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Abstract
The increasing number and variety of spacecraft that are expected to operate within 
cislunar space and other multi-body gravitational environments throughout the 
solar system necessitates the continued development of strategies for rapid trajec-
tory design and design space exploration. In the field of robotics, similar needs 
have been addressed using motion primitives that capture the fundamental build-
ing blocks of motion and are used to rapidly construct complex paths. Inspired by 
this concept, this paper leverages motion primitives to construct a framework for 
rapid and informed spacecraft trajectory design in a multi-body gravitational sys-
tem. First, motion primitives of fundamental solutions, e.g., selected periodic orbits 
and their stable and unstable manifolds, are generated via clustering to form a dis-
crete summary of segments of the phase space. Graphs of motion primitives are then 
constructed and searched to produce primitive sequences that form candidate initial 
guesses for transfers of distinct geometries. Continuous transfers are computed from 
each initial guess using multi-objective constrained optimization and collocation. 
This approach is demonstrated by constructing an array of geometrically distinct 
transfers between libration point orbits in the Earth-Moon circular restricted three-
body problem with impulsive maneuvers.
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1 Introduction

A challenging aspect of spacecraft trajectory design in cislunar space and other 
multi-body systems is developing a systematic, rapid, and robust process for ini-
tial guess construction. The difficulty of constructing an initial guess depends on 
the complexity of the design space and the quality of an initial guess impacts 
the ability to recover a feasible solution. Even in a low-fidelity approximation 
of a multi-body gravitational environment, such as the circular restricted three-
body problem (CR3BP), the solution space is complex and analytical solutions do 
not exist [33]. Consequently, initial guess construction may become a challenging 
and potentially time-consuming task for the trajectory designer, particularly when 
there are significant constraints derived from mission requirements or hardware 
parameters.

One existing approach to initial guess construction in multi-body systems lev-
erages Poincaré mapping. First, fundamental solutions from low-fidelity models 
such as the CR3BP are computed. These fundamental solutions and/or a wider 
variety of trajectories are often manually examined using Poincaré maps that dis-
play their intersections with a hyperplane [13, 21]. Individual arcs are then manu-
ally selected, along with maneuver placement schemes, to form a discontinuous 
initial guess. A corrections and/or optimization scheme is then used to recover a 
continuous trajectory in the CR3BP or a higher fidelity model, subject to relevant 
constraints, parameters, and objectives. In this existing approach, two significant 
challenges emerge, particularly when designing maneuver-enabled, spatial tra-
jectories: (1) visualizing and analyzing higher-dimensional datasets to manually 
select suitable arcs that form an initial guess for a nearby trajectory, and (2) man-
ually constructing multiple geometrically distinct initial guesses to explore the 
solution space. Motivated by these challenges, Smith and Bosanac have recently 
introduced a motion primitive approach to spacecraft trajectory design in multi-
body systems [30–32].

In the field of robotics, motion primitives have been used to construct complex 
paths. Wolek and Woolsey described a motion primitive as a “feasible trajectory 
that is used as a fundamental building block to construct more complex paths” 
[41]. This concept is often used in robotics to reduce the complexity of motion 
planning [22, 41]. As an example, Frazzoli et al. formed a finite library of trim 
and maneuver primitives for an aerial vehicle in a time invariant dynamical sys-
tem [9]. In their work, a motion plan is defined as a sequence of concatenated 
motion primitives where a finite-state machine, denoted as a maneuver automa-
ton, is represented as a graph and governs how primitives can be assembled into 
a sequence. Similarly, Grymin et al. reframed the motion planning problem as a 
graph search problem, a common technique in robotics and motion planning, by 
constructing a graph of reachable states in an environment connected by primi-
tives from a precomputed library [12].

Inspired by their application to robotics, Smith and Bosanac have applied 
the concept of motion primitives to spacecraft trajectory design in a multi-body 
system. Specifically, we have formulated a consensus clustering procedure to 
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numerically construct sets of motion primitives that summarize periodic orbit 
families and arcs along hyperbolic invariant manifolds based on geometry, sta-
bility, and energy in the Earth-Moon CR3BP [32]. We have then manually con-
structed sequences of motion primitives to produce coarse, primitive-based initial 
guesses that successfully enable the recovery of nearby natural and maneuver-
enabled transfers between libration point orbits in the Earth-Moon CR3BP [30]. 
This paper builds upon our previous work by using graph theory to guide the 
primitive-based initial guess construction process for spacecraft trajectory design 
in the Earth-Moon CR3BP with impulsive maneuvers.

The utility of graph-based searches in initial guess construction within astrody-
namics has been demonstrated by a variety of researchers. Tsirogiannis explored a 
graph-based methodology for designing impulsive transfers between periodic orbits 
in the CR3BP using Dijkstra’s algorithm [36]. Trumbauer and Villac developed an 
automated heuristic search-based framework for redesigning trajectories onboard a 
spacecraft in the CR3BP using precomputed dynamical structures, periapsis Poin-
caré maps, and the A* search algorithm [35]. Das-Stuart et  al. constructed initial 
guesses for trajectories in the low-thrust enabled CR3BP using known dynamical 
structures, reinforcement learning, and Dijkstra’s algorithm [5]. Furthermore, Par-
rish leveraged a graph-based approach for computing optimal continuous-thrust 
trajectories in the two-body problem using the A* search algorithm [26]. More 
recently, Bruchko and Bosanac used probabilistic roadmap generation and Dijk-
stra’s algorithm to generate transfers between Lyapunov orbits in the CR3BP [3]. 
Although these contributions use distinct approaches for discretizing the solution 
space, they demonstrate the value of reframing the trajectory design problem as a 
discrete graph search problem.

This paper presents a motion primitive framework for rapid and informed tra-
jectory design in the Earth-Moon CR3BP with impulsive maneuvers. First, sets of 
motion primitives are constructed to summarize the fundamental geometry, stability, 
and/or energy characteristics of members of individual periodic orbit families and 
arcs along their hyperbolic invariant manifolds in the CR3BP [32]. These sets, along 
with a small number of representative trajectories with similar characteristics, form 
a motion primitive library. A graph is then used to reflect the potential connectiv-
ity of these motion primitives in the library: primitives form the nodes of the graph 
with edges connecting them to their k-nearest neighbors and weighted to reflect their 
potential to produce a nearby continuous trajectory. This graph is constructed in two 
steps: (1) subgraphs are constructed to reflect the potential connectivity of motion 
primitives that summarize each individual orbit family or hyperbolic invariant mani-
fold, and (2) these subgraphs are then connected using a modular high-level itin-
erary graph that reflects complete or partial information about the itinerary of the 
desired trajectory. The resulting motion primitive graph is then searched to produce 
distinct sequences of motion primitives that form initial guesses for transfers with 
distinct geometries. Continuous transfers with impulsive maneuvers are recovered 
from each initial guess using constrained, local optimization and collocation [30, 
31]. This entire process is demonstrated by computing transfers of various geom-
etries between Lyapunov and halo orbits near L1 and L2 in the Earth-Moon CR3BP. 
The result is a demonstration of an initial guess construction framework that uses 
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motion primitives to generate candidate initial guesses for transfers of distinct geom-
etries in cislunar space.

2  Background

2.1  Dynamical Model

The CR3BP is used to model the motion of a spacecraft of assumed negligible mass 
due to the point mass gravitational influences of the Earth and the Moon, with masses 
M1 and M2 , respectively, and traveling on circular orbits about their barycenter [33]. 
A rotating reference frame is defined using an origin at the barycenter of the two pri-
mary bodies and axes {x̂, ŷ, ẑ} : x̂ is directed from the Earth to the Moon, ẑ is aligned 
with the orbital angular momentum vector of the primary system, and ŷ completes 
the right-handed triad [33]. In addition, quantities are often nondimensionalized 
using characteristic parameters for length ( l∗ ), mass ( m∗ ), and time ( t∗ ): l∗ equals the 
assumed constant distance between the Earth and Moon, m∗ equals the total mass of 
the system, and t∗ produces a nondimensional period of the primary system equal to 
2� [21, 33]. In the rotating frame, the nondimensional state of the spacecraft is then 
defined as x = [x, y, z, ẋ, ẏ, ż]T and the resulting equations of motion are written as

where U∗ = 0.5(x2 + y2) + (1 − �)∕r1 + �∕r2 , � = M2∕(M1 +M2) , 
r1 =

√
(x + �)2 + y2 + z2 , and r2 =

√
(x − 1 + �)2 + y2 + z2 . In the Earth-Moon 

system, the mass ratio is � ≈ 0.01215 . Finally, this autonomous dynamical system 
admits an integral of motion, the Jacobi constant, equal to

This quantity supplies insight into allowable regions of motion as well as heuristics 
for maneuver and trajectory design [21, 33].

2.2  Computing Fundamental Solutions

Fundamental solutions in the CR3BP often support the construction of initial 
guesses for trajectories in a multi-body system. For instance, periodic and quasi-
periodic orbits support identifying candidates for mission and staging orbits whereas 
their hyperbolic invariant manifolds may approximate natural transport mechanisms 
throughout the system [10, 17, 21]. Thus, this proof of concept for a primitive-based 
trajectory design framework focuses on using motion primitives that summarize 

(1)ẍ = 2ẏ +
𝜕U∗

𝜕x
ÿ = −2ẋ +

𝜕U∗

𝜕y
z̈ =

𝜕U∗

𝜕z

(2)CJ = 2U∗ − ẋ2 − ẏ2 − ż2
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selected families of periodic orbits and arcs along their stable and unstable mani-
folds. This subsection summarizes the methods used to compute these fundamental 
solutions in the CR3BP.

2.2.1  Periodic Orbits

In the CR3BP, a periodic orbit is a trajectory that repeats in the rotating frame and 
exists in a continuous family [21, 33]. In this paper, Lyapunov and halo orbits are com-
puted numerically using a free variable and constraint vector formulation of multiple 
shooting [2, 21]. For Lyapunov orbits, an initial guess is generated using a stability 
analysis of a nearby equilibrium point; a bifurcation analysis of each family of Lya-
punov orbits is used to generate an initial guess for a halo orbit [21, 33]. The initial 
guess is first discretized into several arcs with equal integration times. The states at 
the beginning of each arc, along with the common integration time, are assembled to 
form the free variable vector. Next, a constraint vector is defined to enforce state con-
tinuity between each arc as well as periodicity. The free variable vector is iteratively 
updated from an initial guess using Newton’s method and analytical derivatives of the 
constraints with respect to the free variables until the magnitude of the constraint vec-
tor is below 10−12 ; the result is a numerical approximation of a periodic orbit in the 
CR3BP [2, 21]. Pseudo-arclength continuation is then used to compute additional peri-
odic orbits along each family [2, 19].

The stability of a periodic orbit supplies insight into the behavior of the nearby flow. 
Orbital stability is typically assessed using the eigenvalues of the monodromy matrix 
of a state along a periodic orbit [21]. The characteristics of two nontrivial and recipro-
cal eigenvalue pairs indicate the types of nearby motions: bounded trajectories exist 
near a periodic orbit with at least one pair of eigenvalues that lie on the unit circle in 
the complex plane whereas real eigenvalues indicate the existence of stable or unstable 
invariant manifolds. Each periodic orbit may be described by two stability indices si for 
i = [1, 2] , defined as the sum of the eigenvalues in each nontrivial, reciprocal pair [16].

2.2.2  Hyperbolic Invariant Manifolds

A trajectory along a stable manifold asymptotically approaches a periodic orbit in for-
ward time whereas a trajectory along an unstable manifold asymptotically approaches 
the orbit in backward time [21]. In the absence of generalized analytical descriptions, 
an approximation of a stable or unstable half-manifold is typically computed numeri-
cally. First, an unstable periodic orbit is discretized into a set of states. At each state, 
xPO , a perturbation of magnitude d is applied in the direction of a stable (or unstable) 
eigenvector, vs∕u , of the associated monodromy matrix, where vs∕u is normalized by 
the magnitude of its position components [21]. Then, the perturbed state, xPO ± dvs∕u , 
is propagated backward (or forward) in time to produce a trajectory along the global 
stable (or unstable) half-manifold. This numerical process is repeated for the selected 
states along the periodic orbit to produce a discrete approximation of the desired global 
half-manifold over a time interval of interest.
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2.3  Numerically Correcting Transfers

Collocation is a numerical method used to implicitly integrate the differential equations 
of a dynamical system [1, 4, 34]. Using collocation, a solution to a dynamical system 
is approximated using sets of piecewise polynomials that satisfy the system dynamics 
at collocation nodes. In this paper, a free variable and constraint vector formulation of 
collocation is used to transform the trajectory design problem into a parameter design 
problem and robustly compute trajectories from primitive-based initial guesses. The 
formulation summarized in this subsection is based upon the generalized odd-degree 
collocation scheme with hybrid mesh refinement presented by Grebow and Pavlak [11].

2.3.1  Discretizing a Trajectory

Given an initial guess for a trajectory composed of N segments, the first step of col-
location is to define a discrete mesh of nodes along the trajectory. The i-th segment is 
discretized into mi arcs and a total of mi + 1 nodes at their boundaries. The nodes gen-
erated in this discretization process are referred to as boundary nodes with each node 
described by its state and time. Across the N segments, this discretization produces a 
total of m arcs, and the time associated with the boundary node at the end of segment i 
is set equal to the time associated with the boundary node at the beginning of segment 
i + 1.

Next, an implicit integration method is selected to determine the number of nodes 
placed along each arc. Higher-order polynomials have successfully been used by a vari-
ety of researchers for implicit integration in nonlinear dynamical systems [4, 20, 34]. 
Based on previous successful applications of collocation for trajectory design in multi-
body systems and the Mission Analysis, Operations, and Navigation Toolkit Environ-
ment (MONTE) Collocation tool, the degree of the polynomials is assumed to be odd 
and 7-th order polynomials are used in this paper [11, 24, 27]. Therefore, n = 7 col-
location nodes are placed along each of the mi arcs within each of the N segments of a 
trajectory.

To facilitate a clear discussion of the node spacing strategy, a set of definitions and 
notation are established for the properties of each arc along a trajectory as well as the 
parameterization of the polynomials. The state and time associated with a given node 
are defined as xi

j,k
 and ti

j,k
 , respectively, where i refers to the segment index along the 

trajectory, j refers to the arc index along the i-th segment, and k refers to the node index 
along the j-th arc in the i-th segment. Following this notation, the integration time along 
the j-th arc in the i-th segment is calculated as Δti

j
= ti

j,n
− ti

j,1
 . Furthermore, each state 

variable along each arc of the trajectory is approximated with a distinct 7-th order poly-
nomial parameterized by a normalized time quantity, � , spanning from -1 to 1. The 
transformation from the time t to the normalized time � at a state along the j-th arc in 
the i-th segment is defined as

(3)� = 2

(
t − ti

j,1

Δti
j

)
− 1
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Then, the state vector at ti
j,k

 is approximated by the polynomials of the j-th arc in the 
i-th segment and denoted as pi

j
(�k) . Next, the normalized time derivative of the state 

vector xi
j,k

 is defined as

where g = [ẋ, ẏ, ż, ẍ, ÿ, z̈]T . Finally, the normalized time derivative of the state vector 
pi
j
(�k) approximated by the polynomials is denoted as ṗi

j
(𝜏k).

In collocation, a node spacing strategy is used to determine the location of the 
collocation nodes along each arc. Legendre-Gauss-Lobatto (LGL) node spacing has 
successfully been used by a variety of researchers in spacecraft trajectory design [4, 
11, 40]. In this method, collocation nodes are placed at the boundary nodes of each 
arc and at the normalized times � equal to the roots of the derivative of the (n − 1)-th 
order Legendre polynomial, ranging from - 1 to 1. Additionally, an LGL weighting 
term, w, is computed for each node. Leveraging LGL node spacing is advantageous 
because it simplifies the design problem by considering the boundary nodes of each 
arc as collocation nodes [11]. Along each arc, the odd-numbered collocation nodes 
are classified as free nodes and the even-numbered collocation nodes are classified 
as defect nodes. The free nodes are used to construct the approximating polynomi-
als along each arc, whereas the defect nodes are used to evaluate how well the sys-
tem dynamics are approximated by the polynomials. Figure 1 depicts a conceptual 
example with each arc containing a set of 7 nodes, including 4 free nodes (blue) and 
3 defect nodes (red), as determined by the 7-th order implicit integration method 
using LGL node spacing. The boundary nodes (outlined in black) are considered 
collocation nodes and are classified as free nodes. As depicted in Fig. 1, consecutive 
arcs within a segment share a common free boundary node. However, the final free 
boundary node along segment i is distinct from the initial free boundary node along 
segment i + 1.

(4)ẋi
j,k

=
Δti

j

2
g(xi

j,k
)

Fig. 1  Conceptual example of collocation nodes placed along multiple arcs of segment i and i + 1 using 
7-th order LGL node spacing
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2.3.2  Correcting a Trajectory

To formulate a corrections problem that uses collocation, a free variable vector is 
defined using the state at each free node and the time elapsed along each of the m 
arcs of a trajectory. Mathematically, the free variable vector Vi for the i-th segment, 
composed of mi arcs, is defined as

where n = 7 . The free variable vector for the entire trajectory then equals

to produce a ((3n − 2)m + 6N)-dimensional vector for N segments.
To compute a continuous trajectory, a set of continuity constraints must be sat-

isfied. Continuity is automatically enforced between arcs within a segment due to 
the use of LGL nodes because each pair of consecutive arcs shares a common free 
boundary node [11]. However, continuity must be explicitly enforced between con-
secutive segments, resulting in the following constraint:

between the i-th and (i + 1)-th segments.
Defect constraints must also be satisfied along each arc of the entire trajectory 

to enforce the system dynamics at each defect node. Each defect constraint evalu-
ates the difference between the approximated dynamics, computed using the nor-
malized time derivatives of the polynomials, and the actual dynamics, computed at 
each defect node using Eq. 4. The defect constraint vector for the j-th arc in the i-th 
segment is defined as

where n = 7 and each wk term is the LGL weight associated with the k-th collocation 
node. Then, the defect constraint vector for the i-th segment is defined as 
Fi
d
=
[
FiT

d1
FiT

d2
⋯ FiT

dmi

]
.

A constraint vector for the entire trajectory captures both the continuity and 
defect constraints. This constraint vector is defined as

(5)Vi =

⎡
⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

xi
1,1

xi
1,3

⋮

xi
1,n−2

⎤⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎣

xi
2,1

xi
2,3

⋮

xi
2,n−2

⎤⎥⎥⎥⎥⎦

T

⋯

⎡⎢⎢⎢⎢⎣

xi
mi−1,1

xi
mi−1,3

⋮

xi
mi−1,n−2

⎤⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎣

xi
mi,1

xi
mi,3

⋮

xi
mi,n

⎤⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎣

Δti
1

Δti
2

⋮

Δti
mi

⎤
⎥⎥⎥⎦

T⎤
⎥⎥⎥⎥⎦

(6)V =
[
V1 V2 ⋯ VN

]T

(7)Fi
c
=

{
xi+1
1,1

− xi
mi,n

if natural motion

ri+1
1,1

− ri
mi,n

if impulsive maneuver applied

(8)Fi
dj
=

⎡
⎢⎢⎢⎢⎣

�
i
j,2

�
i
j,4

⋮

�
i
j,n−1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

(ṗi
j
(𝜏2) − ẋi

j,2
)w2

(ṗi
j
(𝜏4) − ẋi

j,4
)w4

⋮

(ṗi
j
(𝜏n−1) − ẋi

j,n−1
)wn−1

⎤⎥⎥⎥⎥⎦
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to produce a ((3n − 3)m + 6(N − 1) − 3P)-dimensional vector, where P is the num-
ber of impulsive maneuvers applied only between consecutive pairs of segments. 
Using a corrections or optimization algorithm, the free variable vector may be itera-
tively updated from an initial guess to compute a continuous trajectory that satisfies 
these constraints to within a tolerance of 10−12.

The free variable and constraint vectors defined in Eqs. 6 and 9, respectively, may 
be modified in a straightforward manner to also include impulsive maneuvers 
between consecutive pairs of arcs within a given segment. For example, consider the 
general case of an impulsive maneuver applied between arcs j and j + 1 along the i-
th segment. In this case, xi

j,n
 is included in Eq. 6 and considered distinct from xi

j+1,1
 ; 

therefore, a position continuity constraint defined as Fi
cj
= ri

j+1,1
− ri

j,n
 must be 

included in Eq. 9 to account for the desired maneuver. Additional path constraints 
may also be incorporated into Eq. 9 depending on the design scenario.

2.3.3  Mesh Refinement

The numerical accuracy of a trajectory computed using collocation depends on its 
mesh of nodes. Despite the defect constraints being satisfied along each arc, the 
solution may not accurately approximate the system dynamics between collocation 
nodes, particularly in sensitive regions of the dynamical system [27]. Therefore, 
mesh refinement is used to improve the accuracy of the solution. In this paper, a 
hybrid mesh refinement algorithm is employed that follows the procedure presented 
by Grebow and Pavlak, which uses both analytical and numerical analysis to control 
the error along a trajectory [11, 27].

Once an initial trajectory is computed via corrections, Carl de Boor’s method is 
employed to iteratively distribute error equally between arcs along the solution [6, 
11, 29]. During this process, the number of arcs in the mesh and the total flight time 
for the trajectory are constant, whereas the integration time along each arc (i.e., Δti

j
 ) 

varies. At each iteration of de Boor’s method, the error along the j-th arc in the i-th 
segment is calculated as

where K is a constant that depends on the selected polynomial degree and type and 
�i
j
 is a scalar quantity defined based on the magnitude of the largest component of 

the (n + 1)-th unnormalized time derivative estimate of pi
j
(�) , computed using finite 

differencing [6, 11, 27, 29]. Based on the error distribution of the current solution, 
the time at the first boundary node of the j-th arc in the i-th segment may be updated 
such that ti

j,1
= tbnd where tbnd satisfies the following equation:

(9)F(V) =
[
F1T

c
F2T

c
⋯ FN−1T

c
F1
d
F2
d
⋯ FN

d

]T

(10)ei
j
= K(Δti

j
)n+1�i

j
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where a is the index of the associated arc along the entire solution and �(s) is a 
piecewise constant function equal to �i

j
 when s ∈ [ti

j,1
, ti
j,n
] [6, 11, 29].

Given a new time distribution of boundary nodes, the polynomials of the previ-
ous mesh are used to compute the updated state at each boundary node along the 
trajectory. This process equally distributes the approximated error along the entire 
solution between all arcs in the mesh. However, if impulsive maneuvers are applied 
along the trajectory, the boundary nodes are adjusted to equally distribute the cumu-
lative error between each consecutive pair of maneuvers rather than along the entire 
solution. The free LGL nodes for each arc are then recomputed using the polynomi-
als of the previous mesh between the updated boundary nodes.

The differential corrections process outlined in Sect. 2.3.2 is then used to com-
pute a refined continuous trajectory with the updated mesh as an initial guess. This 
error distribution process repeats until one of the following terminal conditions is 
met: the maximum error difference along the current solution between any two arcs 
is ≤ 10−5 ; the maximum error difference along the current solution changed by ≤ 
10% from the previous iteration; or a maximum number of iterations, selected in this 
paper as 5, is exceeded. The values for these termination criteria are selected empiri-
cally based on the convergence behavior of the transfers constructed in this paper.

When the error distribution step is terminated, Control with Explicit Propaga-
tion (CEP) is used to iteratively merge arcs along the mesh to reduce the size of 
the sparse corrections problem [11, 27]. This step of mesh refinement numerically 
computes the error at the end of each pair of consecutive arcs in the mesh, except 
when an impulsive maneuver occurs between them. For example, the state at the 
initial boundary node of the first arc is propagated until the time associated with 
the final boundary node of the second arc. Then, the error is computed between this 
final propagated state and the state associated with the final boundary node of the 
second arc. If the magnitude of the error vector is below a tolerance of 10−13 , then 
the two arcs are merged into a single arc. In this case, the initial boundary node of 
the first arc and the final boundary node of the second arc serve as the initial and 
final boundary nodes, respectively, of the merged arc. Then, the free LGL nodes are 
recomputed between the updated boundary nodes using the polynomials of the pre-
viously converged mesh and the procedure is repeated for the next two consecutive 
arcs in the mesh. If any arcs are merged along the entire trajectory, then the updated 
mesh is used to compute a refined continuous trajectory by reapplying the differ-
ential corrections process outlined in Sect. 2.3.2. The merging process is repeated 
until no arcs are merged along the solution or a maximum number of iterations is 
exceeded; this threshold is selected empirically as 10 based on the convergence 
behavior of the transfers calculated in this paper.

After completing the merging process, CEP is also used to iteratively split arcs 
along the mesh by numerically computing the error at the end of each arc. For exam-
ple, the state at the initial boundary node of an arc is propagated until the time asso-
ciated with the final boundary node of the arc. Then, the error is computed between 

(11)I(tbnd) =
(a − 1)

m
I(tN

mi,n
) s.t. I(t) = ∫

t

t1
1,1

�(s)
1

n+1 ds
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the final propagated state and the state at the final boundary node of the arc. If the 
magnitude of the error vector is above a tolerance of 10−12 , then the arc is split into 
two separate arcs at its midpoint in terms of time. The polynomials from the previ-
ously converged mesh are used to compute the state and time at the midpoint of the 
arc and then the free LGL nodes are recomputed for each of the resulting arcs as pre-
viously described. If any arcs are split along the entire trajectory, then the updated 
mesh is used to compute a refined continuous trajectory by reapplying the differen-
tial corrections process outlined in Sect. 2.3.2. This process is repeated until no arcs 
are split along the solution. Similar to the merging loop, the splitting process is also 
terminated if a maximum of 10 iterations is exceeded.

3  Primitive‑Based Transfer Design Process

In this section, a primitive-based initial guess construction framework is formulated 
to generate trajectories in the CR3BP. This procedure consists of the following steps: 

1. Construct a motion primitive library that summarizes the characteristics of arcs 
that exist within segments of the solution space.

2. Construct a motion primitive graph that discretely approximates a subset of the 
continuous solution space.

3. Search the graph for motion primitive sequences that serve as candidates for initial 
guesses for trajectories.

4. Construct an initial guess for each trajectory by refining each motion primitive 
sequence.

5. Correct each initial guess to produce a continuous trajectory with impulsive 
maneuvers using direct collocation and local optimization.

6. Compute additional transfers spanning segments of the design space.

This section summarizes each step of the initial guess construction process using the 
example of a planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit in 
the Earth-Moon CR3BP with impulsive maneuvers.

3.1  Step 1: Construct a Motion Primitive Library

The first step in the initial guess construction framework is to construct a library of 
motion primitives along with information approximating the regions of the phase 
space spanned by arcs with similar properties. Although the definition of a motion 
primitive depends on the application, this paper uses a similar definition to Fraz-
zoli: a set of motion primitives is a finite set of arcs that sufficiently summarize the 
characteristics of part of the solution space [8, 32]. In existing applications, motion 
primitives have been extracted using a variety of methods such as manual labeling, 
analytical approximations via basis functions, or clustering [8, 25, 28, 39]. Then, an 
initial guess for a trajectory may be coarsely constructed from an ordered sequence 
of motion primitives within the library [8, 22, 41]. In the absence of general 
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analytical expressions to describe the solution space and due to the significant bur-
den of manual labeling, this paper uses a clustering-based approach that we have 
previously developed to extract a set of motion primitives that summarize periodic 
orbits and arcs along hyperbolic invariant manifolds in the CR3BP [32]. Although 
this subsection offers a brief overview of this procedure, additional details appear in 
Smith and Bosanac 2022 [32].

To cluster a set of continuous trajectories and extract a representative set of 
motion primitives, each trajectory is described using a finite-dimensional feature 
vector that reflects its geometric, stability, and/or energy properties. For each tra-
jectory, the geometric component of the feature vector, f g , is defined using the 
sequence of states at the l apses along the trajectory measured relative to a specified 
reference point as

where a tilde indicates normalization of each feature within the range [−1, 1] ; the 
relative position components are normalized using the global maximum distance of 
an apsis relative to the desired reference point among all trajectories within the data-
set whereas the velocity components are normalized to produce the unit velocity 
vector at each apsis. For periodic orbits, the stability component of the feature vector 
is defined as

and the energy component, fe , is defined as

where the Jacobi constant is normalized using a min-max normalization based on 
the range of CJ values for its corresponding family. Using these definitions, the fea-
ture vector summarizing a periodic orbit is defined as

with a length of 6lmax + 3 where lmax is the maximum number of apses along all tra-
jectories in the set. The feature vector for an arc along a stable or unstable manifold 
at a single Jacobi constant is defined as

where Δt̃i is the time between the i-th and (i + 1)-th apses, normalized by the inte-
gration time of the arc, and fMani possesses a length of 7lmax − 1 . When l < lmax , 
placeholder values of zero are appended to Eqs. 12 and 16 to ensure the feature vec-
tor for each trajectory in the dataset is the same length. In this paper, these feature 
vectors are calculated for sets of trajectories that are comprised of either (1) periodic 
orbits along a single family or (2) arcs along a stable or unstable half-manifold of a 
periodic orbit and generated for up to a desired number of apses relative to a refer-
ence point.

(12)f g =
[
x̃1 ỹ1 z̃1 ̇̃x1 ̇̃y1 ̇̃z1 ⋯ x̃l ỹl z̃l ̇̃xl ̇̃yl ̇̃zl

]

(13)f s =
[
tanh

( s1
2

)
tanh

( s2
2

)]

(14)fe = C̃J

(15)fPO =
[
f g f s fe

]

(16)fMani = [f g Δt̃1 ⋯ Δt̃l−1]
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Weighted Evidence Accumulation Clustering (WEAC) is applied to the feature 
vectors of a trajectory set to identify clusters of trajectories with similar proper-
ties [32]. The WEAC algorithm is a consensus clustering approach that generates 
a single clustering result from an ensemble of individual clustering results. In this 
paper, k-means and agglomerative clustering are leveraged to generate an ensemble 
of clustering results: for each algorithm, multiple clustering results are generated 
as the governing input parameters are varied [14, 32]. Then, a similarity measure 
is computed based on how often two trajectories are co-located in the same clus-
ter within the ensemble of clustering results. This process is conceptually similar to 
gathering a consensus from a group of individuals. The final set of clusters is gener-
ated using agglomerative clustering applied to the resulting similarity matrix for the 
dataset. As discussed in Smith and Bosanac 2022 [32], additional cluster refinement 
is sometimes useful due to the potential sparsity of a trajectory dataset or the relative 
weighting between components of the feature vector incorrectly grouping trajecto-
ries that are similar yet geometrically distinct. In these cases, a k-nearest neighbor 
(k-NN) graph is constructed for each cluster using only the position components in 
the feature vector. Any unconnected components in the k-NN graph of each clus-
ter form additional clusters. Given the final clustering results, a motion primitive is 
then extracted from each cluster as its medoid, i.e., the most similar member to all 
other members in the cluster [37]. The resulting motion primitive set is stored in the 
library to supply a discrete summary of the types of motion present across a set of 
trajectories.

The region within the phase space spanned by trajectories resembling a motion 
primitive supplies information that is valuable in constructing a motion primitive 
graph that is searched to form an initial guess. In robotics, a motion primitive is 
commonly defined as a type of control input or fundamental type of action a robot 
may take to move within its environment unless hindered by a hardware or opera-
tional constraint [8, 25, 39]. However, trajectories in the chaotic environment of the 
CR3BP that resemble a specific motion primitive, given the specific definition used 
in this paper, only exist within a particular region of the phase space. Furthermore, 
it may be challenging or computationally expensive to analytically or numerically 
describe the volumes of the phase space spanned by each cluster of similar trajecto-
ries. Thus, in the proof of concept presented in this paper, a small set of representa-
tive members from the cluster associated with each motion primitive is also stored 
in the motion primitive library. This set is defined as Re = {xR(t) ∈ C} , where xR(t) 
is one of a small number of representative trajectories that exist across cluster C cor-
responding to a specific motion primitive.

To select the representative trajectories that form the set Re for a given primitive 
without requiring manual labeling or a prespecified sampling scheme, clustering is 
used. First, the cluster C associated with a given motion primitive is partitioned into 
k subclusters using the k-means algorithm, which is computationally efficient and 
tends to produce evenly-sized clusters [14]. A representative trajectory is then com-
puted as the medoid from each subcluster [32]. Appended to this set of k trajectories 
is a set of trajectories that lie at the extrema of the values of the following quantities 
calculated across each cluster: for periodic orbit families, the Jacobi constant; and 
for hyperbolic invariant manifolds, the total propagation time along an arc. Finally, 
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if C contains fewer than k members, then all of the trajectories in C are labeled as 
representative trajectories. Although this approach used within this proof of con-
cept admits a low complexity, a parametric approximation that directly describes the 
region of the phase space spanned by arcs with similar characteristics to the motion 
primitive is an interesting avenue for future work.

To demonstrate this step of the design process, fundamental solutions are gen-
erated to support the construction of a planar transfer from an L1 Lyapunov orbit 
at CJ ≈ 3.1670 to an L2 Lyapunov orbit at CJ ≈ 3.1666 in the Earth-Moon CR3BP. 
Both of these orbits are primitives of their associated periodic orbit families, as 
computed in Smith and Bosanac 2022, and are unstable [32]. Next, the planar 
stable and unstable half-manifolds of these L1 and L2 Lyapunov orbits are gen-
erated towards the Moon. Trajectories within each half-manifold are propagated 
until either completing up to 15 apses relative to the Moon in backward and for-
ward time, respectively; departing through the L1 or L2 gateways; or impacting 
the Moon. These trajectories that lie along the stable or unstable manifolds of 
the selected periodic orbits are then sampled to produce a larger set of arcs, each 
spanning a shorter time interval: beginning at each perilune or apolune and prop-
agated for up to 3 additional apses relative to the Moon, unless meeting the previ-
ous termination conditions [32].

Motion primitives of the arcs along the stable and unstable half-manifolds of 
the selected L1 and L2 Lyapunov orbits are extracted using the procedure summa-
rized within this section. Table 1 lists the number of primitives calculated within 
each set. Furthermore, Fig.  2 displays the initial L1 Lyapunov orbit primitive, 
the target L2 Lyapunov orbit primitive, and a small subset of motion primitives 
from their stable and unstable half-manifolds. Each primitive is denoted in bold 
and the region of the configuration space spanned by the associated small set of 
representative trajectories is depicted as a transparent surface. The entire set of 
primitives generated for these stable and unstable manifolds appear in Appendix 
A. Although the planar stable and unstable manifolds of a Lyapunov orbit are 
symmetric about the x-axis in the CR3BP, Table 1 reveals that they are not sum-
marized by an equivalent number of motion primitives. The small difference is 
likely attributable to the nondeterministic nature of k-means clustering, which is 
used to generate part of the ensemble of clustering results. Specifically, k-means 
clustering is observed to sometimes produce slightly different clusters of arcs 

Table 1  Motion primitives in 
the library for the planar transfer 
design scenario from an L

1
 to L

2
 

Lyapunov orbit

Fundamental solution Number of 
primitives

Approx. C
J

L1 Lyapunov orbit 1 3.1670
L1 Lyapunov orbit unstable manifold 69 3.1670
L1 Lyapunov orbit stable manifold 68 3.1670
L2 Lyapunov orbit 1 3.1666
L2 Lyapunov orbit unstable manifold 88 3.1666
L2 Lyapunov orbit stable manifold 89 3.1666
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in sparsely-covered regions of the higher-dimensional space associated with the 
feature vectors of arcs along each of the stable and unstable manifolds. Never-
theless, these motion primitives supply a summary of the distinct geometries of 
arcs along each stable or unstable half-manifold. Together, they form a condensed 
primitive library for the example design scenario in this section. In future work, 
the motion primitive library may be expanded to summarize more general sets of 
arcs in the CR3BP and other dynamical models; this expansion will require small 
adjustments to the primitive extraction and graph construction processes.

3.2  Step 2: Construct a Motion Primitive Graph

A motion primitive graph is constructed to discretely represent a region of the con-
tinuous solution space in a multi-body system. In general, a graph is a discrete data 
structure composed of a set of nodes and edges that is often used to model the prop-
erties and internal relationships of a network of objects [14, 22]. When applied to 
motion primitive and funnel libraries, Frazzoli and Majumdar and Tedrake defined 
the nodes of a graph as primitives or funnels and added directed edges between 
nodes that may be composed in a sequence [8, 23]. Similarly, this paper defines each 
node in the graph as a motion primitive and its associated representative trajecto-
ries. Then, weighted, directed edges reflect the potential for pairs of primitives to 
be composed in a sequence to produce a nearby continuous trajectory with similar 
geometric properties. However, to incorporate designer expertise and reduce com-
putational complexity, the graph construction process is composed of two steps in 
this paper: (1) constructing subgraphs reflecting the potential connectivity between 
motion primitives associated with a single type of dynamical structure and (2) con-
structing a modular, high-level itinerary graph to connect these subgraphs.

Formulating a motion primitive graph begins with determining the sequential 
composability of an ordered pair of primitives; a property that is described by 
Majumdar and Tedrake as their potential to produce a nearby trajectory [23]. To 
avoid overfitting to an incomplete approximation of the region of the phase space 

Fig. 2  Summary of information stored in the motion primitive library for the planar L1 to L2 Lyapunov 
orbit transfer scenario in the Earth-Moon CR3BP: selected motion primitives (bold) and regions spanned 
by the representative trajectories of each cluster (transparent)



 The Journal of the Astronautical Sciences (2023) 70:34

1 3

34 Page 16 of 47

spanned by trajectories with similar properties to each primitive, we estimate the 
potential for sequential composability of two motion primitives xMPi

(t) and xMPj
(t) 

and, potentially, their associated sets of representative trajectories Rei
 and Rej

 using 
the following measure:

where Δr,Δv are the magnitudes of the position and velocity difference, respec-
tively, between two primitives and, potentially, their associated sets of representative 
trajectories. In addition, �pos and �vel are selected to scale the position and velocity 
differences, respectively. Selecting �vel ≠ 0 is useful when maneuver requirements 
are a high design priority. With this definition, a lower value of q corresponds to 
a higher potential for two sequentially composed motion primitives to produce a 
nearby continuous path when corrected with impulsive maneuvers.

To evaluate the potential for sequential composability of two motion primi-
tives, the state difference between two trajectories is calculated. First, each trajec-
tory is discretized: in this paper, each periodic orbit primitive is discretized into 
50 states equally spaced in arclength and each manifold arc primitive is discre-
tized into apses with respect to the Moon as well as its boundary states. Then, the 
state difference between two trajectories is calculated using one of the following 
three measures: 

1. the difference between the final state of the first trajectory and the initial state of 
the second trajectory

2. the minimum difference between any state along the first trajectory and the initial 
state of the second trajectory

3. the minimum difference between the final state of the first trajectory and any state 
along the second trajectory

To evaluate Eq. 17, the state difference may be calculated using the primitives or 
both the primitives and the associated representative trajectory sets. If these rep-
resentative trajectories are used, the state difference is calculated as the minimum 
state difference between any trajectory in the first set and any trajectory in the 
second set.

Using the potential for sequential composability, a subgraph of each motion 
primitive set is independently formed. With motion primitives at each node of 
a subgraph, weighted and directed edges are added to the k-nearest neighbors of 
each node where k ≥ 0 is a parameter selected by the trajectory designer. If k = 0 , 
the subgraph has no internal edges and therefore motion primitives within the 
subgraph may not be sequentially composed. However, for k > 0 , the neighbors 
for each primitive are identified using the k lowest values of q for each possible 
ordered primitive pair, calculated using Measure 1 between the primitives and, 
if desired, their associated representative trajectories. Measure 1 is used to pri-
oritize reducing overlapping segments between pairs of primitives derived from 
the same dynamical structure. However, alternative measures may be used as 
appropriate. The edge weights are then assigned as the potential for sequential 

(17)q = �posΔr + �velΔv
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composability, q, for each connected pair of primitives. A conceptual represen-
tation of a subgraph is depicted in Fig. 3a where each black circle is a node in 
the graph and is connected to its three nearest neighbors in the set ( k = 3 ). As a 
result, the subgraph reflects the potential for an ordered sequence of two motion 
primitives summarizing arcs along the same dynamical structure to be useful in 
the initial guess construction process.

The subgraphs are then connected according to a modular high-level itinerary 
graph that is constructed by the trajectory designer. In particular, the designer 
specifies any external connections between the subgraphs as well as the direc-
tionality of those connections. This step enables the designer to incorporate their 
expertise, or even lack thereof, in a scenario into the structure of the graph and, 
as a result, influence the possible ordering of primitives in a sequence. For each 
pair of connected subgraphs, each individual primitive in the source subgraph is 
connected to its k-nearest neighbors in the target subgraph via directed edges. 
However, there is one exception: if the target subgraph only contains the final 
target orbit then only the edges between the final target orbit and its k-nearest 
neighbors in the source subgraph are created. Finally, the external edge weights 
are assigned as the potential sequential composability between each connected 
pair of primitives: Measure 2 is used to compute q if the source primitive is a 
periodic orbit and the target primitive is a manifold arc but otherwise Measure 3 
is used. Measure 3 prioritizes connecting the source primitive to target primitives 
that are closely located with its terminal state while also allowing overlapping 
segments between connected pairs of primitives from different subgraphs. These 
measures used to calculate the edge weights may also be modified by the trajec-
tory designer as appropriate. In the resulting complete motion primitive graph, 
the selected value of k determines the degree of connectivity while also influenc-
ing the computational complexity of storing and searching the graph.

To demonstrate the presented approach, consider a high-level itinerary graph 
constructed using selected primitive sets from the library in Table  1 for the pla-
nar L1 to L2 Lyapunov orbit transfer example. A conceptual representation of this 
graph appears in Fig. 3b. In this figure, the arrows within the icon associated with 
an unstable manifold of the initial L1 Lyapunov orbit indicate that the nodes of the 

Fig. 3  a Conceptual representation of a subgraph and b a high-level itinerary graph for the planar L1 to 
L2 Lyapunov orbit transfer scenario in the Earth-Moon CR3BP
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subgraph are connected by internal edges, thereby allowing multiple primitives from 
the unstable manifold set to be sequentially composed in an initial guess. In contrast, 
the icon for the L1 Lyapunov orbit denotes a subgraph with no internal edges, indi-
cating that two primitives from this set may not be sequentially composed. The uni-
directional arrows between subgraphs then indicate a desired order for composing 
primitives from each set. This high-level itinerary graph indicates that in this exam-
ple an initial guess may only be composed of the following primitives in the speci-
fied order: one primitive from the L1 Lyapunov orbit family set, one or more primi-
tives from the unstable half-manifold of the selected L1 Lyapunov orbit, one or more 
primitives from the stable half-manifold of the selected L2 Lyapunov orbit, and one 
primitive from the L2 Lyapunov orbit family set. If these arrows were bidirectional, 
then primitives from each subgraph could be composed in any order, consistent with 
the designer either having less insight into the transfer geometry or considering a 
wider variety of solution itineraries.

For the planar L1 to L2 Lyapunov orbit transfer example, a motion primitive graph 
is constructed using the high-level itinerary graph in Fig.  3b and the correspond-
ing primitive sets from the library in Table 1. The primitives within and between 
each subgraph are connected with their k = 15 nearest neighbors using �pos = 10 and 
�vel = 1 , which are selected empirically to emphasize position differences. These 
parameters may be adjusted iteratively based on the quality of the initial guesses 
obtained in subsequent steps and the expected maneuvering capability. Additionally, 
the set of representative trajectories associated with each motion primitive is incor-
porated into the edge weight computations. The resulting motion primitive graph 
is displayed in Fig. 4a: each node in the graph is depicted as a black dot, the inter-
nal edges within the L1 Lyapunov unstable manifold subgraph are denoted in red, 
the internal edges within the L2 Lyapunov stable manifold subgraph are denoted in 
light blue, and all external edges between nodes in different subgraphs are depicted 
with dark blue arrows. Although challenging for a designer to visualize, this motion 
primitive graph is searched to construct coarse, primitive-based initial guesses for 
trajectories of distinct geometries.

Fig. 4  A motion primitive sequence for a planar transfer from an L1 to L2 Lyapunov orbit in the Earth-
Moon CR3BP displayed in (a) the constructed motion primitive graph and (b) the Earth-Moon rotating 
frame
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3.3  Step 3: Identify Candidate Motion Primitive Sequences

A motion primitive graph is searched to produce primitive sequences that support 
coarsely constructing initial guesses for trajectories. In this proof of concept, the 
common brute-force search algorithm, depth-first search (DFS), is used to enumer-
ate all potential paths in a motion primitive graph from an initial node to a target 
node with a desired length [22]; the use of alternative and more efficient search algo-
rithms is an avenue of ongoing work. The sequence length is defined as the num-
ber of primitives in the sequence. The quality of each candidate primitive sequence 
in predicting a nearby continuous trajectory is then captured by the average edge 
weight along the path. These candidate sequences are then ranked based on their 
quality.

Given a ranked list of candidate primitive sequences generated from a motion 
primitive graph, a designer may examine all possible sequences or query the list of 
candidates. In this proof of concept, a straightforward filtering approach is used for 
rapid exploration: only the top Q sequences that each begin with a unique motion 
primitive after the initial node are examined. Of course, some transfers with unique 
geometries may be generated from two sequences of equal length that share a com-
mon motion primitive after the initial node. However, this approach enables a tra-
jectory designer to systematically sift through a smaller ranked list of sufficiently 
distinct geometries as opposed to potentially thousands or millions of primitive 
sequences. An interesting avenue of ongoing work involves examining alternative 
approaches to extracting the best unique primitive sequences connecting the initial 
and target nodes.

To demonstrate this step in the context of the planar L1 to L2 Lyapunov orbit 
transfer example in the Earth-Moon CR3BP, the top-ranked sequence of four primi-
tives with the lowest average edge weight is generated from the motion primitive 
graph displayed in Fig.  4a. This primitive sequence is plotted in the Earth-Moon 
rotating frame in Fig.  4b: each primitive is denoted in bold using a distinct color 
along with a transparent region generated from the associated representative trajec-
tories. The initial (final) state of each primitive is denoted with a filled (empty) cir-
cle. This candidate sequence is not guaranteed to predict a nearby continuous trajec-
tory with similar geometric properties. However, a trajectory designer may visually 
examine the primitive sequence and its average value of q to determine whether to 
perform further analysis and refinement. Although this example presents only the 
top-ranked sequence of four motion primitives, it supports demonstrating the coarse 
construction of an initial guess for a transfer using motion primitives.

3.4  Step 4: Construct an Initial Guess from a Primitive Sequence

A motion primitive sequence is refined to improve the quality of a coarsely-con-
structed initial guess and facilitate a successful numerical corrections process. For 
instance, the primitive sequence displayed in Fig. 4b possesses state discontinuities 
between each consecutive pair of primitives. This sequence also exhibits a signifi-
cant overlap between the second and third primitives.
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The first refinement step is to morph the primitives to further reduce the state 
discontinuities along the initial guess. Specifically, all possible initial guesses 
with similar geometry to the original motion primitive sequence are constructed 
by using either each motion primitive or one of the associated representative tra-
jectories. The average value of the potential sequential composability q along 
each candidate sequence of trajectory segments is computed using the selected 
state difference measures for each consecutive pair of primitives. The sequence of 
segments with the smallest average value of q then produces the morphed initial 
guess.

The second refinement step is to trim each segment in the morphed initial 
guess to remove any overlapping portions. The trimming process is applied only 
to the internal segments between the initial and final periodic orbits and is com-
pleted automatically using one of three different methods: forward, backward, or 
joint sequential trimming. The forward method trims each segment to start at its 
closest state in the phase space relative to the final state of the previous segment. 
Conversely, the backward method trims each segment to end at its closest state in 
the phase space relative to the initial state of the next segment. Finally, the joint 
method trims each pair of segments to begin or end at their closest states in the 
phase space. In each case, the difference between two individual states is evalu-
ated using q.

A single trimming method is not generally applicable to all initial guesses; 
therefore, the trimming process that produces the best refined initial guess is 
selected. First, the morphed initial guess is trimmed using each of the three possi-
ble trimming methods. Then, the average value of the potential sequential compos-
ability along each trimmed sequence of segments is computed using the following 
measures: Measure 2 is used to measure the state difference between a periodic 
orbit followed by a manifold arc; Measure 1 is used to measure the state differ-
ence between each pair of manifold arcs because the interior segments have been 
trimmed; and Measure 3 is used to measure the state difference between a mani-
fold arc followed by a periodic orbit. Note that Measures 2 and 3 are used here 
to supply flexibility in the departure or arrival locations along a periodic orbit. 
The trimming method that produces the lowest average value of q is selected to 
produce the refined initial guess. Finally, segments that do not exceed a specified 
minimum integration time are removed from the initial guess to limit numerical 
issues during corrections; this threshold is selected empirically as 0.01 nondimen-
sional time units.

Using the outlined refinement process, the primitive sequence depicted in Fig. 4b 
is morphed and trimmed. Figure 5 displays the original primitive sequence in dashed 
gray and the resulting refined initial guess in blue. The overlap between the second 
and third arcs, as depicted in Fig. 4b, is removed using backward sequential trim-
ming. Morphing the initial guess and then trimming the resulting segments signifi-
cantly improves the quality of the initial guess in the sensitive region of the phase 
space near the Moon.
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3.5  Step 5: Recover a Continuous Trajectory

A continuous trajectory is computed to resemble the refined, primitive-based initial 
guess. In motion planning and periodic orbit computation in multi-body systems, 
constrained optimization methods have previously been used to compute trajectories 
with similar geometries as a reference path [2, 15]. However, maneuver magnitudes 
are also often a common concern. Thus, a multi-objective constrained optimization 
problem is formulated using collocation to correct a transfer between two periodic 
orbits with impulsive maneuvers.

First, the initial guess must be discretized. Each segment is discretized into arcs 
based on apses with respect to the Moon and then further discretized into an addi-
tional set of 5 arcs with equal arclength to produce an initial mesh; this discretiza-
tion may be adjusted by the trajectory designer. However, if the time elapsed along 
the j-th arc in the i-th segment, Δti

j
 , is below a specified threshold, then it is not fur-

ther discretized into smaller arcs. In this paper, this threshold is empirically selected 
as 0.10 nondimensional time units to avoid placing too many nodes in a short span 
of time, thereby facilitating better convergence behavior during corrections. Then, 
7-th order polynomials and LGL nodes are used to place collocation nodes along 
each arc. The free nodes and Δti

j
 along each arc of the initial guess are included in 

the free variable vector, as defined in Eq. 6. During corrections, the Δti
j
 variable is 

constrained to remain within the bounds [10−5, 1.0] where the upper limit is greater 
than the time along any arc in the initial guess.

During corrections, the transfer is constrained to depart from any location along 
the desired initial orbit and arrive onto the target orbit. Thus, two additional free 
variables, Δtdepart and Δtarrival , are defined as the time elapsed from specified states 
along the initial and final periodic orbits. The bounds on Δtdepart are set as [−Ti, Ti] 
(initialized in [−Ti∕2, Ti∕2] ) and the bounds on Δtarrival are set as [−Tf, Tf] (initial-
ized in [−Tf∕2, Tf∕2] ), where Ti and Tf are the period of the initial and target orbit, 
respectively. These free variables are initialized based on the closest departure and 
arrival states for the initial guess.

Impulsive maneuvers are then placed at desired locations along the transfer. In 
this paper, maneuvers are applied at the beginning and end of the transfer, between 
each neighboring pair of trimmed primitives, and at apses with respect to a specified 
reference point. While mission requirements may constrain the placement of these 
maneuvers at alternative locations, this maneuver placement approach supports 

Fig. 5  Refined primitive-based 
initial guess for a planar transfer 
from an L1 to L2 Lyapunov orbit 
in the Earth-Moon CR3BP
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a proof of concept. However, if two consecutive maneuvers are placed too close 
together in configuration space, then one maneuver is removed: the departure/arrival 
maneuvers are always retained and maneuvers between consecutive trimmed primi-
tives are prioritized above maneuvers at apses. In this paper, this threshold is empiri-
cally selected as 0.03 nondimensional distance units but may be adjusted as needed.

Using these definitions, a constrained optimization problem is formulated to com-
pute a trajectory that balances geometrically resembling a primitive-based initial 
guess with reducing the maneuver requirements. A summary of this procedure  
is depicted in Fig.  6. First, the free variable vector is defined as 
Vtrans = [VT,Δtdepart,Δtarrival]

T and the constraint vector is defined as Ftrans(Vtrans)
= [F(V)T, (r11,1 − rdepart)T, (rNmi,n

− rarrival)T]T , where V and F(V) are defined in 
Eqs.  6 and 9, respectively. Furthermore, rdepart and rarrival are the departure and 
arrival positions along the initial and target orbit computed based on Δtdepart and 
Δtarrival , respectively. Then, an objective function is formulated as a linear combina-
tion of the difference in geometry between two trajectories and the cumulative 
maneuver requirements. This objective function to be minimized is defined as

where Vpos and VIGpos
 reflect only the position components of the free variable vector 

at the current iteration and the free variable vector of the initial guess, respectively; 
wopt = [wgeo,wman] are the relative weights of the geometric difference and maneu-
ver requirement terms, respectively; Δvi is the magnitude of the i-th impulsive 
maneuver; and P is the total number of maneuvers. Given an initial guess, the open 
source Interior Point OPTimizer (IPOPT) software library equipped with the MA97 
linear solver from the Harwell Subroutine Library (HSL) is used to solve the 

(18)J(Vtrans) = wgeo((Vpos − VIGpos
)T(Vpos − VIGpos

)) + wman

(
P∑
i=1

Δv2
i

)

Fig. 6  Conceptual overview of the corrections algorithm used to compute a trajectory that balances 
resembling a primitive-based initial guess with reducing maneuver requirements
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constrained optimization problem with the selected values of wgeo and wman within a 
maximum of 1000 iterations [18, 38].

The mesh associated with the solution to the constrained optimization problem 
is then refined to ensure the trajectory approximated by a sequence of polynomials 
meets a desired level of accuracy. The mesh refinement process, depicted in Block 
3 of Fig. 6, is implemented using the approach outlined in Sect. 2.3.3 while holding 
the time-of-flight (TOF) of the trajectory constant. After each refinement step, the 
updated mesh supplies an initial guess for a trajectory that is corrected via optimi-
zation as indicated with a gold triangle in Fig. 6. This optimization step during the 
merging and splitting phases of refinement uses wgeo = 1.0 and wman = 0.0 to prior-
itize preserving the geometry of the refined solution. Each refinement step continues 
until the terminal conditions outlined in Sect. 2.3.3. Then, the final output is a con-
tinuous trajectory, to within a desired accuracy, that balances minimizing maneuver 
requirements and retaining the geometry of the initial guess.

The numerical corrections procedure summarized in Fig. 6 is applied to the initial 
guess displayed in Fig. 5 for the L1 to L2 Lyapunov orbit transfer example. The objec-
tive function weights in Eq. 18 are selected as wopt = [0.9, 0.1] to prioritize main-
taining the transfer geometry of the initial guess while computing a more maneuver-
efficient solution. Of course, these weights may be adjusted to prioritize a different 
balance of these two objectives. Following optimization, the resulting continuous 
trajectory is displayed in Fig.  7 with the refined initial guess displayed in dashed 
gray, the initial and target periodic orbits displayed in solid gray, and the final con-
tinuous solution displayed in solid blue. The corrected transfer includes a departure 
maneuver of 2.71 m/s , an arrival maneuver of 6.47 m/s , a total Δv of 9.18 m/s , and 
a TOF between the initial and final periodic orbits that is equal to 22.34 days. This 
trajectory closely resembles the refined initial guess due to the objective function 
formulation, the selected values of the coefficients wgeo and wman , and the quality of 
the initial guess. Despite the foundational nature of this example, it demonstrates the 
procedure for using motion primitives to coarsely construct an initial guess with a 
desired transfer geometry and generate a nearby continuous trajectory.

Fig. 7  Continuous 22.34 day 
planar transfer from an L1 Lya-
punov orbit to an L2 Lyapunov 
orbit in the Earth-Moon CR3BP, 
computed from a primitive-
based initial guess
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3.6  Step 6: Explore the Transfer Design Space

The motion primitive graph is searched to produce a variety of motion primitive 
sequences that could lead to transfers of distinct geometries. Using the search 
method outlined in Sect.  3.3, these sequences may possess either distinct lengths 
or correspond to the top Q ranked motion primitive sequences of the same length. 
Then, each unique sequence of motion primitives produced during this search is 
used to construct an initial guess. Figure 8 displays an example of two geometrically 
distinct planar transfers computed from distinct primitive sequences for the L1 to L2 
Lyapunov orbit transfer design scenario explored throughout this section. The sin-
gle revolution transfer displayed in Fig. 8a is constructed from an alternative four-
primitive sequence to the transfer presented in Fig. 7. On the other hand, the multi-
revolution transfer displayed in Fig. 8b is constructed from a six-primitive sequence. 
Repeating this procedure for each unique sequence of motion primitives produces a 
set of continuous transfers with various geometries.

Natural parameter continuation is also used to compute a set of trajectories with 
gradually varying paths, flight times, and maneuver requirements for each unique 
primitive sequence. These transfers are generated by varying the weights wgeo 
and wman used in the multi-objective optimization process described in Sect.  3.5. 
In this paper, these weights are linearly varied from wopt = w1 = [0.9, 0.1] to 
wopt = w2 = [0.1, 0.9] in steps of 0.05. As these weights are varied, the corrected 
solution from the previous iteration serves as the initial guess for the current itera-
tion; however, after the first solution is computed at wopt = w1 , the error distribution 
step is omitted to reduce computational time. To prevent significant changes in the 
solution during each optimization step, the transfer TOF is also constrained to not 
exceed an increase of 5% from the last computed solution; this threshold may be 
adjusted as desired. Finally, the continuation process is terminated early if the opti-
mizer does not converge on a solution at any iteration.

The natural parameter continuation process is applied to the transfer displayed in 
Fig. 8a. The center of Fig. 9 presents a summary of the flight time and total Δv of 
each transfer computed with distinct values of the weights wgeo and wman . Although 

Fig. 8  Additional transfers from an L1 Lyapunov orbit to an L2 Lyapunov orbit in the Earth-Moon 
CR3BP, computed from distinct primitive sequences
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trajectories are not directly optimized with respect to flight time or total Δv in this 
paper, these are common parameters of interest in the trajectory design process. 
For clarity, the characteristics of each transfer are indicated by a marker that varies 
from black when wopt = w1 to copper when wopt = w2 . For selected values of these 
weights, annotated and numbered in the center of Fig. 9, the associated transfers are 
plotted at the boundaries of the figure. These results demonstrate that slight changes 
in the path and TOF occur as additional transfers are generated with lower maneuver 
requirements in the local vicinity of the solution in Fig. 8a.

Following refinement and natural parameter continuation, the complete set of 
generated transfers are grouped by their geometry using a k-NN graph. The geomet-
ric difference between two transfers, A and B, is assessed in this paper using a modi-
fied Hausdorff distance, dH(A,B) , that is calculated as

where NA ( NB ) is the number of states sampled along trajectory A (B), rAi
 ( rBi

 ) is 
the i-th position vector sampled along trajectory A (B) and measured relative to the 
Moon, and ‖ ⋅ ‖ is the l2-norm [7]. Each transfer is sampled using the initial state of 
each arc of the mesh generated during corrections and the final state of the trans-
fer. By using a modified Hausdorff distance, each transfer may be sampled with a 
distinct number of nodes. Then, a k-NN graph is constructed by connecting each 
transfer to its k nearest neighbors, assessed using dH(A,B) , via edges. However, if 
two transfers do not mutually consider each other a k-nearest neighbor, their edge is 
removed; this step assists with identifying a single transfer with a unique geometry. 
Each group of geometrically similar transfers is then identified as each connected 
component in the k-NN graph. Finally, manual inspection is used to separate any 
incorrectly grouped transfers with distinct numbers of revolutions around the Moon.

(19)dH(A,B) = max

⎛⎜⎜⎜⎝

∑NA

i=1
min

j=1,...,NB

‖rAi
− rBj

‖
NA

,

∑NB

i=1
min

j=1,...,NA

‖rBi
− rAj

‖
NB

⎞⎟⎟⎟⎠

Fig. 9  TOF and maneuver requirements of transfers in the local vicinity of the point solution displayed in 
Fig. 8a, computed using the continuation procedure that varies the weights of the multi-objective optimi-
zation problem
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3.7  Summary of Governing Parameters

There are several governing parameters that a designer must specify across the entire 
primitive-based trajectory design framework. Table 2 summarizes these parameters 
and decisions. Initially, the parameters that govern the motion primitive library and 
graph construction processes may be selected to reflect the expertise of the designer, 
or even lack thereof, in a specific scenario. If the generated initial guesses exhibit 
insufficient geometric diversity or quality, the designer may iterate on the deci-
sions governing the arcs summarized in the motion primitive library, the primitive 
extraction process, and/or the structure and connectivity of the modular high-level 
itinerary graph. The designer may also update the parameters governing the primi-
tive sequences selected for further analysis and the corrections process, impacting 
the required analytical and computational workload. They may also adjust these 
parameters as they gain intuition into the success of correcting coarsely-constructed 
primitive-based initial guesses in each new problem. Although these parameters are 
currently user-selected, implementing guided or automated approaches for selecting 
and updating some of these parameters is an interesting avenue of future work.

4  Results: Primitive‑Based Transfer Design Space Exploration

The primitive-based initial guess construction framework enables the generation of 
trajectories with distinct geometries. In this section, this framework is used to gener-
ate transfers in the Earth-Moon CR3BP with impulsive maneuvers. Specifically, a 
subset of the design space is explored for planar transfers between selected L1 and L2 
Lyapunov orbits as well as spatial transfers between selected L1 and L2 northern halo 
orbits.

4.1  Planar Transfers from an L
1
 to L

2
 Lyapunov Orbit

Planar transfers are constructed from an L1 Lyapunov orbit at CJ ≈ 3.1670 to an L2 
Lyapunov orbit at CJ ≈ 3.1666 in the Earth-Moon CR3BP with impulsive maneu-
vers. These transfers are computed using a motion primitive graph that includes 
primitives extracted from both the stable and unstable manifolds of the initial and 
final orbits, as listed in Table 1. Although existing Poincaré mapping strategies are 
often used to effectively visualize these types of stable and unstable manifolds, using 
motion primitives in this foundational planar transfer design scenario supports (1) 
verifying that complex initial guesses can be constructed and (2) demonstrating the 
recovery of a wide variety of transfer geometries. Furthermore, this approach may 
reduce the burden of analyzing arcs along manifolds that become increasingly com-
plex with additional revolutions around the Moon. The associated high-level itiner-
ary graph is depicted in Fig.  10, allowing motion primitives that summarize arcs 
along each manifold to be composed in any order. Accordingly, this graph expands 
both the array of primitives and their potential sequences compared to the graph in 
Fig. 3b previously used for demonstration purposes in Sect.  3. The graph used in 
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this subsection may reflect that the trajectory designer possesses limited insight into 
a desired itinerary or their interest in exploring a wider region of the solution space. 
To construct the motion primitive graph, the following configuration parameters are 
used: k = 15 , �pos = 10 , and �vel = 1 . Additionally, the set of representative trajec-
tories associated with each motion primitive is incorporated into the edge weight 
computations and the average edge weight is used to evaluate the quality of each 
primitive sequence.

Various initial guesses are constructed by searching the motion primitive graph in 
Fig. 10 to produce unique sequences of four, five, and six motion primitives. There 
are 665, 45,202, and 2,681,481 primitive sequences from the initial node to the tar-
get node in the graph consisting of four, five, and six primitives, respectively; of 
course, not all primitives sequences necessarily predict the existence of a nearby 
continuous and maneuver-enabled trajectory. However, using the filtering process 
presented in Sect.  3.3, the Q = 15 top-ranked sequences that begin with a unique 
primitive are examined for each path length. The result is 45 primitive sequences 
that are each refined to produce an initial guess for a transfer. The computation time 
required to search for and construct these 45 primitive-based initial guesses is on 
the order of 100 minutes using an iMac with a 3GHz 6-Core Intel Core i5 proces-
sor; a majority of this computation time is devoted to searching for the sequences of 
six motion primitives. The time complexity of searching the motion primitive graph 
using a DFS and refining each top-ranked motion primitive sequence increases sig-
nificantly as the path length increases in this combinatorial problem. However, the 
use of alternative search algorithms is an avenue of ongoing work.

Each transfer is corrected with several unconstrained impulsive maneuvers. Spe-
cifically, each initial guess uses the maneuver placement scheme defined in Sect. 3.5 
where apses are computed with respect to the Moon. Then, all 45 initial guesses 
are successfully corrected using wopt = [0.9, 0.1] to produce nearby continuous, 

Fig. 10  High-level itinerary graph for a planar L1 to L2 Lyapunov orbit transfer design scenario in the 
Earth-Moon CR3BP
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maneuver-enabled, and planar transfers from the desired initial L1 Lyapunov orbit to 
the target L2 Lyapunov orbit.

An initial summary of the transfers that solve the multi-objective optimization 
problem with wopt = [0.9, 0.1] is presented using the cumulative maneuver require-
ments for each transfer and the sequential composability of the associated refined 
initial guesses. In Fig. 11a, the total Δv of each transfer is displayed on the verti-
cal axis using a log10 scale and the horizontal axis displays the normalized average 
potential for sequential composability, q̃avg , of the refined initial guess for each trans-
fer; a min-max normalization scheme is used to normalize qavg between 0 and 1 for 
each path length. In Fig. 11a, the properties of corrected transfers that do not impact 
a spherical approximation of the Moon are indicated with blue markers, whereas 
gray markers correspond to continuous transfers that impact the Moon. Although 
there is no explicit altitude constraint during corrections, only three of the corrected 
transfers impact the Moon. Furthermore, red markers, where applicable, correspond 
to discontinuous trajectories that are not successfully corrected; their values of total 
Δv are estimated using the free variable vector at the final iteration of the optimiza-
tion algorithm. Finally, as denoted in Fig. 11, the shape of each marker indicates the 
number of sequentially composed motion primitives used to compute the associated 
transfer. Across the set of 45 transfers, Fig. 11a reveals a gradual increase in total Δv 
requirements, from 9.96 m/s to 1150.83 m/s , with increasing values of q̃avg . A wide 
range of Δv requirements is expected given the variability in the quality of each ini-
tial guess, the emphasis placed on recovering transfers that resemble their respective 
initial guesses, and the use of unconstrained impulsive maneuvers.

Continuation is used to compute additional transfers that prioritize minimizing 
maneuver requirements more heavily than resembling the initial guess. Specifically, 
each of the 45 corrected transfers displayed in Fig. 11a forms an initial guess for the 
natural parameter continuation process discussed in Sect. 3.6. The relative weights 

Fig. 11  Total Δv of planar transfers computed from an L1 Lyapunov orbit to an L2 Lyapunov orbit in the 
Earth-Moon CR3BP as a function of q̃avg using (a) wopt = [0.9, 0.1] and (b) wopt = [0.1, 0.9]



 The Journal of the Astronautical Sciences (2023) 70:34

1 3

34 Page 30 of 47

are gradually varied from w1 = [0.9, 0.1] to w2 = [0.1, 0.9] and only 42 transfers are 
successfully corrected to solve the optimization problem with w2 ; three transfers 
could not be computed using these scalar weights, likely due to numerical sensitivi-
ties near the Moon. In Fig. 11b, these transfers are summarized using the same con-
figuration as Fig. 11a. Using this continuation-based approach, the corrected trans-
fers possess cumulative maneuver requirements between 6.81 m/s and 67.18 m/s , 
which are significantly lower than the original transfers summarized in Fig. 11a.

To effectively examine a set of transfers that exist within a subset of the design 
space, the transfers summarized in Fig.  11b are grouped by their geometry using 
the process described in Sect. 3.6. In this example, k = 3 is selected empirically to 
construct the k-NN graph. Figure 12a displays the resulting total Δv of each transfer 
with respect to its TOF, with each group of geometrically similar transfers indicated 
by distinctly colored markers. The transfer with the minimum Δv cost from each 
group is highlighted with a black circle and numbered. A total of 16 distinct types 
of transfers are extracted from the set of 42 planar, maneuver-enabled transfers that 
are corrected using w2 to connect the selected L1 Lyapunov orbit to the target L2 
Lyapunov orbit in the Earth-Moon CR3BP. As displayed in Fig. 12a, the corrected 
transfers possess flight times ranging from 20.90 days to 53.28 days and maneuver 
requirements from 6.81 m/s to 67.18 m/s.

The continuation process for each transfer generally results in significant reduc-
tions in total maneuver cost coupled with increases in TOF. This information is evi-
dent in Fig. 12b, which displays the evolution of the characteristics of the minimum 
Δv solution from each group computed with w2 during the continuation process. In 
this figure, the solutions computed using w2 are indicated by a filled marker with a 
black edge while the associated solutions computed using w1 are indicated by only a 
filled marker with no edge color. These results indicate that motion primitives support 
the coarse design of a set of initial guesses for trajectories with distinct geometries 
that may also be refined to possess various flight times and maneuver requirements.

Fig. 12  Total Δv and TOF of transfers computed from an L1 Lyapunov orbit to an L2 Lyapunov orbit in 
the Earth-Moon CR3BP using wopt = [0.1, 0.9] , where geometrically similar transfers are denoted in the 
same color and the minimum Δv solution for each transfer geometry is highlighted
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To visualize the geometric variations across the recovered set of transfers, the 
minimum Δv transfer from each of the 16 groups is plotted in the configuration 
space. These transfers are displayed in Fig. 13 in the xy-plane of the Earth-Moon 
rotating frame using the same colors and numbering scheme as in Fig. 12a. In each 
figure, the Moon is displayed as a gray circle while L1 and L2 are depicted with red 
diamonds. The refined primitive-based initial guess for each transfer is displayed 
in dashed gray, the initial and target orbits are displayed in solid gray, each impul-
sive maneuver is located with a red circle, and black arrows indicate the direction of 
motion. Below each transfer is the associated flight time and total Δv . These trans-
fers recovered using the presented motion primitive approach to trajectory design 
exhibit a variety of geometries while also revealing some avenues for future work.

Most of the minimum Δv transfers that solve the multi-objective optimization 
problem using w2 closely resemble their refined primitive-based initial guess. In 
Fig. 13, the initial guess (dashed gray) lies close to the continuous transfer (solid 
color) in most cases, indicating the utility of coarsely designing transfers with spe-
cific geometries using motion primitives when qavg is sufficiently low. Noticeable 

Fig. 13  Transfers with distinct geometries computed from primitive-based initial guesses between an L1 
and L2 Lyapunov orbit displayed in the xy-plane of the rotating frame in the Earth-Moon CR3BP
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deviations between the corrected transfer and initial guess are, however, evident 
in Transfers 5, 9, and 10, which are derived from motion primitive sequences with 
larger discontinuities, i.e., larger values of qavg . Furthermore, prioritizing maneu-
ver requirements more heavily than resembling the initial guess can lead to more 
significant changes in geometry when an initial guess possesses larger discontinui-
ties. Finally, Transfer 4 uses the same primitives as the example presented in Sect. 3. 
This result demonstrates the capacity to recover similar, straightforward solutions 
when limited a priori knowledge is incorporated into the graph construction process.

The k-NN graph approach for grouping transfers based on their geometry may 
separate transfers that could potentially belong to the same group or place transfers 
in a single group that could be separated. In some cases, transfer groups that are 
identified as possessing distinct geometries only vary in their departure or arrival 
locations on the initial or target orbits. For instance, Transfers 3 and 4 are con-
structed from unique primitive sequences and have slightly different departure loca-
tions along the initial orbit but share a similar geometry, flight time, and total Δv ; a 
similar observation holds for Transfers 11 and 12. These transfers could potentially 
be considered to belong within the same transfer group but are located in discon-
nected components of the k-NN graph. Alternative values for k, incorporation of the 
transfers constructed during natural parameter continuation, or modification of the 
grouping process may be avenues for future work to address this observation.

The solutions presented in Fig.  13 reveal that transfers constructed from 
sequences of additional primitives generally exhibit complex geometries but often 
contain some common elements with the transfers constructed from fewer primi-
tives. For example, Transfers 15 and 16 initially exhibit a similar geometry to Trans-
fer 8 but perform additional revolutions around the Moon before approaching the 
target L2 Lyapunov orbit. These transfers possess similarly low maneuver require-
ments and flight times that differ by 6-7 days with each additional revolution. How-
ever, the k-NN graph constructed using the modified Hausdorff distance (defined in 
Eq. 19 to assess geometric similarity) incorrectly groups all three transfers together, 
requiring manual separation. Future work to address this issue includes modifying 
this distance measure to capture the number of revolutions performed along a trans-
fer as well as additional geometric properties.

4.2  Spatial Transfers from an L
1
 to L

2
 Northern Halo Orbit

The primitive-based trajectory design framework is used to construct spatial trans-
fers from an L1 northern halo orbit at CJ ≈ 3.0635 to an L2 northern halo orbit at 
CJ ≈ 3.0669 in the Earth-Moon CR3BP with impulsive maneuvers. In this scenario, 
Poincaré maps capturing spatial motion at high energy levels may be difficult to ana-
lyze due to the complexity of the solution space and higher-dimensional description 
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of the map crossings. As a result, it may be challenging to use existing dynamical 
systems techniques alone to construct point solutions and explore the broader design 
space spanned by geometrically dissimilar solutions. Thus, this challenging scenario 
supports demonstration of the utility of the presented motion primitive framework 
for trajectory design in a multi-body system.

To construct a motion primitive graph in this scenario, the high-level itinerary 
graph is designed to possess the same structure as in Fig.  10 but uses primitives 
of the selected northern halo orbit families and their stable and unstable manifolds. 
Consistent with the approach in Sect. 3.1, each manifold is generated for up to 15 
apses relative to the Moon and sampled to produce shorter arcs that span up to 4 
apses relative to the Moon. The entire set of motion primitives generated to sum-
marize arcs along these stable and unstable manifolds are plotted in Appendix A and 
all components of the motion primitive library are listed in Table 3. To construct the 
motion primitive graph, the following configuration parameters are also specified: 
k = 15 , �pos = 100 , and �vel = 1 . These selections place a much stronger emphasis 
on position discontinuities between primitives compared to the previous transfer 
design scenario, consistent with an observed increase in sensitivity for higher energy 
spatial transfers with close lunar passes. Additionally, the set of representative tra-
jectories associated with each motion primitive is incorporated into the edge weight 
computations and the average edge weight is used to evaluate the quality of each 
primitive sequence.

The motion primitive graph is searched to produce unique sequences of four, five, 
and six primitives that each form an initial guess for a transfer from the L1 north-
ern halo orbit to the L2 northern halo orbit. There are a total of 331, 19,764, and 
1,148,147 primitive sequences from the initial node to the target node in the graph 
consisting of four, five, and six primitives, respectively. However, using the filtering 
process presented in Sect. 3.3, the Q = 10 top-ranked sequences that begin with a 
unique primitive are examined for each path length. A smaller value of Q is selected 
for this scenario compared to the previous example because the quality of the ini-
tial guesses degrades more significantly as additional sequences are considered. This 
approach produces 30 unique primitive sequences that are each refined to produce 
an initial guess.

Each initial guess is corrected with several unconstrained impulsive maneuvers 
distributed along the transfer using the same maneuver placement scheme as in the 

Table 3  Motion primitives 
in the library for the L

1
 to L

2
 

northern halo orbit transfer 
design scenario

Fundamental solution Number of 
primitives

Approx. C
J

L1 northern halo orbit 1 3.0635
L1 northern halo orbit unstable manifold 198 3.0635
L1 northern halo orbit stable manifold 194 3.0635
L2 northern halo orbit 1 3.0669
L2 northern halo orbit unstable manifold 226 3.0669
L2 northern halo orbit stable manifold 223 3.0669
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previous example. All 30 primitive-based initial guesses are successfully corrected 
using wopt = [0.9, 0.1] to produce continuous transfers from the desired initial L1 
northern halo orbit to the target L2 northern halo orbit. However, six of the cor-
rected transfers impact a spherical approximation of the Moon. Continuation is then 
used to gradually vary the weights of the multi-objective optimization problem in 
Sect. 3.5 from w1 = [0.9, 0.1] to w2 = [0.1, 0.9] . Following this process, only 27 of 
these transfers are successfully corrected with wopt = w2.

An initial summary of the transfers that solve the multi-objective optimization 
problem with each value of wopt is presented. In Fig. 14a, the total Δv of each of 
the 30 transfers that is corrected with wopt = w1 is displayed with respect to the nor-
malized average potential for sequential composability, q̃avg , of its initial guess; this 
figure uses the same configuration as Fig. 11a. In Fig. 14b, however, this informa-
tion is presented for the 27 transfers that are corrected with wopt = w2 to prioritize 
minimizing maneuver requirements. Across the set of 30 transfers computed with 
wopt = w1 to emphasize recovering transfers that are geometrically similar to their 
initial guesses, the total Δv ranges from 86.05 m/s to 1705.78 m/s . However, when 
prioritizing minimizing maneuver requirements, the 27 transfers corrected with 
wopt = w2 require a total Δv ranging from 44.06 m/s to 342.99 m/s . Furthermore, 
the transfers summarized in Fig. 14b no longer exhibit a clear correlation between 
q̃avg and the total Δv requirements compared to the planar Lyapunov orbit transfers 
presented in Sect. 4.1.

The 27 corrected transfers that prioritize minimizing maneuver require-
ments are grouped based on geometry to extract the distinct types of transfers 
that connect the selected northern halo orbits. When applying the k-NN approach 

Fig. 14  Total Δv of transfers computed from an L1 northern halo orbit to an L2 northern halo orbit in the 
Earth-Moon CR3BP as a function of q̃avg using (a) wopt = [0.9, 0.1] and (b) wopt = [0.1, 0.9]
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Fig. 15  Total Δv and TOF of transfers computed from an L1 northern halo orbit to an L2 northern halo 
orbit in the Earth-Moon CR3BP using wopt = [0.1, 0.9] , where geometrically similar transfers are 
denoted in the same color and the minimum Δv solution for each transfer geometry is highlighted

Fig. 16  Transfers with distinct geometries computed from primitive-based initial guesses between an L1 
and L2 northern halo orbit displayed as a projection onto the xz-plane of the rotating frame in the Earth-
Moon CR3BP
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described in Sect.  3.6, k = 2 is selected empirically and produces 14 groups of 
geometrically distinct transfers. The resulting properties of each transfer are plot-
ted in Fig.  15 using the same configuration as Fig.  12 where the minimum Δv 
solution in each group is circled and numbered. These transfers require flight 
times ranging from 18.79 days to 60.80 days and total Δv requirements ranging 
from 44.06 m/s to 342.99 m/s when placing more emphasis on recovering maneu-
ver-efficient transfers.

The minimum Δv transfer in each group is visualized in the configuration space. 
Specifically, Fig. 16 displays each transfer as a projection onto the xz-plane of the 
Earth-Moon rotating frame. In this figure, each corrected transfer geometrically 
resembles its initial guess (dashed gray) but with more noticeable deviations than in 
the planar transfers constructed in Sect. 4.1. Furthermore, Transfers 1-14 all exhibit 
distinct transfer geometries in the vicinity of the Moon with several close approaches 
and apolunes at high z-amplitudes above the plane of the primaries. The exception is 
Transfers 7 and 8 which could potentially be combined into a single group because 
these transfers exhibit only slight differences in geometry during the departure, tran-
sit, and arrival phases of the itinerary. As a comparison, these two transfers (7 and 
8) geometrically resemble a 51.2 day transfer computed by Haapala between two 
northern halo orbits at similar energy levels, but with a lower total maneuver magni-
tude of 11.9 m/s [13]; this difference is likely due to alternative corrections problem 
formulations, an alternative number and location of maneuvers, and the explicit use 
of manifold arcs that gradually approach or depart each periodic orbit. Nevertheless, 
the recovered transfers demonstrate the capability to achieve a significant reduction 
in total maneuver magnitude while still preserving the approximate geometry of a 
coarsely-constructed primitive-based initial guess.

5  Conclusion

Motion primitives, defined as the fundamental building blocks of motion, are used 
to develop an initial guess construction framework for spacecraft trajectories in the 
Earth-Moon CR3BP. First, a library of motion primitives is generated by using clus-
tering to summarize periodic orbit families and arcs along stable/unstable manifolds. 
Then, a graph is constructed to capture the potential for sequential composability of 
motion primitives in this library and, therefore, offer a discrete representation of part 
of the solution space. Searching this graph produces sequences of motion primitives 
that support coarsely constructing initial guesses with distinct geometries. Finally, 
each primitive sequence is refined and corrected using direct collocation and multi-
objective optimization to produce transfers that balance geometrically resembling 
the primitive-based initial guess with reducing maneuver requirements.

The primitive-based initial guess construction framework is demonstrated by 
computing a variety of transfers in the Earth-Moon CR3BP between an L1 and L2 
Lyapunov orbit and an L1 and L2 northern halo orbit. In each scenario, unique primi-
tive sequences and numerical continuation lead to the recovery of a set of transfers 
with a variety of distinct geometries, flight times, and maneuver requirements. These 
examples demonstrate that motion primitives can support initial guess construction 



1 3

The Journal of the Astronautical Sciences (2023) 70:34 Page 37 of 47 34

for spacecraft trajectories in the CR3BP and rapid exploration of the associated 
design space.

Appendix A: Motion Primitive Library

See Fig. 17, 18, 19, 20, 21, 22, 23, 24

L
1
 Lyapunov Orbit Unstable Manifold Primitives

Fig. 17  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L1 Lyapunov orbit unstable half-manifold in the Earth-Moon CR3BP; trajectories are displayed 
in the xy-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on the left (right) in each sub-
figure, the Moon is plotted to scale as a gray circle, the initial position of each primitive is denoted with 
a filled black circle, and the initial position of each representative trajectory is denoted with an empty 
black circle
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L
1
 Lyapunov Orbit Stable Manifold Primitives

Fig. 18  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L1 Lyapunov orbit stable half-manifold in the Earth-Moon CR3BP; trajectories are displayed in 
the xy-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on the left (right) in each sub-
figure, the Moon is plotted to scale as a gray circle, the initial position of each primitive is denoted with 
a filled black circle, and the initial position of each representative trajectory is denoted with an empty 
black circle
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L
2
 Lyapunov Orbit Unstable Manifold Primitives

Fig. 19  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L2 Lyapunov orbit unstable half-manifold in the Earth-Moon CR3BP; trajectories are displayed 
in the xy-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on the left (right) in each sub-
figure, the Moon is plotted to scale as a gray circle, the initial position of each primitive is denoted with 
a filled black circle, and the initial position of each representative trajectory is denoted with an empty 
black circle
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L
2
 Lyapunov Orbit Stable Manifold Primitives

Fig. 20  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L2 Lyapunov orbit stable half-manifold in the Earth-Moon CR3BP; trajectories are displayed in 
the xy-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on the left (right) in each sub-
figure, the Moon is plotted to scale as a gray circle, the initial position of each primitive is denoted with 
a filled black circle, and the initial position of each representative trajectory is denoted with an empty 
black circle
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L
1
 Northern Halo Orbit Unstable Manifold Primitives

Fig. 21  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L1 northern halo orbit unstable half-manifold in the Earth-Moon CR3BP; trajectories are dis-
played as a projection onto the xz-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on 
the left (right) in each subfigure, the Moon is plotted to scale as a gray sphere, the initial position of each 
primitive is denoted with a filled black circle, and the initial position of each representative trajectory is 
denoted with an empty black circle



 The Journal of the Astronautical Sciences (2023) 70:34

1 3

34 Page 42 of 47

L
1
 Northern Halo Orbit Stable Manifold Primitives

Fig. 22  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L1 northern halo orbit stable half-manifold in the Earth-Moon CR3BP; trajectories are displayed 
as a projection onto the xz-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on the 
left (right) in each subfigure, the Moon is plotted to scale as a gray sphere, the initial position of each 
primitive is denoted with a filled black circle, and the initial position of each representative trajectory is 
denoted with an empty black circle
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L
2
 Northern Halo Orbit Unstable Manifold Primitives

Fig. 23  Motion primitives (blue) and the associated sets of representative trajectories (gray) computed 
from an L2 northern halo orbit unstable half-manifold in the Earth-Moon CR3BP; trajectories are dis-
played as a projection onto the xz-plane of the rotating frame, L1 ( L2 ) is marked with a red diamond on 
the left (right) in each subfigure, the Moon is plotted to scale as a gray sphere, the initial position of each 
primitive is denoted with a filled black circle, and the initial position of each representative trajectory is 
denoted with an empty black circle
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L
2
 Northern Halo Orbit Stable Manifold Primitives
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