a large period 
of time. This is shown in Fig. 8a and b, in which the trajectory begins at perilune 
with low deviations and slowly begins to deviate, reaching the peak difference at 
apolune, halfway through the orbit.

The drive for producing an LCA is to reduce computational time and arithme-
tic complexity and to address the physical requirements for smooth trajectory deter-
mination. Typically, arithmetic complexity is proportional to the time complexity 
of a given algorithm. Therefore, the computational time (i.e. time complexity) of 
the algorithm is determined for each of the four trajectories and compared to the 
computational time of ODE45. The time both methods take to resolve a trajectory 
can slightly vary based on rounding and computer performance during the propaga-
tion. As a result, the computed times shown in Fig. 9 are the average computational 
time of 100 propagations of each respective trajectory. The reductions in computa-
tional time of the algorithm are highlighted in Fig. 9 as it depicts that the algorithm 
resolves the trajectory significantly faster than ODE45, clocking in at about half of 
the time for each orbit.

The selection of the initial and boundary conditions is paramount when using 
the low-complexity algorithm. For the sample trajectories above, the conditions 
are selected to highlight the algorithm’s ability to accurately reconstruct common 
orbits. This proved challenging for some orbits as changing the initial conditions 

Fig. 9  Propagation time of each orbit using respective methods
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of sensitive orbits, such as the NRHO, would drastically affect the LCA’s abil-
ity to reconstruct the orbit. To demonstrate this effect, take the NRHO example. 
The NRHO constructed in Fig. 8a used initial conditions near the perilune of the 
orbit, with frequent boundary conditions near perilune. The reconstruction is 
slightly inaccurate from ODE45, but generally, the orbit retained its shape. Mov-
ing the initial conditions of the problem to around the apolune of the NRHO, 
with boundary conditions still frequenting perilune, the changes in the trajectory 
are seen in Fig. 10a. The trajectory generated by the LCA clearly propagates the 
NRHO incorrectly near apolune, in a more pronounced manner than in Fig. 8a. 
For a closer examination of the problem, the LCA and ODE45 trajectory is plot-
ted over the x-axis, y-axis, and z-axis (Fig. 10b–d). The algorithm is completed 
in one-dimension at a time and as a result, the accuracy of the NRHO trajectory 
varies depending on the axis. In this example, the x-axis and z-axis trajectories 
have accurate results, but y-axis trajectory deviates more significantly. The clear 
effect changing the initial conditions of the orbit has on the resultant trajectory 
highlights the importance of the selecting informative initial conditions for the 
low-complexity algorithm.

Fig. 10  Apolune NRHO trajectory analysis
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Two factors contribute to producing inaccuracy of the LCA, poor selection of 
the initial conditions and the spacing of the boundary conditions. These factors are 
presented in the application of the LCA in determining the NRHO (Figs. 8a, 10a). 
The spacing of boundary conditions resulted in inaccuracy because the algorithm 
concentrated boundary conditions near intervals of rapid change, allowing for inter-
vals of slow change to slowly deviate. The spacing of the boundary conditions can 
be resolved by cutting down the length of the trajectory the algorithm must solve 
for at a time. Previously, the algorithm completed one orbit of the NRHO, now the 
NRHO will be split into two halves and ran twice to complete the trajectory. Using 
the apolune initial conditions, Fig. 11a shows the LCA and ODE45 trajectories for 
the NRHO propagated in two arcs and Fig. 11b shows the difference between the 
two propagation methods. Breaking the trajectory into two arcs resolves the issue 
of the LCA being unable to produce the NRHO trajectory. The maximum differ-
ence between the LCA and ODE45 propagation drops from 1800 kms (Fig. 8b) to 
78 kms (Fig. 11b). Additionally, the initial conditions at the apolune of the NRHO 
previously generated the less accurate NRHO, but is now able to produce an accu-
rate trajectory. The computational time of the NRHO in two arcs is compared to the 
propagation time of the NRHO using ODE45 and the LCA in a single arc, shown 
in Fig.  12. The results show that completing two arcs as opposed to a single arc 
increases the LCA computation by around 0.005  s. Overall, by breaking the tra-
jectory up, the LCA is able to produce an accurate trajectory for the NRHO orbit 
with some additional computation time. The method of breaking the trajectory into 
smaller arcs can be extended further to troubleshooting other trajectories that are 
inaccurate over a given time interval, as completed for the NRHO.

The selection of boundary conditions used in the algorithm directly impact the 
results and accuracy of the LCA. Generally, for an orbit to be discretized into differ-
ent arcs that accurately represent the numerically propagated trajectory, the bound-
ary conditions must be selected to create short intervals during sensitive portions 
of the trajectory. For the selected orbits, the sensitive portions of the trajectory are 

Fig. 11  Two arc NRHO analysis
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points of rapid change, occurring at the locations in space where the orbit is the 
closest to the Moon. This is seen clearly in the NRHO and LLO examples. Both 
trajectories start at perilune, with the boundary conditions being needed slightly 
closer in time at the beginning and end of the orbital periods. In contrast, the DRO 
is generally the same distance from the Moon and, therefore, the spacing of bound-
ary conditions are uniform. Furthermore, in the instance that the selected discretized 
arcs do not meet desired accuracy, additional boundary conditions are implemented 
to further limit the time between boundaries. Once again this is demonstrated in the 
NRHO case, in which the original process of discretizing the orbit into arcs was 
unsatisfactory, and thus additional boundary conditions were required to create an 
accurate representation without significantly impacting computation time.

For efficient use of the LCA in the CR3BP, a relationship between the dynamics 
of a trajectory and the performance of LCA must be established. The stability of two 
orbits as well as their associated performance in the LCA are examined. The first 
selected trajectory is the L2 Lyapunov orbit, a trajectory showing promising perfor-
mance of the LCA, and the second trajectory is a new L2 Lyapunov orbit. The sta-
bility of both orbits is determined using the eigenvalues of the monodromy matrix 
for each periodic orbit [36]: a saddle mode exists when the eigenvalue has one posi-
tive and one negative real part; otherwise, a center mode exists when the eigenvalue 
has complex conjugates. The original Lyapunov orbit possesses one saddle and two 
center modes, while the new Lyapunov orbit possesses two saddles and one center 
mode. The new Lyapunov orbit (Fig.  13a) is initiated for propagation at apolune, 
similar to the original Lyapunov. The comparison between LCA and ODE45 is 
represented in Fig. 13b. The first Lyapunov orbit outgrows the performance of the 
second one. These results possibly indicate that the stability of an orbit is associ-
ated to its performance in the LCA. Additionally, the previously analyzed NRHO 
is found to have one saddle and two center modes, similar to the original Lyapunov 
orbit. The previous finding has demonstrated that the NRHO yields unsatisfactory 

Fig. 12  Computation time of NRHO with apolune initial conditions



1 3

The Journal of the Astronautical Sciences (2023) 70:46 Page 17 of 22 46

outcomes compared to the original Lyapunov orbit, despite possessing similar sta-
bility properties, but significantly differing in LCA performance. Consequently, the 
suggested comparison of two Lyapunov orbits with distinct eigenvalues cannot fully 
establish that a stability relationship exists between dynamics and the performance 
of LCA. Therefore, future research will delve into exploring the connection between 
trajectory properties and LCA performance in greater depth.

5  Conclusions

Analytical solutions to predict trajectories in complex, multi-body dynamic sys-
tems, such as the CR3BP, may be computationally expensive to solve iteratively. 
The expense of iterative methods such as Gauss–Legendre, Dormand–Prince, and 
Chebyshev–Picard, warrants the need for lower complexity algorithms, specially for 
on-board navigation purposes. The process stems from the Lagrangian interpolation, 
fitting curves to given conditions to analytically solve for trajectories. The trajecto-
ries are extended from linear fitting to a more accurate polynomial in time solution. 
Furthermore, interpolation methods can still be computationally expensive when 
using brute force methods to solve for the polynomial, requiring O(n3) operations. 
The designed low-complexity algorithm takes advantage of the low computational 
necessities of interpolation and the accuracy of a polynomial fit to create an algo-
rithm that requires O(n2) operations.

The low-complexity algorithm is tested by propagating well-known trajectories 
in the CR3BP and comparing the motion to the results of an ODE45 propagated 
trajectory. The low-complexity algorithm accurately represented a DRO, LLO, and 
L 2 Lyapunov orbit, with a significantly lower computational time than ODE45. The 
NRHO initially challenged the algorithm to produce an accurate trajectory due to 
the diverse motion of the orbit. The selected boundary conditions allowed for accu-
rate motion during intervals of rapid change in the NRHO and slow accumulating 
deviation in intervals of slow change. Breaking the NRHO into two arcs and running 
the algorithm twice lowers the time between intervals and allowed for the algorithm 
to produce accurate motion of the NRHO.  Overall, the proposed low-complexity 

Fig. 13  Second L
2
 Lyapunov for further analysis of LCA performance
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algorithm offers a lower computational (arithmetic and time) method for trajectory 
propagation. In comparison to ODE45, the algorithm computes accurate trajecto-
ries for an array of CR3BP orbits in a significantly lower time. The efficiency and 
reliability of the proposed algorithm make it for a potential resource for on-board 
trajectory propagation in the Cislunar region. Throughout this work, the trajectories 
generated by the LCA are only utilized to interpolate between the provided bound-
ary conditions. Future development entails the testing of the algorithm’s ability to 
predict trajectories outside of the boundary conditions.

Appendix A: Differential Corrections to Obtain Periodic Orbits 
in the CR3BP

Spacecraft trajectory design typically relies on numerical strategies such as differ-
ential corrections to fulfill mission requirements by targeting specific end conditions 
while varying a set of initial conditions. Consequently, it is important to find a cor-
relation between the variations in the initial state of a trajectory, 𝛿x̄0 , with the varia-
tions of its final states downstream, 𝛿x̄f :

where t0 and tf  are the initial and final times along the propagated trajectory, respec-
tively. Note that overbars denote vectors. The vector x̄ is a six-dimensional vector 
that contains position and velocity states of a s/c. Therefore, 
𝛿x̄(t) = [𝛿x, 𝛿y, 𝛿z, 𝛿ẋ, 𝛿ẏ, 𝛿ż]T (the subscript “T” denotes the transpose). The term 
𝜕x̄(tf )

𝜕x̄(t0)
 in Eq. (9) is a variable sensitivity matrix very useful for targeting schemes and 

stability analysis. Such a matrix is also denoted as the State Transition Matrix 
(STM), �(tf , t0) , and it is associated with the variational equations relative to any 
general reference arc that satisfies any non-linear differential equations:

Figure 14 illustrates a reference trajectory arc between x̄0 and x̄f  , along with a per-
turbed path x̄p relative to the reference, requiring modification of the initial state on 
the reference path to reach the desired position x̄p , considering the first-order form 
of the non-linear system of differential equations:

where dots indicate the derivative with respect to time, then x̄p at tf  is represented as 
a Taylor series expansion relative to the reference. The linear variational equations, 
derived from the equations of motion, are provided in the form:

(9)𝛿x̄f =
𝜕x̄(tf )

𝜕x̄(t0)
𝛿x̄0,

(10)𝜙(tf , t0) =
𝜕x̄(tf )

𝜕x̄(t0)
.

(11)̇̄x = f̄ (x̄, t),

(12)𝛿 ̇̄x(t) = A(t)𝛿x̄(t).
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A(t) is the Jacobian matrix comprised of the partials of the equations of motion with 
respect to the states evaluated at time t:

The solution to Eq. (12) is the previously presented Eq. (9). The evolution of �(t, t0) 
is governed by the following matrix differential equation [36]:

which represents 36 scalar differential equations, given that �(t, t0) is a 6x6 matrix. 
In the CR3BP, Eq. (14) holds as:

where the 3 × 3 block at the bottom-left of the matrix corresponds to the second par-
tial derivatives of U∗ [37]. The partial derivatives within the STM reflect the impact 
of changes in initial state elements on the corresponding final state elements:

(13)A(t) =
𝜕f̄ (x̄, t)

𝜕x̄(t)
.

(14)�̇�(t, t0) = A(t)𝜙(t, t0),

(15)
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𝜕ẏ0

𝜕x

𝜕ż0
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𝜕ż

𝜕z0

𝜕ż
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trajectory
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Using the STM is crucial in targeting schemes as it serves as an effective linear pre-
dictor of the sensitivity of the final state to variations in the initial state. Iteratively 
updating initial conditions based on the STM and terminal constraint sensitivities, 
it is possible to enable the determination of periodic orbits using a multi-variable 
Newton–Raphson strategy. Consider that Ȳ contains the design variables of the 
problem (or free variable) and F̄(Ȳ) the terminal constraints:

The objective is to determine the vector Ȳ that nullifies the constraint vector 
F̄(Ȳ) = 0̄ , with convergence measured by the norm of F̄  being smaller than a user-
defined accuracy � , set to � = 10−12 , and the update equation for the Newton–Raph-
son algorithm involving a first-order Taylor series expansion about the initial condi-
tion Ȳ0 [38]:

where DF̄(Ȳ0) contains the partial derivatives of the constraints with respect to the 
free variables:

The method to solve the equation depends on the number of constraints relative to 
the number of free variables. In the case where the number of constraints is equal to 
the number of free variables and the matrix DF̄(Ȳ0) is invertible, a unique solution 
is obtained through the iterative process:

On the other hand, when thenumber of constraints is less than the number of free 
variables, and DF̄(Ȳ0) is not invertible, there are infinitely many solutions, with the 
solution closest to the final time control variable vector given by the minimum-norm 
solution:

Each periodic orbit has specific conditions and constraints that need to be satisfied, 
and the computed Ȳ is assessed to see if the norm of F̄  is within the defined toler-
ance � , with the process repeated until convergence is achieved.

Data Availability The datasets analysed during the current study are referenced in the text and publicly 
available.

(17)Ȳ = (Y1,Y2,… ,Yn), F̄(Ȳ) = (F1(Ȳ),F2(Ȳ),… ,Fj(Ȳ)).
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𝜕F̄(Ȳ)0
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