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Abstract
Orbits of objects in cislunar space are, in general, non-Keplerian due to the influ-
ence of the Moon’s gravity and cannot be generically parameterized by a simple set 
of characteristics. Objects are also fainter and move relatively more slowly when 
viewed from Earth. Detection and tracking are expected to be significantly more dif-
ficult and, as a consequence, orbit determination becomes more challenging. In this 
paper we review a subset of possible orbits and their expected astrometric and photo-
metric signatures from the perspective of hypothetical ground-based electro-optical 
sensors on Earth. Although a multitude of orbits are possible, we focus on special 
types of orbits that are closed in the synodic frame (i.e., periodic) and emanate from 
the libration points of the Earth-Moon system. We investigate three separate elemen-
tal periodic orbit families that have been differentially corrected in a high-fidelity 
dynamical system: H1, L1, and W4W5. For each family, we set objects at different 
locations at different epochs and simulate the expected observational features (e.g., 
right ascension, declination, visual magnitude) based on faceted satellite models. In 
this study, we show how Gaussian mixture model estimation filters behave when 
processing different observation sets, specifically varying data cadence, data density, 
data quality, and data span. Convergence and uncertainty bounds are shown to have 
a strong dependence on the observational data composition (affecting the accuracy 
of fitting orbits) and a notable correlation to orbital stability (affecting the ability to 
predict/correct orbits).
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1  Introduction

Our previous paper [1] provided an overview of the expected photometric and 
astrometric measurements of objects in cislunar orbits, specifically the families of 
elemental periodic orbits [2] obtained by employing the Circular Restricted 3-Body 
Problem (CR3BP). As noted, there are some challenges associated with cislunar 
orbits, particularly in tracking and orbit determination since the objects are both 
fainter (longer distances will stress remote sensing capabilities) and slower (longer 
time scales means more observations necessary to see significant fractions of orbits). 
Additionally, cislunar orbits are very sensitive to initial conditions where orbits are 
only marginally stable to unstable [3],small perturbations can lead to wildly dispro-
portionate outcomes (e.g., when approaching a chaos boundary).

In this paper we explore these difficulties in tracking cislunar objects in more 
detail. Specifically, we investigate three distinct but related elemental periodic orbit 
families that cover a large portion of cislunar space: H1,1 L1, and W4W5. Select 
members from these orbital families are differentially corrected from the CR3BP 
into a high-fidelity dynamical system to find the full-ephemeris analogs of the ide-
alized orbits afforded by the toy problem. With our state space defined, we obtain 
our measurement space by simulating observational data from three notional Earth 
ground-based electro-optical systems. The details of the orbits, the measurement 
generation methodology, and decimation strategy are described in the next sec-
tion. For the estimation engine, we employ a capability known as the Infinity Filter 
Framework (IFF) together with NASA’s General Mission Analysis Tool2 (GMAT). 
The IFF provides the computational construct to create the filters used in processing 
and tracking these cislunar objects. GMAT’s force models are integrated into the 
IFF as the filter’s state evolution function or propagator. Further details are provided 
in the following sections. Finally, the behavior of the estimation filters is analyzed 
when processing the different observation sets.

2 � Orbits and Observations

In general, periodic orbits are special types of solutions of a dynamical system of the 
form,

that satisfy the definition,

dX

dt
= f (X, t)

X(t) = X(t + T), ∀t ∈ R1

1  The L1 Halo family (i.e., H1) is truncated to include only the orbits that span the bifurcation points 
between the L1 Lyapunov family (i.e., L1) and the W4W5 axial family.
2  https://​code.​nasa.​gov/?q=​gmat.

https://code.nasa.gov/?q=gmat
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These periodic orbits are “closed” or “repeat” generally only in the synodic 
frame. Details for the resulting 31 families of orbits can be found in our previous 
year’s AMOS conference paper [1], along with a comprehensive description of the 
notation used. In this paper, we explore three CR3BP elemental periodic orbit fami-
lies: the planar L1 (long-period Lyapunov) family emanating from the L1 Lagrange 
point, the H1 (halo) family which bifurcates from the L1 family at the L11 branch 
point, and the W4W5 (continuous east–west axial) family connecting from L4 and 
L5 Lagrange points and intersecting the H1 family at the H11 branch points. Note 
that for the H1 family, the nominal manifold is divided into northern and southern 
halves for those orbits near the Moon; here, only the northern sub-family is used. 
From these families, we down-select further to focus on fifteen individual orbits, 
each of which is differentially corrected to find the nearest3 “periodic” orbit in a 
high-fidelity dynamical systems model (salient features shown in Table 1).

The various force models used include: Earth, Moon, and Sun point-mass grav-
ity using DE430 ephemerides plus a 21 × 21 EGM-96 gravity model; solar radia-
tion pressure with a spherical model of a spacecraft with constant mass of 100 kg 
and area of 1 m2; coefficient of reflectivity = 1.09; and solar flux of 1360.8 W/m2 
at nominal distance of 149,597,870.7 km from the Sun. The integration scheme is 
Runge–Kutta 4–5 method with 10–12 tolerance on the state.

Figure  1 shows the fifteen use cases: (left) the seed CR3BP orbits and (right) 
the differentially corrected orbits in an Earth-Moon pulsating synodic frame. The 

Table 1   Salient features of 
individual, differentially 
corrected, cislunar “periodic” 
orbits

Identifier Jacobi Energy Synodic 
period 
(days)

Days simulated

H1 (1 N) 3.1743 11.927 69.2
H1 (50 N) 3.1523 11.985 69.3
H1 (100 N) 3.1168 12.093 69.4
H1 (200 N) 3.0153 11.426 68.1
H1 (300 N) 3.0003 8.740 52.3
H1 (400 N) 3.0022 7.844 47.1
H1 (450 N) 2.9910 8.068 48.5
L1 (50) 3.1793 11.846 69.1
L11 (~ L1 (65) 

and ~ H1 (1 N))
3.1744 11.927 69.2

L1 (100) 3.1413 12.548 75.1
L1 (150) 3.0670 14.737 88.61
W4W5 (50) 2.7030 23.036 156.8
W4W5 (100) 1.9490 27.377 164.5
W4W5 (150) 2.7898 27.770 147.7
W4W5 (400) 2.1480 27.303 156.6

3  Up to the accuracy of a user’s force model configurations and convergence tolerances.
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non-repeating behavior of the differentially corrected orbits is primarily due to the 
ellipticity of the Moon’s orbit.

The same longitudinally separated notional Earth ground-based sensor sites as in the 
previous paper are used to ensure the object is continuously visible from at least one 
of the sites: Maui (20.7° N, 156.4° W), Azores (37.8° N, 25.5° W), and Cocos Islands 
(12.2° S, 96.9° E). Similar to the previous study, the forward light-curve modeling soft-
ware Forge was used to generate the light curves. Forge is a tool written in MATLAB 
with the underlying structure using facet-based models. Observations with 1 arcsecond 
astrometric uncertainty were created at a cadence of 600 s for a diffuse sphere (1 m2 
cross sectional area and 0.2 reflectance) and thresholds of object elevation > 10°, Sun 
elevation <  − 10° (Sun exclusion), object > 1° from limb of Moon (Moon exclusion), 

Fig. 1   Use case orbits: (left) CR3BP seed solutions in the synodic frame and (right) differentially cor-
rected trajectories, scaled to instantaneous Moon distances, in a pulsating synodic frame. On the color-
ing of the families, blues = W4W5, reds = H1, and greens = L1 members. Earth and Moon (obstructed by 
orbits) shown are not to scale

Fig. 2   Light curve representing the Full set (all sensors, all observations), for the H1 (100 N) cislunar 
object; note that the periods with no observations correspond to lunar exclusion and poor lighting condi-
tions due to the new Moon phase
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and object magnitude < 24. One arcsecond corresponds to about 1.86 km at the Moon’s 
distance. Duplicate times (e.g., two sensors observing an object simultaneously) are 
removed. Figure 2 shows the 10,720 simulated observations for the H1 (100 N) orbit 
case. Clearly evident are periods near the new moon when not only the object becomes 
dimmer as it becomes more backlit, but the object has fewer observations at each sen-
sor site per night and there is a period of time when the object is not observed at all. 
Different cadence rates and/or data gaps are obtained by subsampling the data sets as 
desired.

In addition to the full data set for each orbit (all three sensors at 600 s cadence), 
three subsets varying the number of sensors and their sensitivities are analyzed: (1) all 
three sensors at 1-h cadence, (2) single sensor at 1-h cadence, and (3) single sensor at 
1-h cadence and limiting magnitude set at 20 instead of 24. The process noise was set 
to 10–11 km/s2 for each of the radial, in-track, and cross-track directions. Figure 3 shows 
the light curves for the full H1 (100 N) data set of 10,720 simulated observations as 
compared to the three decimated subsets of 1787, 598, and 413 simulated observations, 
respectively. For convenience, the four data sets are herein labeled: Full set, Subset 1, 
Subset 2, and Subset 3.

Fig. 3   Applying the decimation strategy varying data cadence, data density, data quality, and data span 
creates the testable data sets for this work (only photometric observations shown here): light curves for 
Full set (upper left), Subset 1 (upper right), Subset 2 (lower left), and Subset 3 (lower right) for orbit H1 
(100 N)
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3 � Estimation Engine

In order to process the synthetic observations generated in the previous section, we 
employ a unique filtering concept to assemble an advanced estimation engine from 
modular components: the Infinity Filter Framework (IFF).

The IFF is a MATLAB-based, software suite that encodes a generalized frame-
work capable of constructing various types of filters from key components or mod-
ules. The framework’s modular design provides an unbounded upper limit on the 
number of possible combinations or varieties of modeling approaches, giving the 
developer or analyst an open design and implementation space in which to achieve 
their objectives. Its particle-like flavor is derived from agent-based modeling princi-
ples, allowing for the developer or analyst to create uniquely customizable particles 
for each agent within their particular population modeling schema. This strategy is 
a key departure from the current space domain awareness (SDA) filtering paradigm, 

Fig. 4   IFF module schematic; on color shading: darker = parallel, lighter = serial

Table 2   IFF module descriptions

Module Description

I Initialization—unique to each use case and used to set up parameters and state
D Data—loads initial state and covariance as well as observations to be used by filter
U, V Sigma Points—generates sigma points; Module-U is propagated by the state function and/or 

Module-V is used by the measurement function. In the degenerate case, these two modules 
are identical

F State Function—the dynamics model for the particular use case. For orbital dynamics, this 
function is the orbit propagator (e.g., GMAT R2020a)

T Time Update—the time update in the estimation filter
H Measurement Function—the observation-state mapping model
A Association—used to associate an observation to a particular model
C Measurement Update—the measurement update in the estimation filter
W Weighting—the weighting function used to evaluate the weight of each particle
R Resampling—how new particles are formed from the old particles at each time step (optional)
S Smoothing—implementation of backwards smoothing (optional)
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as the IFF facilitates adaptive state estimation and parameter inference, while allow-
ing high levels of customization, learning, and optimization at the agent level. Fig-
ure 4 outlines the IFF’s structure with regards to the various modules employed, and 
Table 2 details each module and its function.

A critical defining feature of any estimation engine is its encoding of the state 
function (Module-F). For our purposes, we choose NASA’s GMAT software, a high-
fidelity orbital dynamics package capable of modeling perturbed 3-body dynamics 
[4]. GMAT is self-described as “the world’s only enterprise, multi-mission, open 
source software system for space mission design, optimization, and navigation … 
supporting missions in flight regimes ranging from low Earth orbit to lunar, libration 
point, and deep space missions”.4 Because of the modular nature of the IFF, only a 
simple wrapper function is required to fully integrate GMAT’s propagator into the 
IFF.

4 � Analysis and Results

4.1 � Baseline Unscented Kalman Filter

Before using multiple particles in the IFF to implement a Gaussian Mixture Model 
(GMM), a single particle was employed to establish a baseline performance for 
tracking cislunar objects. This particle encoded an unscented Kalman filter (UKF) 
with Gaussian uncertainty. Two separate use cases were addressed, one using 2-body 
dynamics and the other using 3-body dynamics (including the Moon’s gravitational 
influence) in the state function.

Tables 3 and 4 show the maximum and median measurement innovation after 
the first new moon during the observations (epoch 2019 Aug 01) using 2-body 
and 3-body dynamics, respectively, for the orbits listed in Table 1. Yellow high-
lights median values over 0.1 arcminutes (maximum values over 5 arcminutes). 

Table 3   UKF using 2-body dynamics, root-mean-square measurement innovation (arcminutes)

4  https://​softw​are.​nasa.​gov/​softw​are/​GSC-​18094-1.

https://software.nasa.gov/software/GSC-18094-1
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Similarly, red highlights median values over 1 arcminute (maximum values over 
15 arcminutes). With the estimation filter using the 2-body dynamics (an obvi-
ous force model mismatch), it is not surprising that the object was lost after the 
first data gap in all of the cases (see numeric summary in Table 3). On the other 
hand, the estimation filter using 3-body dynamics was able to maintain tracking 
the object with relatively small uncertainties—a consequence that would allow 
for continuous tracking in most cases. As expected, increasing the data gap length 
and frequency (moving from denser to sparser subsets) increases the innovations 

Table 4   UKF using 3-body dynamics, root-mean-square measurement innovation (arcminutes)

H1 (200N) 0.33 0.021 0.30 0.021 0.18 0.022 15.59 0.021
H1 (300N) 0.08 0.021 0.12 0.020 0.25 0.022 1.48 0.022
H1 (400N) 0.20 0.021 0.15 0.022 0.07 0.023 14.01 0.026
H1 (450N) 0.09 0.020 0.28 0.022 0.10 0.021 2.10 0.023
L1 (50) 0.12 0.020 0.16 0.020 0.57 0.020 377.62 0.188
L11 0.10 0.020 0.09 0.021 0.47 0.021 390.98 0.954
L1 (100) 0.48 0.020 0.13 0.020 0.84 0.021 3121.50 9.510
L1 (150) 0.26 0.020 0.34 0.021 0.41 0.021 33.34 0.021
W4W5 (50) 0.07 0.020 0.07 0.020 0.07 0.019 0.25 0.021
W4W5 (100) 0.07 0.020 0.07 0.020 0.14 0.021 0.29 0.020
W4W5 (150) 0.08 0.020 0.06 0.020 0.06 0.021 0.21 0.020
W4W5 (400) 0.08 0.020 0.07 0.020 0.06 0.021 0.46 0.022

Fig. 5   Measurement innovation and uncertainty of UKF with 3-body dynamics for Full set (upper left), 
Subset 1 (upper right), Subset 2 (lower left), and Subset 3 (lower right) for orbit H1 (100 N), showing 
increasing innovation and uncertainty as the amount of data decreases and length of data gaps increase 
(going from Full set to Subset 3); note that all cases reach the 1 arcsecond RA/DEC measurement error 
floor when data is available
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in kind. This correlation, between data gap length and frequency versus innova-
tions magnitude, is the most pronounced when processing Subset 3 (single sensor 
and limiting magnitude of 20, thus larger data gaps near the new moon). Also 
note how H1 (1 N) and L11, although nearly identical orbits, yield surprisingly 
different results for Subset 3. This sensitivity to initial conditions highlights the 
chaoticity of the problem near a theoretical bifurcation point (see numeric sum-
mary in Table 4). There also exists unintuitive variations seemingly as a function 
of the orbit; the reasons for these behaviors are unclear at the moment.

Fig. 6   Position magnitude error and uncertainty of UKF with 3-body dynamics for Full set (upper left), 
Subset 1 (upper right), Subset 2 (lower left), and Subset 3 (lower right) for orbit H1 (100 N), showing 
increasing error and uncertainty as the amount of data decreases and length of data gaps increase (going 
from Full set to Subset 3); note that all cases maintain track of the object through data gaps

Table 5   UKF using 3-body dynamics, root-mean-square position state error (km)
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Absolute performance is measured by comparing the estimated state to the 
truth state. Figure  5 graphically shows the combined measurement innovation 
and the 1-� uncertainty of the right ascension and declination observations for 
the H1 (100  N) orbit using 3-body dynamics. Figure  6 graphically shows the 
position magnitude error from the truth and 3-� uncertainty for the H1 (100 N) 
orbit using 3-body dynamics, while also conveys the variability in convergence 
depending on the data density and object observability. Uncertainty growth is 
proportionate to data gap length and the nonlinearity of the local dynamics.

Table 5 shows the maximum and median of the root-mean-square state posi-
tional errors after the first new moon and Table  6 shows the maximum and 
median position state Mahalanobis distances, dM , across all times after the first 
new moon.

where xest is the estimated position vector, xtruth is the simulated truth position vec-
tor, and Pest is the estimated position covariance, at time t . In Table 5, values over 
100 km are highlighted in yellow while those over 1000 km are highlighted in red. 
Even from the limited use cases so far, it can be reasonably concluded that a single 
UKF using 3-body dynamics does a fairly good job at keeping track of an object 
in cislunar orbit and provides a good position estimate and uncertainty. There is 
a point, however, as can be seen with Subset 3, where large gaps in the data pre-
vent the UKF from adequately tracking the object (most pronounced near the L11 
branch point for the H1 (1 N), L1 (50), L11, and L1 (100) orbits). The W4W5 orbits 
selected for this study, which stay far removed from the vicinity of the Moon for 
their entire orbits, perform particularly well even with the limited observations in 
Subset 3. This behavior is still true for W4W5 (100) and W4W5 (400), which are 
relatively close to the V41 and V51 branch points in the V4V5 family respectively 
(W4W5 (108) and W4W5 (402) would be closest). In Table 6 values over 10 are 
highlighted in yellow while those over 100 are highlighted in red.

dM(t) =

√

(

x(t)est − x(t)truth
)T
P(t)−1

est
(x(t)est − x(t)truth)

Table 6   UKF using 3-body dynamics, position state Mahalanobis distance
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4.2 � Gaussian Mixture Model

Multiple particles within the IFF can be employed to represent different components 
in a Gaussian Mixture Model (GMM) [5]. Implementing the GMM requires adjust-
ments to Module-W to compute the weighting of the different components of the 
GMM (the weight update is described further in [5]) and to Module-R to trigger 
during a split or a collapse, from a single Gaussian to a GMM or from a GMM to 
a single Gaussian, respectively, based on weighted average of the states and covari-
ances following the first post-gap update. For simplicity in this work, the number of 
Gaussian components is set to either three or five. As a first choice, we choose to 
split the single Gaussian at the time step before the first data gap using component 
splitting libraries [5], for both our three- and five-component cases. In terms of how 
the splitting is decided, the general strategy is to split along the direction of the larg-
est eigenvalue of the state covariance matrix.

For illustrative purposes, a point-solution comparison is presented to showcase 
the difference between using a single-Gaussian UKF and a five-component GMM 
within the cislunar domain to build understanding around the impacts of nonlin-
earities on uncertainty realism. The a-priori uncertainty is normally distributed 
with a 10-km position and 1-m/s velocity RSS. Monte Carlo particle “shadows” or 
orthogonal projections are shown in gray to provide context. We use the geocentric 
celestial reference frame (GCRF) with a rectangular coordinate system oriented and 
centered on the radial, in-track, and cross-track (RIC) axes of the mean particle at 
epoch.

The comparative figures (Figs.  7, 8) focus exclusively on velocity because 
the uncertainty deformations are more pronounced and are thus easier to intuit. 
H1(100 N) is the reference orbit used for illustration in both of these figures. The 

Fig. 7   UKF (left) and 5-comp. GMM (right) velocity sigma point initial conditions for orbit H1 (100 N); 
different marker types distinguish the different components of the GMM; note the spread in the sigma 
points achieved by the multiple components is exclusively in the radial velocity direction
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red points are the 2  N + 1 sigma points; (left) for a single UKF and (right) for 
each GMM component as distinguished by different markers/symbols. The green 
contours on the orthogonal planes are the bivariate marginal PDF contours for 
mean/covariance derived from the sigma points to provide overlapping compari-
sons against the gray shadows of the Monte Carlo run. As expected, the two PDF 
representations are almost identical at the starting time. Note, in Fig. 7, the com-
ponent splitting occurs along the radial velocity direction (here, corresponding to 
the axis containing the most uncertainty growth).

Figure 8 plots the Monte Carlo, UKF, and five-component GMM after prop-
agating for about seven days. The dynamical systems configuration in GMAT 
includes a full-ephemeris model (JPL’s DE405) with the Earth as an aspherical 
gravitational body with low degree and order spherical harmonics, the Moon and 
Sun as point-source gravitational bodies, and solar radiation pressure effects. The 
GMM better represents the Monte Carlo behavior (shadowed points) compared 
to a single Gaussian, highlighted by the marginal PDF contours. While the good-
ness of the fit and the relative difference between the two methods depends on 
many factors, the overall sentiment is that a GMM representation of uncertainty 
is superior at modeling nonlinear growth (e.g., quantified by a likelihood agree-
ment [5]) and is especially beneficial when applied to three-body dynamical sys-
tems where there are many regions of highly nonlinear dynamics.

To see how the GMM’s improved uncertainty modeling affects tracking per-
formance, we conducted a study using 3-body dynamics in each of the estimation 
engines including a one-component GMM (i.e., a UKF), three-component GMM, 
and five-component GMM, while processing Subset 3 (the data set with the larg-
est time gaps where the UKF faltered).

Fig. 8   Approximate 7-day propagation for 2000-point Monte Carlo simulation; comparing UKF (left) 
and 5-comp. GMM (right) velocity marginal PDFs for orbit H1(100 N); note the curvature in the GMM 
contours clearly achieves a better fit with the Monte Carlo samples than the UKF covariance
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Tables 7 and 8 summarily list the pertinent performance values together (the first 
two columns, pertaining to the UKF runs, are identical to the last two columns listed 
in Tables 4 and 5 respectively). As in Table 4, Table 7’s maximum/median values 

Table 7   UKF versus GMM performance processing Subset 3, measurement innovation (arcminutes)

Table 8   UKF versus GMM performance processing Subset 3, root-mean-square position state error (km)

L11 314247.41 1983.51 105569.42 2414.54 204529.78 6543.40
L1 (100) 1234160.97 40094.29 48932.98 4.91 15183.17 3.18
L1 (150) 16.98 3.88 16.62 3.85 16.71 3.71

W4W5 (50) 11.52 0.98 11.52 0.98 11.52 0.98
W4W5 (100) 14.60 2.88 14.61 2.88 14.61 2.88
W4W5 (150) 11.63 1.09 11.63 1.09 11.63 1.09
W4W5 (400) 17.72 1.55 17.72 1.55 17.72 1.55

Fig. 9   Position magnitude error and uncertainty for Subset 3 for orbit L1 (100), highlighting (left) the 
UKF losing track of the object after the second large data gap and (right) the 5-component GMM main-
taining track throughout
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greater than 5/0.1 arcminutes are highlighted in yellow while those greater than 
15/1 arcminutes are highlighted in red. As in Table 5, Table 8’s values greater than 
100 km are highlighted in yellow while those greater than 1000 km are highlighted 
in red.

Both performance measures improve when using a GMM over the single-com-
ponent UKF (most noticeably in H1 (1 N) and L1 (100)). Of significant note, where 
the UKF failed to adequately track the object in the H1 (1 N), L1 (50) and L1 (100) 
cases, the L1 (100) orbit did converge with the three-component GMM, and all con-
verged with the five-component GMM. Figure 9 contrasts the UKF losing track of 
the cislunar object after the second large data gap with the five-component GMM 
configuration maintaining track throughout. Strangely, the L11 branch point orbit, 
despite being nearly identical to the H1 (1 N) orbit, failed to converge with all fil-
ters; while the precise reason is unclear, the prevailing explanation points to the high 
degree of nonlinearity of the problem.

In summary, of the fifteen orbits analyzed, one failed to converge in all instances 
(L11); three failed to converge with the UKF, but did converge with the GMMs (H1 
(1 N), L1 (50), and L1 (100)); three improved in one or more measure from the UKF 
to GMMs (H1 (100 N), H1 (200 N), L1 (150)); and eight were about the same from 
the UKF to GMMs (H1 (50 N), H1 (300 N), H1 (400 N), H1 (450 N), W4W5 (50), 
W4W5 (100), W4W5 (150), W4W5 (400)).

5 � Summary and Future Work

This paper summarizes preliminary efforts focused on tracking and estimation 
approaches for objects in cislunar orbits and aims to help build high-level intuitions 
on different aspects of the estimation problem for the cislunar domain. Unsurpris-
ingly, the use of robust 3-body dynamics is essential in providing accurate predic-
tions and maintaining custody of these objects. Filters using traditional 2-body 
dynamics are demonstrated to fail quickly after data gaps in every use case tested. 
The UKF provides relatively good results for a variety of orbits and data cadences, 
while the GMM demonstrates promise in improving performance through data gaps. 
The incredible levels of nonlinearity evident in the cislunar domain present stressing 
challenges for the estimation and custody of cislunar objects.

The compounding effects of low observability and orbit maintenance maneuvers 
must be addressed in future work, as these factors will definitely be present and 
will significantly increase the difficulty level in maintaining robust tracks on cislu-
nar objects. Beyond elemental periodic orbits, cislunar space admits a wide variety 
of other trajectory structures (e.g., quasi-periodic tori, invariant manifolds, homo-/
hetero-clinic connections, resonance orbits) that should be systematically analyzed. 
From the remote sensing perspective, further analysis is required to assess the filter-
ing impacts from the variability of different sensor characteristics such as data type, 
noise, bias, and sensitivity. Varying the location of the sensors (to include space-
based platforms) will be necessary for a more complete understanding of the art of 
the possible in terms of meeting mission goals. Finally, it is prudent to conduct a 
broader exploration of different filter constructs including process noise levels, the 
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nature of the Gaussian splitting strategies, data association approaches, and others 
that may have significant influence on the resulting track quality.
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