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Abstract
This paper addresses the time-optimal roto-translational orbital rendezvous maneu-
ver for an inertially asymmetric rigid spacecraft in an all-thrusters configuration. 
To begin with, the target and chaser relative rotational and translational dynamics 
are driven. Then, in the presence of torque and force constraints, the simultaneously 
time-optimal attitude and position control problem is numerically solved using the 
pseudo-spectral method. The costates are then computed to establish the first-order 
optimality of the obtained solutions, which is confirmed by satisfying Pontryagin’s 
minimum principle. It is demonstrated via simulation that the obtained control 
forces and moments are basically “bang-bang,” which is the most natural and con-
venient form for on–off thrusters.

Keywords Time-optimal control · Rotational and translational dynamics · Orbital 
rendezvous problem · Pseudo-spectral method · “Bang-bang” control
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[
f
]L  Control force vector, expressed in the target’s LVLH coordinate 

system ( L)[
f
]B  Control force vector, expressed in the chaser’s body coordinate 

system ( B)
mB  Chaser’s mass
�n  Orbital mean angular rate of the target
IB  Inertial matrix of the chaser’s body[
���

]�  Angular velocity vector of frame � with respect to frame � , 
expressed in coordinate system �

[m]B  Control torque vector, expressed in the chaser’s body coordinate 
system ( B)

[�]BL  MRP vector representing the orientation of the target’s LVLH 
frame w.r.t. the chaser’s body frame

ex, ey, ez  Components of Euler axis
Φ  Principal rotation angle
[T]LB  Transformation matrix from the chaser’s body coordinates to the 

target’s LVLH coordinates
[�]

BL  Skew-symmetric form of [�]BL
J  Cost function
�  Scalar boundary constraint in cost function
g  Integrand function in cost function
x  State vector
u  Control input vector
f   Dynamic constraints
�  Boundary conditions
C  Inequality path constraints
t  Time
�  Transformed time
PN  Nth-Degree Legendre polynomial
X  Approximated state trajectory
U  Approximated control trajectory
Li  Lagrange polynomials (i = 0,… ,N)

L∗
i
  Lagrange polynomials (i = 1,… ,N)

w  Gauss weights
D  Differential approximation matrix
L
(1),L(P), L(r+1)

(r)
  Initial constraints for the first phase, terminal constraints for the 

last phase ( P ), and continuity constraints for the interior phases
H  Hamiltonian
�  Costate vector
�  Lagrange multiplier associated with the path constraint
�  Lagrange multiplier associated with the the boundary condition
�  Estimated costates in LG points
�̃  KKT multipliers
nI  Number of phases
nLG  Number of LG points in each phase
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Bu , Bl  Upper and lower bound of states and controls values
S0  Initial guess for states and controls values in LG points

Subscripts
x, y, z  Components of a vector in arbitrary coordinate system
0  Initial time
f   Terminal time

1 Introduction

Time-optimal maneuvers are interesting issues in different fields of aerospace engi-
neering. Especially in space missions, time-optimal reorientation is required in 
many applications, such as antenna pointing in communication satellites, tracking 
multiple targets on the Earth in imaging satellites, or observing astronomical objects 
in space telescopes [1]. In addition, a time-optimal 6DOF maneuver in which atti-
tude and position are simultaneously controlled in an overall minimum time, can 
be considered for time-critical operations, such as space debris removal, on-orbit 
spacecraft servicing (like repairing or refueling), and supplying oxygen or food to 
the International Space Station [2–6].

The time-optimal attitude maneuver has been vastly studied in the literature. Bili-
moria and Wie [7] considered the time-optimal rest-to-rest reorientation problem for 
an inertially symmetric rigid body with three orthogonal control axes and cubical 
constraints on control torques (i.e., all the control torques are less than a specific 
magnitude). They showed that the eigen-axis rotation maneuver is not time-optimal, 
and the optimal control has a "bang-bang" structure in all three control axes. In [8], 
new results for the time-optimal rest-to-rest reorientation problem have been pre-
sented. It has been shown that the time-optimal control structure for a specific atti-
tude maneuver is not unique. Furthermore, it has been demonstrated that by con-
sidering a spherical constraint for control torques (i.e., 2-norm of control vector to 
be less than a specific magnitude), the eigen-axis rotation maneuver will be time-
optimal. In [9], the time-optimal reorientation problem for an inertially axisym-
metric and under-actuated spacecraft has been discussed. Pager and Rao [10] have 
studied the time-optimal reorientation of a spin-stabilized axisymmetric rigid space-
craft using three control torques. They have analyzed the optimal control structure of 
various time-optimal maneuvers.

Furthermore, the time-optimal reorientation problem for an inertially asymmet-
ric body has been solved in many works with different considerations. Hu et al. [11] 
have investigated the time-optimal smooth attitude maneuver for a flexible space-
craft, considering constraints on the control torques and corresponding derivatives 
and spacecraft angular velocity. In [12], this problem has been solved for a space-
craft with magnetic actuators. Olivares and Staffetti [13] studied the time-optimal 
reorientation problem for an under-actuated rigid spacecraft equipped with both reac-
tion wheel and thruster, assuming limitations on the control torques and maximum 
angular momentum of the reaction wheels. In [14], these authors have solved this 
time-optimal problem for a multi-target maneuver (pointing toward several targets is 
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performed in minimum time), in which constraints on the control torques and maxi-
mum angular momentum of the reaction wheels, and maximum angular velocity of 
the body are taken into account. Furthermore, in some articles, the time-optimal reor-
ientation problem is solved in the presence of attitude constraints [15–20].

In addition, the time-optimal rendezvous maneuver between two spacecraft has 
been studied in some researches. Miele et al. [21] studied the time-optimal rendez-
vous problem with max-thrust acceleration constraint in fuel-free and fuel-given 
cases. Zhang and Ye [25] have investigated the time-optimal problem for short-range 
rendezvous maneuver using on–off constant thrust. They solved this problem for in-
plane and out-of-plane motions. In [23] the time-optimal rendezvous maneuver for 
any number of space agents using only the relative aerodynamic drag has been dis-
cussed. Zhang and Parks [22] have studied time-optimal multiphase orbital rendez-
vous maneuver. They considered the field-of-view requirements in which the target 
should never appears out of the chaser’s field of view. Jorgensen and Sharf [26] have 
worked on the time-optimal rendezvous maneuver between a chaser spacecraft and 
multiple pieces of space debris. In [24] the planar two-body rendezvous problem with 
the inclusion of atmospheric drag perturbations has been investigated. These articles 
[21–26] have not considered rotational dynamics for the chaser spacecraft. While in 
the real applications, the position control actuators are fixed to the spacecraft’s body. 
Therefore, the attitude and position control are coupled. Ma et al. [2] have studied 
the time-optimal 3DOF planar rendezvous maneuver for approach to a rotating target 
spacecraft. They have considered that the chaser spacecraft can move in the plane and 
rotate about the axis perpendicular to the plane. Although, simultaneously attitude 
and position control have been considered in this article, but the relative dynamic 
model has been reduced to the simple 3DOF model in which the relative rotational 
dynamics (about the other two body axes) and translational dynamics (out-of-plane) 
have been neglected. Furthermore, the orbital dynamics of chaser and target space-
craft have been ignored. Finding the time-optimal maneuver leads to a time-optimal 
control problem which is often solved by numerical methods. Generally, numerical 
methods are divided into two categories, namely direct and indirect methods [27–32]. 
In indirect methods, the continuous first-order optimality conditions are derived by 
applying the calculus of variations and Pontryagin’s minimum principle (PMP) [33] 
to the continuous-time optimal control problem. These optimality conditions lead to 
a two-point boundary value problem (TPBVP) that include states and costates differ-
ential equations and is solved by the shooting method [28]. The shooting method has 
been frequently used to solve the time-optimal control problem [7–9]. In this method, 
due to no physical sense of costates variables, it is difficult to find a proper initial 
guess for unknown initial costates and its convergence radius is small. To overcome 
this problem, some approaches have been provided to solve the TPBVP [34, 35]. 
Recently, the homotopic approach has been introduced to solve the TPBVP [36–38]. 
The homotopy scheme is used to continuously deform the problem to approximate 
the original one and find its solutions. In [39–42] this approach has been adopted 
to solve the time-optimal control problem. Nevertheless, for the high-order dynamic 
systems, the computational burden of this approach is very heavy.

In direct methods, the continuous optimal control problem is transcribed into 
nonlinear programming (NLP) problem by means of discretization methods [28]. 
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Then, the NLP problem is solved with optimization methods such as gradient-
based methods or heuristic algorithms [29]. A subset of direct methods are global 
collocation methods [29, 31, 43]. In these methods, the states and control trajec-
tories are firstly discretized in collocation points and then approximated using 
global polynomials. A well-developed class of global collocation methods are 
pseudo-spectral methods such as Gauss pseudo-spectral method (GPM) [44–48], 
Lobatto pseudo-spectral method [49, 50] and Radau pseudo-spectral method 
[51–53]. The continuous dynamic constraints are discretized and converted into 
algebraic constraints using pseudo-spectral approaches. The NLP problem con-
sists of dynamic constraints along with other ones such as path and boundary 
constraints as well as the cost function. In [19, 54, 55] the pseudo-spectral meth-
ods have been used to solve the time-optimal control problem.

The indirect methods have a higher accuracy in comparison with the direct 
method. However, in direct methods, the costates variables are not involved in 
optimal control problem formulation. Therefore, the problem is less compli-
cated and there is no need to find a proper initial guess for the costates. Also, the 
dynamic constraints are satisfied only at the collocation points which causes the 
computational cost to be relatively lower.

Specifically, the GPM uses a set of non-uniform collocation points and guar-
antees that the polynomial approximation error monotonically decreases as the 
number of these points are increased [46]. Therefore, the accuracy of this method 
is improved, when the number of collocation points increases, and the obtained 
solution converges to the accurate optimal solution, albeit at the expense of 
increased computation time [46].

Moreover, using the Gauss pseudo-spectral discretization, the first-order opti-
mality conditions of the NLP [Karush–Kuhn–Tucker (KKT) conditions] are 
equivalent to the discretized form of the continuous first-order optimality condi-
tions of the continuous-time optimal control problem [44, 45]. Hence, there is a 
mapping between costates values in collocation points and KKT multipliers that 
are obtained from solving the NLP problem, and a costate estimation can be per-
formed using KKT multipliers. The estimated costates can be utilized for first-
order optimality proof of the obtained solution.

As mentioned before, simultaneously time-optimal rotational and translational 
control of a spacecraft was not considered in previous works. In the current paper, 
this time-optimal 6DOF maneuver is investigated. As a case study, the problem is 
formulated for the rendezvous maneuver of a chaser spacecraft with another target 
spacecraft and is solved using GPM. Considerations like the inertial asymmetry 
of spacecraft, applying orbital dynamic to rotational and translational dynamics 
of spacecraft, and coupled attitude and position control, affect the complexity of 
this problem. This paper assumes that the attitude and position control actuators 
are independent and fixed in the body frame. Hence, there is a coupling between 
attitude and position control. The main contributions of this paper are as follows:

• The time-optimal 6DOF attitude and position control of an inertially asymmetric 
spacecraft has been developed.
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• Relative orbital dynamics and coupling between attitude and position control 
have been applied to the problem.

• The optimal solution for the mentioned problem which satisfies the first-order 
optimality conditions has been provided.

• The obtained control forces and moments are “bang-bang” which systemically 
can be implemented by simple on–off thrusters.

Generally, for the nonlinear and high-order dynamic systems ( n ≥ 3) , any closed 
form solution does not exist for time-optimal control problem, and solving this prob-
lem using common methods (indirect and direct) leads to open-loop controls and 
states trajectories [56]. In real applications, it is necessary to design a closed-loop 
control law for tracking the calculated optimal states trajectories and compensating 
for the disturbances and uncertainties. Therefore, the whole problem is broken down 
into two parts: calculating the optimal open-loop controls and states trajectories and 
designing the closed-loop control law. This paper concentrates on the first sub-prob-
lem, and thus, the uncertainties and disturbances are not considered. Development 
of the closed-loop control law will be provided in future works.

In the following, the relative dynamic model of a spacecraft (chaser) with respect to 
another one (target) is introduced. Then the continuous time-optimal control problem 
is defined and transcribed into an NLP problem using GPM. The optimal states and 
control trajectories are obtained by solving the NLP problem. Similar to most time-
optimal control problems, it is shown that the controls are “bang-bang”, which system-
ically can be implemented by simple on–off thrusters. On–off thrusters are the most 
popular thrusters in spacecraft control, used especially when high agility of the control 
system is required [57]. Also, using KKT multipliers, the costate trajectories are esti-
mated. Finally, the first-order optimality proof of the obtained solution is provided.

The rest of the paper is organized as follows: Sect.  2 details the time-optimal 
6DOF maneuver problem, GPM implementation, and costate estimation. Section 3 
gives the numerical results, and conclusions are drawn in Sect. 4.

2  Time‑optimal 6DOF Maneuver Problem

2.1  Relative Dynamic Model

When the distance between two spacecraft is significant, their translational 
motion is usually described in the Earth-centered inertial (ECI) coordinate sys-
tem. However, when the distance between two spacecraft is small in comparison 
to their radial distances from the Earth’s center of mass, the relative translational 
motion is typically described in the target’s Local Vertical Local Horizon-
tal (LVLH) coordinate system, in which the z-axis is radially downward to the 
Earth’s center of mass; the y-axis is in the opposite direction of the orbit normal 
vector, and the x-axis completes the right-hand orthogonal system. The chaser’s 
body, the target’s LVLH, and the ECI coordinate systems are presented in Fig. 1. 
In this paper, the classic and precise notation introduced in [58] is adopted.
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The Hill’s equations are well-known and widely used equations to express rel-
ative translational dynamics, when the target is in a circular or near circular orbit. 
Because of the first order approximation, in the sense of Taylor, used to derive the 
Hill’s equations, and also the lack of inclusion of orbital perturbations, they are 
mostly appropriate to describe close range relative motions. Whenever their pre-
sumptions are fulfilled, the Hill’s equations are the best choice due to their sim-
plicity. Accordingly, they have been used in this work as governing equations of 
relative translational motion. Relative translational dynamic and kinematic equa-
tions of the chaser’s body with respect to the target’s LVLH are described by the 
Hill’s formulation, as follows [59]:

(1)

�
DL

�
vL
B

�L
DL

�
sBL

�L
�
+

�
A3×3 B3×3

−�3 03

�� �
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�
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�
f
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⎤
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Fig. 1  Chaser’s body, target’s LVLH and ECI coordinate systems configuration
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where �n is the orbital mean angular rate of the target, mB is the mass of the chaser. 
The time derivative of a vector x with respect to the frame Y  is indicated by DYx . 
Hence, DL denotes the time derivative with respect to the target’s LVLH ( L ). Also, [
vL
B

]L
=
[
vx, vy, vz

]T
∈ ℝ

3 and 
[
sBL

]L
=
[
sx, sy, sz

]T
∈ ℝ

3 denote the velocity and posi-
tion vectors of the chaser’s body center of mass with respect to the target’s LVLH, 
respectively, and 

[
f
]L

∈ ℝ
3 denotes the vector of control forces expressed in the tar-

get’s LVLH.
On the other hand, assuming that the target’s body coordinate system is 

aligned with its LVLH coordinate system, the relative rotational dynamic model 
is commonly derived between the chaser’s body and the target’s LVLH coordinate 
systems.

In order to describe the relative rotational dynamic of the chaser’s body with 
respect to the target’s LVLH, which is a non-inertial reference frame, Euler’s rota-
tional equation is used as follows [58]:

where DB denotes the time derivative with respect to the chaser’s body coordi-
nate system ( B ), IB = diag(

[
Ix, Iy, Iz

]
) ∈ ℝ

3×3 is the inertial matrix of the chaser 
along its principal axes, and it is assumed that the principal axes coincide with 
the body coordinate system. Also, 

[
�BL

]B
=
[
�x,�y,�z

]T
∈ ℝ

3,
[
�LI

]B
∈ ℝ

3 and [
�BI

]B
∈ ℝ

3 denote the angular velocity vector of the chaser’s body coordinate sys-
tem with respect to the target’s LVLH, the angular velocity vector of the target’s 
LVLH with respect to the ECI ( I ) and the angular velocity vector of the chaser’s 
body coordinate system with respect to the ECI, respectively. All the angular veloc-
ity vectors are expressed in the chaser’s body coordinate system. Furthermore, 
[m]B =

[
mx,my,mz

]T
∈ ℝ

3 denotes the vector of control torques, expressed in the 
chaser’s body coordinate system. Assuming the target is in the circular orbit, �LI is 
constant. Hence, the Euler’s equation is stated as follows:

In this paper, the rotational kinematic of the chaser’s body coordinate system with 
respect to the target’s LVLH is expressed using the modified Rodrigues parameters 
(MRP), defined as:

where [�]BL is the MRP vector representing transformation from the target’s LVLH 
to the chaser’s body coordinate system. Also, ex, ey and ez are the components of 
Euler axis, and Φ is the principal rotation angle. The rotational kinematic equation 
using MRP is derived as follows [60]:

(2)
I
B

[
D

B
[
�BL
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+
[
�BL

]B
×
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I
B

[
�BL

]B)
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B
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D

L
[
�LI
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+
[
�LI

]B
×
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I
B

[
�BI

]B)
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(3)IB

[
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[
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]B]
+
[
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×

(
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[
�BL
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+
[
�LI
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×

(
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[
�BI

]B)
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(4)[�]BL =
�
�x, �y, �z

�T
=

⎡⎢⎢⎢⎢⎣

extan
�

Φ

4

�
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�

Φ

4

�
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�
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4

�
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where B([�]BL) is defined as:

in which ‖�BL‖2
2
= [�]

LB
[�]BL ( [�]LB is the transpose of [�]BL).

Finally, it should be noted that the control force components are basically 
defined in the chaser’s body coordinate system. Hence, to obtain the control force 
components in the target’s LVLH, as appears in Eq. (1), a transformation has to 
be applied as follows:

where 
[
f
]B

=
[
fx, fy, fz

]T
∈ ℝ

3 denotes the vector of control forces and expressed in 
the chaser’s body coordinate system. [T]LB is the transformation matrix from the 
chaser’s body coordinate system to the target’s LVLH and is defined as a function of 
[�]BL , as follows:

in which 
[
T
]BL

 is the transpose of [T]LB , and [�]BL is the skew-symmetric matrix 
corresponding to[�]BL.

2.2  Optimal Control Problem Definition

Consider the following general optimal control problem with the cost function in 
Bolza form:

subject to the following dynamic constraints, boundary conditions, and inequality 
path constraints, respectively:

(5)[�̇]BL =
1

4
B
(
[�]BL

)[
�BL

]B

(6)B
�
[�]BL

�
=

⎡
⎢⎢⎣
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2

+ 2�2
x

2
�
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�
2
�
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�
2
�
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�
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2
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y
2
�
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�
2
�
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�
2
�
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2
+ 2�2

z

⎤
⎥⎥⎦

(7)
[
f
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= [T]LB
[
f
]B

(8)[T]LB =

[
T
]BL

=

[
�3 +

8
(
[�]BL

)2
− 4

(
1 − �BL2

2

)
[�]

BL

(
1 + �BL2

2

)2
]T

(9)min J = �
(
x
(
t0
)
, t0, x

(
tf
)
, tf

)
+

tf

∫
t0

g(x(t), u(t), t)dt

(10)
dx

dt
= f (x(t), u(t), t)

(11)�
(
x
(
t0
)
, t0, x

(
tf
)
, tf

)
= 0 ∈ ℝ

q
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where x(t) ∈ ℝ
n and u(t) ∈ ℝ

m are the state and control input vectors, respectively. 
Also t0 and tf  are the initial and final times, respectively.

As mentioned earlier, in this paper, the problem is to find the states and con-
trol trajectories in a 6DOF maneuver, subject to specific constraints, that mini-
mize the maneuver time denoted as tf  . Therefore the optimal control problem is 
expressed as:

subject to the dynamic constraints:

the boundary conditions:

and the constraints on control torques and forces:

In this problem, the state and control input vectors are defined as:

(12)C(x(t), u(t), t) ≤ 0 ∈ ℝ
c

(13)min J = tf

(14)

DB
[
�BL

]B
= I−1

B

(
[T]B −

[
�BL

]B
×

(
IB
[
�BL

]B)
−
[
�LI

]B
×

(
IB
[
�BI

]B))

[�̇]BL =
1

4
B
(
[�]BL

)[
�BL

]B
[

DL
[
vL
B

]L
DL

[
sBL

]L
]
=

[
1

m
TLB

[
f
]B

03×1

]
−

[
A3×3 B3×3

−�3 03×3

][ [
vL
B

]L
[
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]L
]

[T]LB =

[
�3 +

8
(
[�]BL

)2
− 4

(
1 − �BL2

2

)
[�]

BL

(
1 + �BL2

2

)2
]T

(15)
x0 =

[[
�BL

]B
, [�]BL,

[
vL
B

]L
,
[
sBL

]L]T
t=t0

xf =
[[
�BL

]B
, [�]BL,

[
vL
B

]L
,
[
sBL

]L]T
t=tf

(16)
|mi| ≤ mi,max, i = x, y, z
|fi| ≤ fi,max, i = x, y, z

(17)
x =

[[
�BL

]B
, [�]BL,

[
vL
B

]L
,
[
sBL

]L]T

u =

[
[m]B,

[
f
]B]T
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2.3  Gauss Pseudo‑spectral Method

The time-optimal 6DOF maneuver trajectories can be obtained by numerically solv-
ing the time-optimal control problem described in the previous section. Pseudo-
spectral methods are a class of direct collocation methods that convert the continu-
ous-time optimal control problem to an NLP problem. The basic idea behind these 
methods is to approximate the states and control trajectories using a basis of global 
interpolating polynomials, based on a set of discrete points across the interval. This 
paper uses the GPM to solve the time-optimal control problem. In this method, the 
states and control trajectories are approximated using the Lagrange polynomials and 
the base points are the Legendre–Gauss (LG) points. The N LG points �1,… , �N are 
defined as the roots of the Nth-degree Legendre polynomial, PN(�) where [46]

These non-uniform points are located on the interior of the interval [− 1, 1], 
and are clustered towards the boundaries, as depicted in Fig. 2. In the GPM, the 
dynamic constraints are forced to be satisfied only at these points (known as the 
collocation points), which leads to increased computational efficiency.

As mentioned above, the GPM collocation points are located on the interior of 
the interval [− 1, 1]. Because of this, the optimal control problem of Eqs. (13–16) 
must be transformed from the time interval t ∈ [t0, tf ] to � ∈ [−1, 1] as:

(18)PN(�) =
1

2NN!

dN

d�N
[
(
�2 − 1

)N
]

Fig. 2  LG points distribution
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Under this mapping, the optimal control problem of Eqs. (8–11) can be rewrit-
ten as:

subject to the constraints:

In the GPM, the LG collocation points −1 < 𝜏1 < ⋯ < 𝜏N < 1 and �0 = −1 are 
considered to approximate the state trajectory using a basis of N + 1 Lagrange 
interpolating polynomials [61],

in which Li(�)(i = 0,… ,N) are the Lagrange polynomials defined as:

Additionally, by considering the LG collocation points, the control trajec-
tory is approximated using a basis of N Lagrange interpolating polynomials 
L∗
i
(�)(i = 1,… ,N) as

where

It can be shown that the Lagrange polynomials of Eqs. (25) and (27) satisfy the 
isolation property as:

(19)� =
2t

tf − t0
−

tf + t0

tf − t0

(20)min J = �
(
x(−1), t0, x(1), tf

)
+

tf − t0

2

1

∫
−1

g
(
x(�), u(�), �;t0, tf

)
d�

(21)
dx(�)

d�
=

tf − t0

2
f
(
x(�), u(�), �;t0, tf

)

(22)�
(
x(−1), t0, x(1), tf

)
= 0

(23)C
(
x(�), u(�), �;t0, tf

)
≤ 0

(24)x(�) ≈ X(�) =

N∑
i=0

X
(
�i
)
Li(�)

(25)Li(�) =

N∏
j=0,j≠i

� − �j

�i − �j

(26)u(�) = U(�) =

N∑
i=1

U
(
�i
)
L∗
i
(�)

(27)L∗
i
(�) =

N∏
j=1,j≠i

� − �j

�i − �j
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By differentiating the expression provided in Eq. (24), the derivative of x(�) at 
the LG points, �k , are obtained as follows:

The derivative of Lagrange polynomials at the LG points, L̇i(𝜏k)(k = 1,… ,N) 
can be expressed as a differential approximation matrix D ∈ ℝ

N×N+1 , the elements 
of which are defined as [46]:

where i = 0,… ,N and k = 1,… ,N . The continuous dynamic constraints of Eq. (21) 
are transcribed into the following set of algebraic dynamic constraints using the 
differential approximation matrix:

in which Xk ≡ X
(
�k
)
∈ ℝ

n and Uk ≡ U
(
�k
)
∈ ℝ

m(k = 1,… ,N) . In the GPM, the 
dynamic constraints are collocated only at the LG points, and the terminal state is 
absent in the state approximation. Therefore, Xf (or XN+1)  can be constrained via the 
Gauss quadrature that relates the final state to the initial state as follows [62]:

where wk are the Guass weights. Also, the continuous cost function of Eq. (20) can 
be approximated with a Gauss quadrature as:

Finally, the boundary conditions of Eq.  (22) and path constraints of Eq.  (20) 
are expressed as:

(28)
Li
(
�j
)
=

{
1, i = j

0, i ≠ j

L∗
i

(
�j
)
=

{
1, i = j

0, i ≠ j

(29)ẋ
(
𝜏k
)
≈ Ẋ

(
𝜏k
)
=

N∑
i=0

x
(
𝜏i
)
L̇i
(
𝜏k
)

(30)Dki = L̇i
(

�k
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 + �k
)

ṖN
(

�k
)

+ PN
(

�k
)

(

�k − �i
)[(

1 + �i
)

ṖN
(

�i
)

+ PN
(

�i
)] , k ≠ i

(

1 + �i
)

P̈N
(

�i
)

+ 2ṖN
(

�i
)

2
[(

1 + �i
)

ṖN
(

�i
)

+ PN
(

�i
)] , k = i

(31)
N∑
i=0

DkiXi −
tf − t0

2
f
(
Xk,Uk, �k;t0, tf

)
= 0, (k = 1,… ,N)

(32)Xf = X0 +
tf − t0

2

N∑
k=1

wkf
(
Xk,Uk, �k;t0, tf

)

(33)J = �
(
X0, t0,Xf , tf

)
+

tf − t0

2

N∑
k=1

wkg
(
Xk,Uk, �k;t0, tf

)
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The cost function of Eq. (33) and the algebraic constraints of Eqs. (31), (32), 
(34) and (35) define an NLP. Solving the NLP gives an approximate solution for 
the continuous-time optimal control problem defined in the former section.

Some optimal control problems have discontinuities in either the states or con-
trol trajectories. In these problems, a common procedure to increase the solution 
accuracy is dividing the trajectories into P-phases, which involves repeating the 
structure for the one-phase formulation P times. Thus, the algebraic dynamic con-
straints of Eq. (31) are collocated at the LG points within each phase. In addition, 
the terminal constraints for the first phase, the initial and terminal constraints for 
the interior phases, and the initial constraints for the Pth phase are re-character-
ized as interior point constraints. These interior point constraints include any con-
tinuity conditions in the state or time between adjacent phases [44, 46]. A sche-
matic of how phases can be linked is shown in Fig. 3 for a 4-phases trajectory.

Accordingly, the boundary constraints of Eq. (34) can be replaced [46]:

(34)�
(
X0, t0,Xf , tf

)
= �

(35)C
(
Xk,Uk, �k;t0, tf

)
≤ �, (k = 1,… ,N)

(36)

L
(1)
(
X
(1)

0
, t

(1)

0

)
= �

L
(r+1)

(r)

(
X
(r)

f
, t

(r)

f
,X

(r+1)

0
, t

(r+1)

0

)
= �

L
(P)
(
X
(P)

f
, t

(P)

f

)
= �

ℎ 1 ℎ 2 ℎ 3 ℎ 4

ℎ 1 2

ℎ 2 3

ℎ 3 4

Fig. 3  Schematic of linkages for a 4-phases trajectory
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where P is the number of phases and r = 1,… ,P − 1 . L(1) , L(P) and L(r+1)

(r)
 denote the 

initial constraints for the first phase, the terminal constraints for the last phase ( P ), 
and the continuity constraints for the interior phases, respectively.

2.4  Costate estimation

The transformed continuous-time optimal control problem of Eqs. (20–23), 
described in Sect. 2.3, can be solved using the calculus of variations and PMP [33] 
to obtain a set of first-order optimality conditions [56]. The first-order optimality 
conditions are found by taking the first-order variation of the augmented Hamilto-
nian, H , defined as:

in which �(�) ∈ ℝ
n is the costate and �(�) ∈ ℝ

c is the Lagrange multiplier associ-
ated with the path constraint. The continuous first-order optimality conditions can 
be expressed as follows:

where � ∈ ℝ
q is the Lagrange multiplier associated with the boundary condition �.

As mentioned earlier, in the GPM, KKT multipliers obtained from solving the 
NLP can be used for costate estimation and first-order optimality proof. Using KKT 
multipliers, a costate estimation for the continuous-time optimal control problem 
(an estimation for �(�)) , can be obtained at the LG points and the boundary points. 
Because of brevity, the details are not presented in this paper, and the interested 

(37)
H
(
x,�,�, u, �;t0, tf

)
= g

(
x, u, �;t0, tf

)
+ �T (�)f

(
x, u, �;t0, tf

)

− �T (�)C
(
x, u, �;t0, tf

)

(38)

dx

d𝜏
=

tf − t0

2
f
(
x(𝜏), u(𝜏), 𝜏;t0, tf

)
=

tf − t0

2

𝜕H

𝜕�

d�

d𝜏
=

tf − t0

2

(
−
𝜕g

𝜕x
− �T 𝜕f

𝜕x
+ �T 𝜕C

𝜕x

)
= −

tf − t0

2

𝜕H

𝜕x

0 =
𝜕g

𝜕u
+ �T 𝜕f

𝜕u
− �T 𝜕C

𝜕u
=

𝜕H

𝜕u

�
(
x
(
𝜏0
)
, t0, x

(
𝜏f
)
, tf

)
= �

�
(
𝜏0
)
= −

𝜕𝜙

𝜕x
(
𝜏0
) + �T 𝜕�

𝜕x
(
𝜏0
)

�
(
𝜏f
)
=

𝜕𝜙

𝜕x
(
𝜏f
) − �T 𝜕�

𝜕x
(
𝜏f
)

H
(
t0
)
=

𝜕𝜙

𝜕t0
− �T 𝜕�

𝜕t0

H
(
tf
)
= −

𝜕𝜙

𝜕tf
+ �T 𝜕�

𝜕tf

𝜇j(𝜏) = 0, whenCj

(
x, u, 𝜏;t0, tf

)
< 0, j = 1,… , c

𝜇j(𝜏) ≤ 0, whenCj

(
x, u, 𝜏;t0, tf

)
= 0, j = 1,… , c
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reader is referred to [45]. The Gauss pseudo-spectral costate estimation is stated via 
the following theorem [45]:

Theorem1 (Gauss pseudo-spectral costate mapping theorem): a costate estimate 
at the initial time, final time, and the LG points can be found from the KKT multi-
plier as follows:

where Λ̃0 is defined as:

�̃k , �̃f  and �̃ are the KKT multipliers associated with dynamic constraints of 
Eq. (31), constraints of Eq. (32) and boundary constraints of Eq. (34), respectively. 
Also, �k , �0 and �f  are the estimated costates in LG points, initial time and final 
time, respectively.

3  Numerical Simulation

In this section, the time-optimal control problem described in Sect.  2.2 is solved 
using GPM. The transformed continuous-time optimal control problem is first con-
verted to the NLP, and then the sequential quadratic programming (SQP) iterative 
algorithm is utilized to solve the NLP and obtain the approximate controls and 
states trajectories. The GPM optimization and costate estimation pseudo-code are 
expressed in Table 1. It should be noted that in the time-optimal control problem, 
the final time is free. Therefore, the NLP variables include states and controls values 
in LG points, and tf .

Proximity operations are commonly divided into two stages, namely rendezvous 
and docking maneuvers. The docking maneuver should be performed at a constant 
low relative velocity due to safety reasons, and the time-optimality of this maneuver 
is unnecessary. Therefore, in order to achieve to the target spacecraft in time-critical 
conditions, the rendezvous maneuver should be designed to be implemented in min-
imum time. At the end of the rendezvous maneuver, the chaser spacecraft must be in 
a desired attitude, velocity and position to start the docking maneuver. Without loss 
of generality, it is assumed that the target’s body coordinate system is aligned with 
its LVLH coordinate system and its docking port is facing up (contrary direction 
of axis zL ). Also, the chaser spacecraft docking port is in contrary direction of axis 
xB . Accordingly, in the simulation scenario the chaser spacecraft should be located 
above the target spacecraft, in the desired attitude, velocity and position, to start the 
docking maneuver. Assuming that docking will start immediately after rendezvous, 
the simulation scenario is defined for a rest-to-rest 6DOF rendezvous maneuver.

(39)
�k =

�̃k

wk

+ �̃f

�0 = �̃0,�f = �̃f

(40)�̃
T
0
= −

𝜕𝜙

𝜕X0

+ �̃T
𝜕�

𝜕X0
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At the initial time, the chaser spacecraft is located 20 m ahead of the target space-
craft, and the chaser’s body coordinate system coincides with the target’s LVLH. 
Also, at the final time, the chaser spacecraft should be located 10 m above the tar-
get spacecraft, and the chaser’s body coordinate system must have a complete rota-
tion around the yB axis. When the chaser spacecraft reaches the final states in the 
rendezvous maneuver, it starts the docking maneuver and moves toward the target 
spacecraft at a constant low relative velocity. The docking maneuver is beyond our 
research and has not be investigated in this section. The schematic of this scenario 
is shown in Fig.  4. The parameters of the chaser spacecraft are chosen based on 
the NASA X-ray Timing Explorer (XTE) characteristics [63], as shown in Table 2. 
Also, the initial and terminal states are given in Table 3. It is assumed that all the 
chaser’s body axes have independent thruster actuators to generate control torques 
and forces.

The number of phases in the GPM discretization and the number of LG points in 
each phase are considered 20 and 3, respectively. It is assumed that the time interval 
of the phases is equal. The results of the simulation scenario are shown in Figs. 5, 6, 
7, 8, 9, 10, 11, and 12. The rotation sequence for Euler angles trajectories in Fig. 9 
is ’YXZ’.

Some studies have shown that the control structure for a time-optimal reorien-
tation maneuver, considering cubical constraints on control torques magnitude, is 
"bang-bang" [7–9, 13]. Similarly, the results given in Figs. 5 and 6 show that for a 
time-optimal 6DOF maneuver, considering the cubical constraint on control torques 
and forces magnitude, the control structure is "bang-bang". It is the most natural and 
convenient form of control to be implemented via simple on–off thrusters, which 
are the most popular and widely used thrusters for spacecraft control due to their 
simplicity and low cost. The time duration of the time-optimal 6DOF maneuver is 
tf = 25.87s . Furthermore, [7] shows that in the spacecraft time-optimal reorienta-
tion maneuver with independent three axes control torques, although the net attitude 
reorientation is just about one body axis, other control torques (about the other body 

Table 1  GPM optimization and costate estimation pseudo-code

Stage number Operations

1 Determine:
• Boundary conditions of state vector ( x0 , xf )
• Number of phases and number of LG points in each phase ( nI , nLG)
• Upper and lower bound of states and controls values in LG points, and tf  ( Bu , Bl)
• Initial guess for states and controls values in LG points, and tf  ( S0)

2 Determine:
• Nonlinear constraints function for algebraic dynamic constraints of Eq. (31), 

constraints of Eq. (32) and boundary constraints of Eq. (36)
(function name: NonlinConst_fun)
• Cost function of Eq. (33)
(function name: Cost_fun)

3 Find the optimal solution by means SQP method
[Sopt , �̃] = SQP (Cost_fun, NonlinConst_fun, S0 , Bu , Bl)

4 Costate estimation using KKT multipliers ( ̃� ), by Eqs. (39) and (40)
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axes) are also engaged in order to achieve the minimum time. Our results given in 
Figs.  5 and 6 show that this issue can be generalized for the time-optimal 6DOF 
maneuver.

As shown in Figs. 7 and 10, the relative angular velocity and relative linear veloc-
ity vectors meet the rest condition. Also, results in Figs. 8, 9, and 11 show that the 
attitude and relative position trajectories meet the desired terminal conditions given 
in Table  3. The 3D schematic of the time-optimal 6DOF maneuver for the men-
tioned scenario is shown in Fig. 12.

In order to obtain a first-order optimality proof of the obtained solution, the cos-
tate estimation is used. Based on Theorem 1, using KKT multipliers obtained from 
solving the NLP problem, a costate estimation can be achieved at the LG and bound-
ary points. The results of the costate estimation are shown in Figs. 13, 14, 15, and 
16.

Fig. 4  Simulation scenario of 6DOF rendezvous maneuver

Table 2  Parameters of chaser 
spacecraft

Parameters Value

Moments of inertia (kg  m2) Ix = 5621, Iy = 4547, Iz = 2364

Mass (kg) mB = 3200

Maximum generated torques (Nm) [m]B
max

= [50, 50, 50]
T

Maximum generated forces (N) [
f
]B
max

= [320, 320, 320]
T

Orbital altitude (Km) horbit = 580
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Considering the cost function in Bolza form of Eq.  (9), for the assumed time-
optimal control problem, the �

(
x(t0), t0, x

(
tf
)
, tf

)
 and g(x(t), u(t), t) functions are 

expressed as follows:

Also, in this simulation, the boundary conditions �
(
x
(
t0
)
, t0, x

(
tf
)
, tf

)
 are fixed 

and are not a function of tf  . Hence, according to Hamiltonian and first-order opti-
mality conditions of Eqs. (37) and (38), respectively:

(41)
�
(
x
(
t0
)
, t0, x

(
tf
)
, tf

)
= tf

g(x(t), u(t), t) = 0

Table 3  Initial and terminal conditions in simulation scenario

Parameters Initial condition Terminal condition

[
�BL

]B(rad/s) [0, 0, 0]
T

[0, 0, 0]
T

[�]BL [0, 0, 0]
T [

0, tan

(
90◦

2

)
, 0

]T
= [0, 0.4142, 0]

T

[
vL
B

]L(m/s) [0, 0, 0]
T

[0, 0, 0]
T

[
sBL

]L(m) [20, 0, 0]
T

[0, 0,−10]
T

Fig. 5  Control torques trajectories
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Fig. 6  Control forces trajectories

Fig. 7  Angular velocities trajectories
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Fig. 8  MRPs trajectories

Fig. 9  Euler angles trajectories
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Fig. 10  Relative linear velocities trajectories

Fig. 11  Relative position trajectories
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Regarding the dynamic constraints of Eq.  (14), the Hamiltonian, H , does not 
depend on time:

Therefore, the Hamiltonian must be constant and equal to -1 along the optimal 
trajectory.

Figure 17 shows that the computed Hamiltonian is approximately equal to -1 
and fulfills the first-order optimality conditions.

As mentioned earlier, the costates have no physical interpretation, so their var-
iations do not explicitly represent a tangible phenomenon. The main use of the 
costate variables is to prove the optimality of the obtained solution (according to 
Eq. 37). The purpose of providing the corresponding graphs (Figs. 13, 14, 15, 16 
in the new version) is thus to provide a basis for the reader to verify the Hamilto-
nian graph (Fig. 17).

(42)H
(
x,�,�, u, �;t0, tf

)
= �T f

(
x, u, �;t0, tf

)

(43)H
(
tf
)
= −1

�H

�t
= 0

H(t) = −1

20

10

Fig. 12  3D schematic of time-optimal 6DOF maneuver
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Fig. 13  Angular velocity costates trajectories

Fig. 14  MRP costates trajectories
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Fig. 15  Relative velocity costates trajectories

Fig. 16  Relative position costates trajectories
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4  Conclusion

The time-optimal 6DOF maneuver problem was studied for an inertially 
asymmetric rigid spacecraft with independent control actuators for attitude and 
position control. For example, the time-optimal control problem was formulated 
for a rendezvous maneuver between two spacecraft. In the relative dynamic 
modeling of spacecraft, the orbital dynamic and coupling between attitude and 
position control were applied to rotational and translational dynamics. Then, 
the GPM was used to discretize the time-optimal control problem, and the SQP 
algorithm was adopted to solve the resulted problem. Finally, the costates were 
estimated by using the KKT multiplier.

In the simulation, it was observed that the control structure is "bang-bang" for 
the assumed time-optimal 6DOF maneuver problem. It is the most natural and 
convenient control structure which can be implemented by simple on–off thrusters. 
Although the net attitude reorientation was just about one body axis, and the 
displacement was along two LVLH axes, other control torques and forces (along the 
other body axes) were also engaged to achieve the minimum time. This observation 
can also be attributed to the coupling between attitude and position control stated 
earlier.

As a verification of the obtained solution, the costate estimation results showed 
that the solution fulfills the first-order optimality conditions.

Data Availability Some or all data, models, or code generated or used during the study are available in a 
repository or online in accordance with funder data retention policies.

Fig. 17  Hamiltonian trajectory
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