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Abstract
Quasi-periodic orbits offer a broad range of flexibly and adaptable destinations in 
multi-body systems. In this investigation, a computational framework for construc-
tion of heteroclinic connections between quasi-periodic orbits is summarized. Sub-
sequently, families of heteroclinic connections are characterized and examples are 
provided in the Circular Restricted Three-Body Problem (CR3BP). Transition to an 
ephemeris model is also demonstrated. An understanding of these types of transfers 
is crucial for a more complete picture of the flow in a three-body system.

Keywords Quasi-periodic orbits · Dynamical systems theory · Three-body 
problem · Heteroclinic connections

1 Introduction

In 2020, NASA released the agency’s lunar exploration program overview, offering 
the status of Artemis and Gateway as well as plans for additional extended lunar 
missions [1]. Additionally, the Artemis 1 mission successfully tested the Orion cap-
sule in deep space in 2022 [2]. To enable such endeavors, an understanding of the 
cislunar gravitational environment is crucial and essential to the success of these 
programs. However, given the chaotic nature of a multi-body system, preliminary 
path planning in this environment is challenging. To meet these challenges, stream-
lining the trajectory design process by leveraging dynamical structures in cislunar 
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space is enabling. In this investigation, a computational framework is developed 
to construct maneuver-free, heteroclinic transfers between quasi-periodic orbits 
(QPOs) in the CR3BP. Furthermore, quasi-periodic orbits expand the design space 
and add flexibility in orbit selection as well as the construction of transfer paths. 
Quasi-periodic orbit characterization and stability properties are initially summa-
rized. Then, the process to produce initial guesses using Poincaré mapping is dem-
onstrated. Finally, the computational algorithm to compute families of heteroclinic 
transfers is detailed and these families of solutions are characterized in the Earth-
Moon CR3BP. Ultimately, the framework for this investigation augments the exist-
ing techniques for path planning in multi-body regimes.

Several authors have examined heteroclinic connections between quasi-peri-
odic orbits previously. Calleja et  al. demonstrate an indirect method to com-
pute heteroclinic connections between periodic and quasi-periodic orbits using 
collocation [3]. Goméz focuses on connections using a large set of trajectories 
propagated from the semi-analytic center manifold [4]. Olikara expands upon 
both approaches in developing a boundary value problem to compute hetero-
clinic connections between quasi-periodic tori [5]. Most recently, Bonasara and 
Bosanac explore heteroclinic connections between quasi-periodic orbits near 
resonances by leveraging unsupervised machine learning techniques [6]. De 
Smet and Scheeres also investigate identification of heteroclinic connections 
using artificial neural networks [7]. Henry and Scheeres also surveyed the het-
eroclinic connections in the Earth-Moon system to traverse between L1 and L2 
[8]. This investigation builds upon previous work by McCarthy and Howell to 
construct of heteroclinic connections between quasi-periodic orbits [9]. Spe-
cifically, the contribution of this investigation is the development of a unique 
framework to, first, find potential heteroclinic connections between QPOs, 
then compute families of heteroclinic transfers, and lastly, demonstrate that the 
transfers maintain their geometry when transitioned to a higher-fidelity ephem-
eris model. First, potential heteroclinic connections between quasi-periodic 
orbits are isolated by leveraging Poincaré maps. Then, families of connections 
are characterized and constructed by varying the destination orbit, the depart-
ing orbit, or the Jacobi Constant across each member of a family; examples of 
these families are constructed in the Earth-Moon system. Details of a targeting 
process to compute each member of the family are summarized; this summary 
includes addressing challenges associated with partial derivative calculations 
with higher-order finite differencing to improve targeter convergence behav-
ior. Finally, the transition process to an ephemeris model leverages a mutliple 
shooting differential corrections algorithm to show that the geometry of solu-
tions obtained in the Earth-Moon CR3BP exist in a higher-fidelity model that 
more accurately represents the space environment. The examples in this investi-
gation seek to demonstrate the flexibility of the framework, highlight its useful-
ness within the multi-body trajectory design process, and provide an additional 
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set of tools to incorporate quasi-periodic orbits into the end-to-end trajectory 
design process.

2  Dynamical Model

The CR3BP offers higher fidelity and additional behaviors in comparison to the 
two-body model. In this multi-body model, two gravitational bodies, denoted 
P1 and P2 , remain in circular Keplerian orbits about their mutual barycenter 
(i.e., center of mass). A third body, P3 , moves under the gravitational influence 
of the two larger bodies and is assumed to be massless. The model is defined 
relative to a rotating coordinate system, where the +x̂ direction is defined from 
the barycenter toward P2 . The +ẑ direction is defined parallel to the direction of 
the orbital angular momentum vector for P1 and P2 ; the ŷ direction completes 
the orthonormal triad. The nondimensional position and velocity for P3 relative 

to the barycenter in the rotating frame are defined as x =
[
x y z ẋ ẏ ż

]T  , where 
the first three and the last three elements are the position and relative velocity 
components, respectively. The equations of motion for a particle moving in the 
CR3BP are a set of three, second-order scalar differential equations of motion,

The pseudo-potential function is a scalar defined solely in terms of position and the 
CR3BP nondimensional mass parameter, � = M2∕(M1 +M2) , where M1 and M2 are 
the masses of P1 and P2 , respectively [10]. The pseudo-potential function takes the 
following form,

where d =
√
(x + �)2 + y2 + z2 and r =

√
(x − 1 + �)2 + y2 + z2 represent the non-

dimensional distances of P3 relative to P1 and P2 , respectively. The CR3BP admits 
a single integral of the motion, commonly denoted the Jacobi Constant (JC). The 
Jacobi Constant is a function of the pseudo-potential and the rotating velocity mag-
nitude expressed in the rotating reference frame,

where v =
√
ẋ2 + ẏ2 + ż2 . The Jacobi Constant is an energy-like quantity that char-

acterizes motion in a CR3BP system and remains constant for all time over any 
ballistic arc propagated in the CR3BP. One advantage of the CR3BP model is that 
the system is time invariant. The CR3BP is a good approximation for a multi-body 
environment and the trajectory characteristics generally persist when transitioning 
results to a higher-fidelity ephemeris model [11, 12].

(1)ẍ − 2ẏ =
𝜕U∗

𝜕x
ÿ + 2ẋ =

𝜕U∗

𝜕y
z̈ =

𝜕U∗

𝜕z

(2)U∗ =
x2 + y2

2
+

�

r
+

1 − �

d

(3)JC = 2U∗ − v2
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3  Characteristics of Quasi‑Periodic Orbits

Quasi-periodic orbits exist in the vicinity of periodic solutions when the mono-
dromy matrix possesses complex eigenvalues of unit magnitude. Furthermore, 
quasi-periodic trajectorties are represented along families of invariant tori. Invari-
ant tori are characterized by the number of fundamental frequencies that define the 
motion on the torus, such that an n-dimensional torus possesses n fundamental fre-
quencies. Equilibrium solutions and periodic orbits are examples of 0-dimensional 
and 1-dimensional tori, respectively. For a periodic orbit, a single fundamental fre-
quency defines the motion. Quasi-periodic orbits then evolve on tori where n > 1 . In 
the CR3BP, 2-dimensional quasi-periodic tori are known to exist in two-parameter 
families [13]. The algorithm to compute QPO families is detailed by McCarthy and 
Howell; the basic framework was originally developed by Olikara and Scheeres, 
Castella and Jorba, as well as Gomez and Mondelo [13–16]. This algorithm was 
selected for this investigation based on the conclusions by Baresi, Olikara, and 
Scheeres on the runtime and accuracy of the algorithm [17]. In Fig.  1, members 
of three different quasi-vertical families are rendered in the Earth-Moon CR3BP; 
all originate from the same periodic vertical orbit. Each of these families possess a 
characteristic quantity that is constant across all members of an individual family. 
For example, the members in Fig.  1a all possess the same Jacobi Constant value 
and the members in Fig. 1c all possess the same frequency ratio. Additionally, lin-
ear stability is determined for quasi-periodic orbits by assessing the characteristics 
of the eigenstructure in the stroboscopic map, as summarized by Jorba, Olikara 
and Scheeres as well as McCarthy and Howell [13, 14, 18]. The linear stability is 
assessed through variations associated with the invariant curve of the QPO. A con-
venient stability index metric is defined by McCarthy and Howell, such that when 
the stability index is equal to unity, the QPO is considered stable, and when the sta-
bility index is greater than unity, the QPO is characterized as unstable [14]. Unstable 
orbits possess stable and unstable manifolds that asymptotically approach and depart 
the orbit, repsectively; these manifolds are the basis for the construction of the het-
eroclinic connections [3, 5, 8].

Fig. 1  Members of the L
1
 quasi-vertical families where a Jacobi Constant is fixed for all members, b the 

stroboscopic mapping time is fixed for all members, and c the frequency ratio is fixed for all members in 
the Earth-Moon CR3BP
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4  Heteroclinic Connections

Heteroclinic transfers within the context of astrodynamics are defined as paths 
that flow freely from a departing orbit to a destination orbit by means of stable 
and unstable manifold trajectories. A particle moving along an unstable mani-
fold from the originating orbit simultaneously flows onto the stable manifold of 
the destination orbit, such that no maneuver impulse is required to change the 
path. These types of transfers are leveraged for trajectory design, and also pro-
vide a broader understanding of the flow within a given region of a multi-body 
space. This investigation is focused on the development of an effective strategy to 
construct and characterizes heteroclinic connections between quasi-periodic tori. 
Given the higher dimensionality of the spatial problem, as compared to the planar 
CR3BP, challenges exist in locating an initial heteroclinic connection between 
two orbits. A method developed by Haapala and Howell is expanded to lever-
age glyphs and produce an initial guess for a heteroclinic connection between 
two quasi-periodic orbits [19]. Next, a differential corrections procedure delivers 
a continuous heteroclinic connection between two orbits. Finally, a continuation 
process is leveraged to generate a family of heteroclinic connections.

4.1  Poincaré Mapping

Poincaré maps are a useful tool in the identification of solutions in the trajectory 
design problem. They reduce the dimensionality of the design space to expedite 
the process of initial guess construction for transfer trajectories. Maps are also 
augmented through the use of coloring or glyphs to represent additional informa-
tion. Ponicaré maps are first constructed by selecting a hyperplane to examine 
the flow. In this investigation, the hyperplanes include a physical plane (i.e., the 
x̂ẑ plane in the rotating frame) as well as some characteristic of the path (i.e., a 
periapsis condition). To visually represent this technique, consider the hyperplane 
Σ in Fig. 2. Trajectories that pass through or satisfy the condition for the defined 
hyperplane along their path are recorded. Evolution of the states is observed 
between x̄R0 and x̄R1 , as the trajectory moves forward in time. Additionally, 

Fig. 2  Diagram of Poincaré mapping technique
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trajectories that return to the same location on the map are considered periodic, 
exemplified by the state x̄∗ on the hyperplane in Fig. 2. In this investigation, Poin-
caré maps aid in identifying potential heteroclinic transfers.

4.2  Identification of an Initial Guess

To determine an initial guess for a potential heteroclinic connection, informa-
tion from Poincaré maps is leveraged to isolate candidate transfers. Consider two 
unstable QPOs in the Earth-Moon CR3BP, one unstable L1 QPO and an L2 unstable 
QPO. Both of these orbits are constructed such that their energy value is selected as 
JC = 3.11 . Since both of these orbits exist at the same Jacobi Constant level, it is 
possible that heteroclinic connections exist that render maneuver-free paths between 
them. Trajectories representing the unstable manifolds are propagated in forward 
time from the L2 quasi-halo orbit and recorded whenever they cross the x̂ẑ plane 
in the Earth-Moon rotating frame. Similarly, trajectories representing the stable 
manifolds of the L1 quasi-halo are propagated in reverse time and the crossings are 
recorded. From the recorded states, a Poincaré map is created using the position and 
velocity information, where states from the stable and unstable manifolds are plot-
ted in blue and red, respectively, in Fig. 3. The position at the crossing of the plane 
is recorded as a point and the velocity information is represented as an arrow. The 
direction of the arrow indicates the direction of the x̂ and ẑ components of veloc-
ity at the plane crossing, while the length of the arrow indicates the magnitude of 
each of the x̂ and ẑ velocity components. Lastly, only states with ẏ > 0 are rendered 
on the map so that the direction of the flow through the map is consistent between 
the stable and unstable trajectories. Thus, an initial guess is selected from the map 
such that two points that share a similar x- and z-position as well as possess arrows 
in nearly the same direction and magnitude. The process of selecting the stable and 
unstable connection initial guess is performed visually in Fig.  3, which is similar 
to the process leveraged by Haapala and Howell [19]. The initial guesses used to 

Fig. 3  Poincaré map with the stable manifold trajectory points (blue) from an L
1
 quasi-halo orbit and the 

unstable manifold trajectory points (blue) from an L
2
 quasi-halo orbit
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construct Figs. 8 and 9a were selected by performing an all-to-all comparison of the 
stable and unstable information on the map, i.e., the norm of the difference between 
the x, z, ẋ , and ż components of the stable and unstable manifold trajectories repre-
sented on the map is computed, and the trajectories associated with the lowest norm 
are considered as possible connections. While selecting a point using this criteria 
does not guarantee a connection, it supplies a sufficient initial guess to seed a differ-
ential corrections algorithm.

4.3  Targeting a Heteroclinic Connection

The targeting problem to compute heteroclinic connections is an extension of the 
formulation by Haapala and Howell in the CR3BP as well as McCarthy and Howell 
in the Bicircular Restricted Four-Body Problem [19, 20] and the scheme is illus-
trated in the diagram in Fig. 4. In Fig. 4, the red oval reflects the initial torus and the 
blue oval indicates the destination torus.

The states retrieved from the Poincaré map deliver the initial guess for the black 
path in Fig. 4. The constraint vector is then defined,

where xT is the originating state on the transfer segment and xt
T
 reflects the state on 

the transfer segment after it is forward propagated for time TT . Then, du and ds are 
scalars that define the small perturbation of the state along the unstable and stable 
manifold directions, respectively; vu and vs are the 6 × 1 stable and unstable eigen-
vectors at latitudinal angles of �1,u and �1,s , respectively, on the invariant curve for 
their respective orbits, and Φu and Φs are the state transition matrices propagated 
from their initial states for time �u and �s , respectively, xM,u and xM,s , on the invari-
ant curve for the initial and destination tori, respectively. Note that the values for ds 
and du are equal to 0.0001 for all cases in this investigation. Also note that setting 

(4)F =

�
F1

F2

�
=

⎡⎢⎢⎣
xT −

�
x
t
M,u

+ du
Φuvu

�Φuvu�
�

x
t
T
−
�
x
t
M,s

+ ds
Φsvs

�Φsvs�
�
⎤⎥⎥⎦

Fig. 4  Heteroclinic targeting procedure diagram
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du and ds equal to a larger number could cause the trajectories to no longer represent 
the manifolds, while smaller values for du and ds could result in longer propaga-
tion times. The value chosen for this investigation intends to balance both trade-offs. 
Subsequently, a free variable vector is defined,

where TT is the time along the transfer segment, �u is the time from the invariant 
curve departure to the unstable perturbation location on the initial torus, �s is the 
time from arrival on the destination torus to the appropriate invariant curve, then, 
�1,u and �1,s are the latitudinal angles along the invariant curve for the initial and 
destination tori, respectively. The Jacobian for the targeting problem is subsequently 
defined,

where �(TT , 0) is the state transition matrix from xT to xt
T
 and ẋt

T
 is the time deriva-

tive of xt
T
 . The derivative of the unstable manifold constraint with respect to �u is 

defined,

where �̇u is the time derivative of the state transition matrix evaluated at xt
M,u

 . The 
state transition matrix is the gradient of the state equations for the CR3BP, defined 
in Eq. (1). The derivative of the stable manifold constraint with respect to �s is devel-
oped similarly. The derivative of the unstable manifold constraint with respect to �1,u 
is subsequently defined,

where �xM,u

��1
 is summarized by McCarthy [21]. The second term on the right side in 

Eq. (8) defined is evaluated as,

where M is defined,

(5)X =
[
xT TT �u �s �1,u �1,s

]T

(6)�� =

⎡
⎢⎢⎣

I6×6 06×1
𝜕F1

𝜕𝜏u
06×1

𝜕F
1

𝜕𝜃1,u
06×1

Φ(TT , 0) ẋ
t
T

06×1
𝜕F2

𝜕𝜏s
06×1

𝜕F2

𝜕𝜃1,s

⎤
⎥⎥⎦

(7)
𝜕F1

𝜕𝜏u
= −ẋM,u − du

⎛⎜⎜⎝
Φ̇uvu

(vT
u
ΦT

u
Φuvu)

1

2

− Φuvu

vT
u
ΦT

u
Φ̇uvu + vT

u
Φ̇T

u
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2(vT
u
ΦT

u
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3

2

⎞⎟⎟⎠

(8)�F1
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�
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and the term �Φu

��1,u
 is evaluated numerically via 4th order finite differencing [22]. 

Numerical experiments demonstrate that leveraging higher-order finite differencing 
to compute �Φu

��1,u
 improves the convergence behavior of the differential corrections 

process. The term �vu

��1,u
 is defined using a Fourier series expansion to represent the 

unstable eigenvector directions along the invariant curve,

where �u is the matrix of Fourier coefficients that is constructed from the unsta-
ble eigenvector directions on the invariant curve. To compute the matrix �u , the 
unstable eigenvectors associated with the discrete states along the invariant curve 
are rearranged into an N × 6 matrix, �u , such that the ith row represents the unstable 
eigenvector direction for the ith state along the invariant curve,

with � as the discrete Fourier transform, as defined by McCarthy and Howell [14]. 
The partial derivatives of the stable manifold constraint with respect to the latitudi-
nal angle on the arrival orbit is constructed similarly. Note that there is one more 
constraint than free variable for this problem formulation. However, since the Jacobi 
Constant is implicitly constrained when solving for a heteroclinic connection in the 
CR3BP, one of the state constraints is removed. Furthermore, a sign ambiguity 
exists when one of the state constraints is removed. To ensure that 6-element state is 
continuous between xt

T
 and xt

M,s
 when the differential corrections process has com-

pleteled, the ẏ component of the state is removed from the continuity constraint. 
Note that if the element that is removed is near zero, then the differential corrections 
process can converge to a solution that does not possess 6-element state continuity 
due to the sign ambiguity. Subsequently, there are 11 constraints and 11 free varia-
bles and a unique solution between two quasi-periodic orbits at the same value of 
Jacobi Constant, given such a connection exists. This formulation is also extendable 
to a multiple-shooting problem, where the transfer segment is decomposed into 
smaller segments. Even though the number of constraints is equal to the number of 
free variables, there is no guarantee that a connection exists from a selected initial 
guess. First, the initial guess may not be sufficiently close to the final solution for the 
corrections algorithm to effectively solve for the connection or a connection simply 
does not exist for these exact QPOs and a solution nearby, at a slightly higher or 
lower Jacobi Constant, is sought. Subsequently, to aid in the convergence from the 
initial guess, an additional free variable can be appended to the free variable vector 
in Eq. (5). While the addition of this free variable does not guarantee convergence, it 
improves convergence behavior by adding a degree of freedom in the targeting 

(10)� =

�vu

��1,u

T
ΦT

u
Φuvu + vT

u

�Φu

��1,u

T
Φuvu + vT

u
ΦT

u

�Φu

��1,u
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u
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u
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2
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problem. This free variable is a parameter that characterizes the departing or desti-
nation QPO such the departing/destination orbit is allowed to vary during the target-
ing process. For example, consider the appended free variable to be the rotation 
angle �u that corresponds to the rotation angle for the departing quasi-periodic orbit. 
By appending �u to the end of the free-variable vector, the departing QPO is recom-
puted using the algorithm summarized by Gomez and Mondelo as well as Olikara 
and Scheeres (denoted the GMOS algorithm), within each iteration of the targeting 
process [17]. However, challenges exist when evaluating the variations of the stable 
eigenvector direction with respect to �u , i.e., �vu

��u
 , since these variations cannot be 

computed analytically. The accuracy of the derivatives of the unstable eigenvector 
with respect to the rotation angle is related to the accuracy for which the eigenvec-
tors are computed for the departing quasi-periodic orbit. To resolve this challenge, 
the �u free variable is included until the constraint vector reaches a tolerance of 
0.0000001, then �u is removed from the free variable vector. This strategy attempts 
to relax the sensitivity of the problem such that an initial basin of convergence is 
accessed. To demonstrate the process, the initial guess from the map in Fig. 3 is sup-
plied to the differential corrections procedure and the resulting converged hetero-
clinic connection is rendered in Fig. 5a.

4.4  Families of Heteroclinic Connections

Given that this targeting problem produces a unique transfer solution, the process 
is extended to construct families of heteroclinic transfers. To construct families, a 
parameter to represent the destination orbit is included in the process. Since quasi-
periodic orbits are uniquely defined by two parameters in the CR3BP and the Jac-
obi Constant is constrained between the initial and final orbits, the rotation angle 
is selected as the parameter to characterize the destination orbit within a family of 
heteroclinic connections. The initial converged transfer from Fig. 5a seeds a natural 

Fig. 5  a Converged heteroclinic connection between the two quasi-halo orbits with JC = 3.11 . b x̂ŷ pro-
jection of the converged heteroclinic transfer. Arrows indicate the the direction of motion
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parameter continuation process, where the destination orbit, characterized by the 
rotation angle, �s , is modified for each member of the family. The parameter �s is 
considered as the continuation parameter when generating the family of transfers. 
Subsequently, the value of �s is incremented by 0.01 to seed the next member of the 
family. Members of the family of heteroclinic transfers where JC = 3.11 are ren-
dered in Fig.  6a. Note that the gaps in the continuum of transfer solutions occur 
where the ratio of the latitudinal and longitudinal frequencies associated with the 
departing orbit is very near or equal to an integer ratio. Similarly, using the same 
initially converged transfer solution in Fig. 5a, a family of heterclinic connections is 

Fig. 6  Family of heteroclinic transfers between an L
2
 quasi-halo orbit with � = 0.48882741 and a range 

of L
1
 quasi-halo orbits with JC = 3.11 . Arrows indicate the direction of motion. The first and last L

1
 

quasi-halo orbits from the family are plotted in each projection

Fig. 7  a Family of heteroclinic transfers between a range of L
2
 quasi-halo orbits with JC = 3.11 and an L

1
 

quasi-halo orbit with � = 0.6226313 . Arrows indicate the direction of motion. The first and last L
2
 quasi-

halo orbits from the family are plotted in each projection. b Time-of-flight as a function of the rotation 
angle for the departing/destination orbits. The blue curve corresponds to the family in Fig. 6a and the 
orange curve corresponds to the family in 7a
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constructed such that the departing L2 quasi-halo orbit is modified for each member 
of the family. The family is rendered in Fig.  7a. In Fig. 7b, time-of-flight is plot-
ted as a function of the rotation angle of the orbit that is varying across the fam-
ily, i.e., the blue curve corresponds to the time-of-flight associated with the trans-
fers rendered in Fig. 6a as a function of the destination orbit rotation angle and the 
orange curve corresponds to the time-of-flight for the transfers rendered in Fig. 7a as 
a function of the departing orbit’s rotation angle. Note that the two curves plotted in 
Fig. 7b possess a common time-of-flight equal to 31.325 days, at the location indi-
cated by the black arrows. The common time-of-flight corresponds to the initially 
converged solution from Fig. 5a. This same methodology is employed for a different 
destination orbit, as illustrated in Fig. 8a. The destination orbit is shifted to an L1 
quasi-vertical orbit and a family of heteroclinic transfers from L2 quasi-halo orbits to 
a set of L1 quasi-vertical orbits is successfully accomplished. Each of the transfers in 
Fig. 8a are colored consistent with to their times-of-flight.

Families of transfer solutions are also constructed by switching the continuation 
parameter. As an alternative strategy, the rotation angles for the departure destina-
tion orbits are maintained as constant, and the Jacobi Constant is then employed as 
the continuation parameter. Thus, each transfer in the family possesses a different 
departure and arrival orbit, and the Jacobi Constant varies across members of the 
family. During the continuation process, the L1 and L2 orbits are first reconverged at 
each continuation step such that they possess the same Jacobi Constant value. Then, 
the heteroclinic transfer is converged between these two orbits. To demonstrate this 
classification of heteroclinic transfer families, consider a transfer scenario from an 
L2 quasi-vertical orbit to an L1 quasi-vertical orbit. After selecting an initial guess, a 
subset of the family of heteroclinic transfers is constructed and rendered in Fig. 9a. 
Each transfer is colored by its Jacobi Constant value. The red surfaces represent 
quasi-vertical orbits with JC = 3.15 and the grey surfaces represent orbits with the 
value JC = 3.1363 . Using Jacobi Constant as the continuation variable illuminates 

Fig. 8  Family of heteroclinic transfers between a set of L
2
 quasi-halo orbits and an L

1
 quasi-vertical orbit 

with JC = 3.11 . Blue arrows indicate the direction of motion. The first and last L
2
 quasi-vertical orbit 

from the family are plotted in grey and red, respectively. Each of the transfers are colored by time-of-
flight
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alternative types of motion within the vicinity of the Moon to access the L1 region 
from L2 orbits.

Note that this investigation only leverages a natural parameter continuation pro-
cess to seed each member of the family for the differential corrections process. More 
sophisticated continatuion methods exist, such as pseudo-arclength continuation; 
however, challenges exist when implementing a pseudo-arclength continuation pro-
cess for this problem. The variations in the stable and unstable eigenvectors with 
respect to the rotation angle of the quasi-periodic orbit (i.e., the parameter represent-
ing the departing/destination orbit in the CR3BP) are not readily available analyti-
cally. Based on numerical experiments, the accuracy of the finite difference partial 
derivatives with respect to the rotation angle are particularly sensitive to the pertur-
bation size. Thus, it is challenging to converge on a transfer such that the nullspace 
of the Jacobian is computed to sufficient accuracy to successfully construct the 
pseudo-arclength constraint.

Additionally, the accuracy of the partial derivatives with respect to rotation angle 
is related to the accuracy of the eigenvectors that are evaluated for the departing/
destination quasi-periodic orbit. Since the stable and unstable eigenvectors are a 
function of the converged quasi-periodic orbit, the quasi-periodic orbit construction 
must be decoupled from the heteroclinic transfer targeting scheme. Subsequently, 
the rotation angle representing the departing orbit is included as a free variable and 
aids in the computation of a heteroclinic connection, but the non-zero columns of 
the Jacobian matrix that correspond to the variations with respect to the rotation 
angle must be computed numerically a using finite differencing method. The compu-
tation of these variations proves to be more accurate and the targeting process dem-
onstrates improved convergence behavior when a higher-order central differencing 
method is used [22].

Fig. 9  Family of heteroclinic transfers between L
2
 quasi-halo orbits and L

1
 quasi-vertical orbits. Blue 

arrows indicate the direction of motion. The red surfaces represent the orbits with the highest Jacobi 
Constant values and the grey surfaces represent the orbits with the lowest Jacobi Constant values
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5  Ephemeris Transition

The CR3BP offers insight into the dynamical behavior associated with low-energy 
transfers in the Earth-Moon neighborhood; however, validation in a higher-
fidelity ephemeris model is important for the design process. The ephemeris 
propagation and the differential corrections algorithm is implemented using the 
FreeFlyer™commerical off-the-shelf software package, as well as the trajectory 
visualization from the ephemeris model [23]. The corrections process is formulated 
as a two-level targeting process to produce position and velocity continuity between 
trajectory segments [24, 25]. The segments were generated by first discretizing the 
CR3BP trajectory into a set of nodes or patch points. Each node respresents a 6-ele-
ment state vector along the CR3BP trajectory. Next, each node is transformed from 
the barycentered Earth-Moon rotating frame to the Moon-centered J2000 inertial 
frame using the transformation summarized by Ocampo [26]. The times-of-flight 
associated with each trajectory segment are equal to the difference between the time 
at the current node and the time at the next node. To demonstrate the existence of 
the heteroclinic transfer solutions in the higher-fidelity model, initial guesses from 
Fig. 6a and Fig. 8a are constructed to seed the ephemeris corrections process, using 
an initial epoch of Jan 01 2025 00:00:00.000. The quasi-halo to quasi-halo transfer 
is associated with an initial guess in the CR3BP that possesses a 31.43 day time-
of-flight and the quasi-halo to quasi-vertical transfer initial guess is associated with 
the CR3BP solution that possesses a 38.55 day time-of-flight. To ensure that the 
geometry of the departure and destination orbits are maintained, the initial guess is 
constructed to include 200 days of a path along the departure orbit and 200 days of a 
path along the destination orbit. The transfers are converged in the Sun-Earth-Moon 
point-mass ephemeris model and rendered in Fig. 10. Note that the geometry charac-
teristics are maintained after the transition to the ephemeris model and no maneuver 
is required to transfer between each of these orbits, i.e., each transfer is entirely bal-
listic. With this transfer converged in the ephemeris model, further analysis can be 
performed or the trajectory can be adjusted in response to any specific requirements.

Fig. 10  Two heteroclinic transfers converged in a Sun-Earth-Moon ephemeris model and rendered 
in FreeFlyer the Moon-centered, Earth-Moon rotating frame. The red arrows indicate the direction of 
motion
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Lastly, the initial guesses provided to the transition process in this investigation 
are not depenedent on epoch when transitioning to an ephemeris model. However, 
when considering initial guesses constructed in a time-dependent model, such as 
the Bicircular Restricted Four-Body Problem (BCR4BP) or the Elliptic Restricted 
Three-Body Problem (ER3BP), the epoch provided to the differential corrections 
alogrithm must be selected based on information from the model in which the ini-
tial guess was constructed. Such a process has been previously been demonsrated 
by McCarthy and Howell [20] as well as Park and Howell [27].

6  Concluding Remarks

Quasi-periodic orbits expand the range of accessible fundamental motions and add 
flexibility for trajectory design. For unstable quasi-periodic orbits, manifold struc-
tures are leveraged to supply transfer options into destination orbits in the vicinity of 
the Earth and Moon. These strategies are also effective for other three-body systems. 
Poincaré mapping techniques are leveraged to isolate possible heteroclinic con-
nections and produce an initial guess to generate families of heteroclinic transfers. 
Lastly, transition to an ephemeris model is accomplished using a two-level targeting 
process to ensure that these solutions exist in a higher-fidelity model. The properties 
of the fundamental behaviors serve as the basis for a wider array of options in pre-
liminary path planning.
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