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Abstract
A critical challenge in Space Domain Awareness (SDA) is gaining custody of newly 
detected or maneuvering objects. The dynamically feasible location of one such 
object may be represented as an admissible region or reachable set. This paper pro-
poses techniques for exploring search sets using sample-based planning. Several 
methods for sampling feasible regions of measurement space are developed, and 
Monte Carlo Tree Search (MCTS) is applied over a limited horizon to determine 
time-optimal sets of actions. Tree search aids in overcoming local minima in solu-
tions found with traditional optimization methods. With tasking methodologies in 
place, a second contribution of this paper explores estimation methodologies in the 
presence of null detections; these developments are critical to the search and recov-
ery problem, in which the target probability density projected to measurement space 
is generally much larger than the sensor field of view. A special focus is applied to 
the admissible region, and given a Gaussian mixture representation of the admis-
sible region, a novel methodology for splitting mixands in an arbitrary measurement 
space is presented. A mixand weight update is derived for the key scenario in which 
no detection is made at a measurement epoch. Merging methodologies are applied, 
and the resultant Gaussian sum filter is demonstrated for a representative case in 
which follow-on tracking of a geostationary object is desired.
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1 Introduction

Space domain awareness may be defined as “actionable knowledge required to pre-
dict, avoid, deter, operate through, recover from, and attribute cause to the loss and 
degradation of space capabilities and services” [1]. To maintain and gain knowl-
edge of the local space environment, ground and space-based observers must make 
timely observations, and critically, decisions on what to observe. The number of 
space objects (SOs) for which to maintain tracks is quickly increasing, especially in 
oft-used regions such as the geostationary belt. The European Space Agency main-
tains tracks on almost 50,000 objects as of 2019 [2], and this figure is expected to 
greatly increase on the order of 200,000 objects over a period of years as satellite 
deployment costs continue to decrease. Additionally, a growing concern in the geo-
stationary region is the limited availability of orbital slots necessary for satellites to 
be resolved by ground-based observers to maintain custody. Combined, these new 
challenges in SDA motivate the efficient utilization of a limited portfolio of observa-
tion tools.

Generally, methodologies for driving sensor tasking can be categorized depend-
ing on the objective considered. First, one may wish to maintain existing estimates, 
informing knowledge on a catalog of SOs. A variety of strategies have been pro-
posed assuming a priori knowledge on state estimates and uncertainties. Erwin et al 
apply linear optimization to form a tasking solution and propose useful quantities for 
interpreting the value of a tasking decision [3]. This work is extended by Williams 
et al, using Lyapunov exponents to probe the stability of SO estimates [4]. A variety 
of approaches have also taken inspiration from the machine learning literature, with 
techniques such as stochastic gradient ascent [5], asynchronous actor-critic methods 
[6], and Monte Carlo Tree Search [7]. In each of these methods, the driving goal is 
determination of an optimal policy for decision making given a large set of candi-
date observations.

Alternatively, one may wish to generate new state estimates, expanding the set 
of SOs studied by searching for natural objects, orbiting satellites, or debris. Wide-
ranging techniques for this objective exist in literature. Often, long-period stares 
over an optical field are performed, acting as a sweep through orbital parameter 
space [8]. Striping methodologies may also be formed in measurement space, and 
this strategy accommodates optimization [9].

It is also important to note that detections made with optical sensors generally 
do not fully observe the object state; as a result of this “Too Short Arc” problem, 
an admissible region (AR) [10] of unobservable ranges � and range rates �̇� may 
be formed. This admissible region is a two-dimensional manifold of feasible pairs 
( � , �̇� ) that may be projected into the six-dimensional state space. Note that this 
region may be uniformly distributed in range and range rate or probabilistic [11] 
if measurement uncertainty is incorporated. Gehly et al. leverage the AR meth-
odology in tandem with Finite Set Statistics to approach the tracking problem, 
representing the admissible region as a Gaussian mixture to be ingested by a Car-
dinalized Probability Hypothesis Density (CPHD) filter [12]. Methodologies for 
generating Gaussian mixture representations of admissible regions are introduced 
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by DeMars and Jah [13]. AR pairs over longer observation intervals may be used 
for initial orbit determination [14, 15]. These methodologies are not typically 
used in an online manner, but rather consider large populations of admissible 
regions generated from detected tracklets over several observation campaigns.

This research’s approach to the admissible regions problem is largely moti-
vated by [16] and [17]. In [17], Murphy considers the direct follow-up tasking 
problem for an admissible region, representing the region as a feasible set that 
has grown over time in state space. The area of the admissible region is computed 
over time using high order Taylor series expansions, and the idea of minimizing 
the search set using the divergence of the set as an observational metric is consid-
ered. Simulated annealing in combination with this observational metric is found 
to achieve some success in minimizing the search space in a time-optimal man-
ner. This approach is effective in situations in which the initial measurement can 
be considered an uninformative prior that isn’t necessarily sufficient to inform 
generation of a state estimate.

Note that this methodology can be considered analogous to a variety of scenarios, 
such as the problem of searching a reachable set. Here, an object may have made a 
maneuver at some prior time, leading to loss of custody of said SO. The region of 
state space the object can reach over the time horizon considered can then be pro-
jected into measurement space in a similar manner to an admissible region. Addi-
tionally, one may desire to track an object that already has a large uncertainty. When 
projected into measurement space, this uncertainty is larger than the sensor field 
of view, and multiple observations must be taken to ensure the object is detected. 
Therefore, in this paper the region of interest will be referred to as the search set 
to generalize for any context. However, several relevant constraints for admissible 
regions will also be outlined.

This paper extends the developments made by [17], more closely examining opti-
mization methodologies for search set minimization. Monte Carlo Tree Search is 
utilized as a means for efficient generation of viable action trajectories. It can be 
applied as a flexible framework that may consider questions of how to best explore 
the search set with a limited number of actions and how to exhaust the search set in 
a time-optimal manner.

An additional goal of this research is development of an efficient estimation 
scheme to be utilized in tandem with the tasking methodology. Of particular inter-
est is whether the spooky effect is apparent, as may be seen in multi-target filters 
such as the Gaussian mixture CPHD filter [18]. This behavior describes the impact 
of a missed or null detection in one region of measurement space on the probability 
hypothesis density arbitrarily far away. A logical extension of this effect, then, is 
determining how a null detection in a subset of the projected feasible set may affect 
knowledge on other regions within that volume.

To further introduce this research, Sect. 2 will establish principles of Monte Carlo 
Tree Search used to probe the search set. Section  3 will develop the mathemati-
cal formulations necessary to frame this sample-based search strategy, and Sect. 4 
will outline the estimation process and methods for ingesting negative information. 
Finally, Sect. 5 shall demonstrate the methodology for a scenario in which follow up 
observation is needed for a geostationary target.
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2  Monte Carlo Tree Search

Briefly, critical concepts for the Monte Carlo Tree Search approach to this work 
are outlined. Further reading on the subject can be found in [7, 19–23]. Gener-
ally, MCTS can be applied to any sequential decision process, with special focus 
in game theory literature. This work narrows the problem context to partially-
observable Markov decision processes (POMDPs). In this regard, the underlying 
state studied is the search set considered, and decisions are observations enacted 
on a subset of the projection of the region into measurement space at a given 
time.

2.1  Partially‑Observable Markov Decision Processes

A POMDP can be formally represented by the 7-tuple (S,A, T ,R,O,H,Γ) with the 
following definitions. The problem is defined over a state space S; this is a rep-
resentation of a discrete or continuous space in which the studied system may 
evolve over ℜn . Decisions are made over an action space A; again, this space may 
be either discrete or continuous, with dimension ℜp . States evolve with transi-
tion probabilities T ∶ ℜn ×ℜp

→ ℜn . Generally, T represents the propagation of 
both states and uncertainties over time, but actions taken may also impact the 
evolution of states. A reward R ∶ ℜn ×ℜp

→ ℜ1 applies an arbitrary objective 
function to determine the value of an associated change in state and action. The 
system is observed over the observation space O, with probabilities defined by H 
acting on the current state. As with the state and action spaces, O may be discrete 
or continuous over the domain ℜm . H ∶ ℜn

→ ℜm is simply a measurement func-
tion incorporating uncertainty in some manner. Immediate rewards are favored 
over distant rewards by the discount factor Γ ∈ [0, 1].

For the application of follow-up sensor tasking, these definitions are as follows. 
The search set is allowed to evolve over six-dimensional state space S according to 
two-body orbital dynamics (T). Actions taken A are exposures by an optical observer 
with a known field of view, centered on a chosen right ascension and declination (O) 
that is feasible given observer state and constraints. Two reward functions R are con-
sidered in this research; one can either choose the decrease in the projected area of 
the search set in measurement space as a result of an action or the increase in cumu-
lative probability of detection as an objective. This research assumes that an object 
in the observer field of view shall be detected, but measurement likelihoods may 
also be incorporated, assuming a probability of detection derived from knowledge of 
object shape and albedo properties. As the total change in search set area or cumula-
tive probability of detection over the observation period is desired, a discount factor 
Γ = 1 is selected. This choice assigns equal value to future actions, as opposed to 
some prioritization of the immediate action.

The ultimate goal of a POMDP is the determination of an optimal policy � 
(sequence of actions a1∶N ∈ A ) such that the discrete time Bellman equation V 
[24] is maximized given an initial belief in states b0 , where
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and �t is the state at time t and at is the associated action. The set of actions may ter-
minate or occur over an infinite horizon. Note the differentiation between immediate 
reward R and the value function V that describes reward over a potentially infinite 
horizon. Traditional methods of solving decision processes such as value iteration 
[25] or grid-based algorithms become challenging in practice as observation and 
belief spaces become large. This led to the development of MCTS and other sample-
based planning based methodologies.

2.2  Monte Carlo Tree Search

Monte Carlo evaluation allows random actions to be simulated until a valuable result 
is reached. A search tree is built on which actions branch over the horizon studied. 
The search tree tracks value of action sets and runs in an anytime manner, allow-
ing for simulation over a desired interval. The following concepts are critical to the 
understanding of the MCTS methodology in that they provide a brief background on 
methods for search tree generation and evaluation. 

1. Nodes Following general data structures terminology we refer to an arbitrary 
index in the search tree as a node. The search tree is initialized by a root node. 
Any node may have zero to many child nodes, and a node with no children is 
referred to as a leaf node. Other than the root node, any node must have a parent 
node. We also differentiate between action nodes, where a new action is sampled, 
and observation nodes, where an observation is generated and associated with an 
action.

2. Rollout-based planning Generally, MCTS is applied over a set depth or until the 
problem at hand is resolved to a terminal state. To explore a large decision space, 
a methodology to select new actions must be determined. A rollout heuristic as 
the means to generate a new set of actions from a leaf node in a search tree. The 
rollout heuristic can take a variety of forms; fully random sequences could be cho-
sen, or system knowledge can be applied to inform the relative value of actions. 
In any case, actions must be generated until the terminal state or maximal search 
depth is reached. If a new action is not needed, a prior child node is selected 
and tree search is recursively simulated from that node. In this problem, several 
initial rollout heuristics are considered. First, the relative density of the projected 
set in measurement space is considered. Using a particle representation of the 
admissible region, it is trivial to approximate a portion of the probability distri-
bution being captured by a given action and apply weights �i by studying what 
particles would lie in the associated field of view i. This methodology, described 
when referenced further as the probability of detection heuristic, is visualized 
in Fig. 1a. If a Gaussian mixture representation is utilized, this methodology is 
easily modified. A Gaussian integral may be computed over the field of view 
using methodologies like Genz integration [26] or expectation propagation [27]. 

(1)V�(b0) =

∞∑
t=0

ΓtE[R(�t, at)|b0,�]
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Alternatively, one can weight actions by considering how a region may change in 
the future. Two approaches are developed in this regard. Given a desired action, 
the projected area of all unobserved particles within the field of view at the end 
of the search period may be considered as a weight from which to sample. This 
process is shown in Fig. 1b, and in further reference, is described as the looka-
head heuristic. In addition, the more immediate change in area of these particles 
may be considered. The immediate rate of change in area of the region studied 
may be computed using the divergence of the measurement velocity vector field. 
This rate of change is then reweighted by the area of the studied region to form 
a third set of sampling weights, hereby referred to as the immediate change in 
area heuristic. This weighting scheme is shown in Fig. 1c. Note that this final 
methodology leads to additional challenges, in which the area rate of change is 
not strictly positive. Because of this, it is useful to here consider a deterministic 
rollout method, in which at a given timestep, the nth new action chosen is the nth 
"best" as evaluated by the rollout policy. Further consideration for these policies 
is given after development of a mathematical basis in the next section. These 
methodologies may be modified for a Gaussian mixture representation in several 
ways. First, the mean states of each mixand may be considered a particle for the 
purposes of sampling. Second, the final area lookahead heuristic may be evaluated 
to an appropriate level of variance, again utilizing Gaussian integrals.

3. Backpropagation - Backpropagation is defined as the means by which immedi-
ate rewards simulated by leaf nodes in the search tree impact the estimated value 
at parent nodes. Given a rollout or simulation routine that returns the discounted 
cumulative reward Ri sampled for a sequence of actions, one must determine how 
to revalue the immediate action taken. Generally, the average reward returned for 
an immediately sampled action a ∈ A

Fig. 1  Rollout heuristic visualizations for MCTS weighting
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 is utilized, but other statistical measures may also be incorporated, especially 
if there are concerns about the variance of rewards. In this research, since it is 
assumed that an object lying within the field of view will be detected, there is 
no stochasticity inherent to that observation. As such, in considering the value 
of an immediate action, we may instead recursively utilize the maximal value 
returned from the set of child trajectories through the search tree, at each itera-
tion applying 

4. Selection If a new action is not generated, one must determine what previously 
sampled action to take. Generally, the selection method must balance more 
detailed exploration of simulated actions with high expected value with further 
exploration of undersampled actions. As such, a deterministic score function is 
applied for selection such that the child node maximizing 

 is selected. N(i) represents the number of times child node i was previously 
selected, and f(N) is an arbitrary non-decreasing map from ℜ1 to ℜ1 . This sec-
ond term is derived from multi-armed bandit literature, and can be related to 
a confidence interval for the true value of an action [28]. Generally, the natu-
ral logarithm is utilized, but other methods such as polynomial exploration 
have been applied [29]. The polynomial map f (N) = N� is utilized in this work, 
where � ∈ (0, 1).

5. Progressive widening Generally, large state and action spaces can lead to curses 
of dimensionality in decision processes. When state and observation spaces are 
large or continuous, curses of history can also occur. As actions lead to transitions 
described by generative models, search trees can become infinitely wide after a 
single transition; that is, an arbitrary action will lead to a different representa-
tion of belief for each associated observation that is sampled. As such, in order 
to limit the breadth of the search tree, one must artificially limit the number of 
actions explored, as well as the number of observations associated with each 
sampled action. This so-called arm-increasing rule or progressive widening is 
analyzed in [30]. Widening is applied for MCTS by [31] with success; this is the 
first example of double progressive widening, in which the search tree breadth is 
slowly widened for both generation of new action sequences and state transition 
or observation generation. Generally, whether progressive widening is allowed 
is determined by a rule as a function of visits to the parent node i

V(a) = V(a) +
Ri − V(a)

N(a)

(2)V(a) = max
(
V(a),Ri

)
.

(3)scn(i) = V(i) +

√
f (N)

N(i)

|i| ≤ N(i)�d
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 such that the number of child nodes are upper bounded by a power law 
�d ∈ (0, 1) . Note that || is utilized to describe the number of children at an arbi-
trary node.

With these concepts outlined, the tree search routine from a root node is outlined 
as follows. A detailed visualization of the search algorithm is given in [7]. First, an 
action is determined using progressive widening. If the tree is allowed to widen, a 
new action is sampled; otherwise, a previous action is chosen utilizing the selec-
tion criterion. If a new observation node is generated, the rollout model is applied. 
The simulation process is then recursively completed from the selected child node. 
Finally, cumulative rewards from the rollout or recursive simulation are utilized 
to update expected reward, and total cumulative reward for the search iteration is 
returned.

3  Search Set Behavior

A more extensive mathematical basis for the evolving behavior of search sets is out-
lined in Murphy et al. [17]. This section provides a general overview of that work 
as needed for analysis of the search sets and development of the metrics utilized in 
this work. The intention of this section is to first consider in a general manner how a 
projected subset of state space might evolve over time. This analysis is then applied 
to an optical observer, and knowledge of search set behavior is used to inform sam-
pling methods for MCTS tasking.

Assume that the dynamical system

is associated with the flow function �.

We assume the flow function may be applied to a subset of states, S , defined by a 
p-dimensional vector of constraint equations, � , in the global set of state dimension 
m, X = R

m.

Sets are analyzed in the measurement space Ho of dimension n associated with 
observer o. At a given time, the search set may be projected onto the field of regard 
of the observer using the measurement function

Note that the full state � may be partitioned into a determined subset d and unob-
servable subset u.

(4)�̇ = � (�)

(5)�(t1) = �(t1;�(t0), t0)

(6)S(t) = �(t;S(t0), t0)

(7)S(t0) = {� ∈ X ∶ ci(�) ≤ 0, i = 1 ∶ p}

(8)� ∶ R
m
→ R

n
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The partition �d is representative of the subset of the full state that is observable 
through � . The observable portion of the set is described as

Of particular interest for this work is the area of the projected set and how this 
changes over time. Leveraging the representation of the projected set as a vector 
field, one may apply Gauss’s theorem. For an arbitrary vector field � defined over 
a compact subset of Rn , T  , with a piecewise smooth boundary �T  , the theorem 
relates the flux of that vector field through the closed surface to the divergence of 
the vector field within the region. Note that a n-dimensional integral over a subset is 
designated a volume integral dV, while a n − 1-dimensional integral over the bound-
ary of that subset is designated a surface integral dS.

Using this theorem, one may consider how the projected area of the search set will 
change over time. The area of the region of interest may be expressed as the total 
integral,

where n is the measurement space dimensionality and �Sd is the boundary of the 
projected set. Following this result, the Leibniz integral rule may be applied to take 
time derivatives to arbitrary order. In general, the following result is found.

This result may be utilized to describe the area of a subset of the projected set S at 
an arbitrary epoch. Murphy discusses additional considerations that must be made 
for this projected set. Generally the projection itself is not necessarily an injective 
function, and S may be "folded" in a variety of manners, such that multiple points 
in the unobservable set may map to the same point in Sd . The supremum of flux 
out of a boundary associated with this set of feasible states is necessarily applied 
to describe changes in the search set over time. Fortunately, at least in the case of 
admissible regions, the projection may be expected to be injective in the short term, 
when follow-up observation is desired.

(9)� =
[
�d �u

]

(10)Sd = {�� ∶ �� = �(�), � ∈ S}

(11)∫
T

∇ ⋅ �dV = ∮
𝜕T

(� ⋅ n̂)dS

(12)A�(S) = ∫
Sd

dV =
1

n ∫
Sd

∇ ⋅ �ddV =
1

n ∮
𝜕Sd

(�d ⋅ n̂)dS

(13)
dn

dnt
A�(S) = ∮

𝜕Sd

(
n∑
i=1

�
(i)

d
⋅

𝜕�
(n−i)

d

𝜕�d

)
⋅ n̂ dS
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3.1  Optical Applications

The developed background is now applied for an optical observer. It is assumed 
that an admissible region-based search set A is previously defined at time t0 , and 
right ascension and declination measurements are desired at time t. This admissible 
region is a two-dimensional manifold in the range ( � ) and range-rate ( �̇� ) half plane 
projected into six-dimensional state space. Note that the admissible region is formed 
from an attributable vector with initially determined angles and angular rates. It is 
most useful to define the problem as follows. Right ascension is defined as � and 
declination is defined as �.

The divergence of the velocity vector field for this sensor �̇d =
[
�̇� �̇�

]T may be 
expressed as

The area of the set in the sensor field of regard is computed as

Assuming the set is projected as a grid, set of particles or triangulation, this line 
integral may be computed numerically over the surface bounds. The area rate of 
change reflects a similar pattern and is computed as

These results may be extended to compute higher order time derivatives of the 
search set area. It is noted that these higher order derivatives are explicitly depend-
ent on the dynamical system associated with the problem, and become more chal-
lenging to compute. The second order derivative is generalized in Eq. 19 as

Here, both �̈d and �̇d ⋅
𝜕�̇d

𝜕�d
 are a function of the full state at any point in the projected 

set. �̈d may be found analytically, but requires acceleration information from the full 
state, and further analysis is needed for the second term. The variation of the deter-
mined subset at time t with respect to initial admissible region coordinates may be 
expressed as

(14)�d =
[
� �

]T

(15)Ad(t) =
{[

� �
]T

∶
[
� �

]T
= �(�(t;�, t0);�(t)), � ∈ A

}

(16)∇ ⋅ �̇d =
d�̇�

d𝛼
+

d�̇�

d𝛿

(17)A�(A) =
1

2 ∮
𝜕Ad

(�d ⋅ n̂)dA =
1

2 ∮
𝜕Ad

−𝛿 cos(𝛿)d𝛼 + 𝛼d𝛿

(18)
d

dt
A�(A) = ∮

𝜕Ad

(�̇d ⋅ n̂)dA = ∮
𝜕Ad

−�̇� cos(𝛿)d𝛼 + �̇�d𝛿

(19)
d2

dt2
A�(A) = ∮

𝜕Ad

𝜕

𝜕t
(�̇d ⋅ n̂)dA = ∮

𝜕Ad

(
�̈d ⋅ n̂ + �̇d ⋅

𝜕�̇d

𝜕�d
⋅ n̂

)
dA.
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where H is the measurement Jacobian and Φ(t, t0) is the state transition matrix. 
Similarly,

and Ḣ is the Jacobian of the derivative of the measurement function. The desired 
matrix may then be found as

These derivatives may then be applied to a Taylor series expansion to provide an 
analytic solution as an infinite series or an approximate series for the area of the 
search set projection over time. [17] provides analysis for the error in area computa-
tion as a function of the number of terms utilized in the expansion, as well as a gen-
eralization for higher order derivatives.

The strategies in this paper for tracking the growth of the search set over time ben-
efit from this theory and apply a particle representation of the admissible set. Equa-
tion  18 may be explicitly computed for subsets of the region using knowledge of 
particles over time, and long term growth of subsets of the region may be observed 
by tracking particles over time. In using this methodology, this work diverges from 
the strategy in [17] requiring computation of high order derivatives, but recognizes 
the clear application of these analytic concepts to developing search heuristics.

In a particle formulation, the rollout heuristics previously discussed may be 
implemented in a relatively straightforward manner. Given sufficient sampling, the 
particle representation is representative of the initial uniform probability distribu-
tion over the unobservable subset of state space. In propagating particles over time, 
one may determine how this distribution and as a result, the projection into meas-
urement space, evolves. The net probability of detection for a given action may be 
determined by the number of unobserved particles captured in the region chosen. 
Determining areas and rates of change in area for particle sets requires formulations 
of shape representations of particles. A broad set of algorithms are available for this 
problem, and here, alpha shapes are utilized to better account for non-convex defor-
mations of the search set as observations are made and particles within the observed 
region are removed from the tracked shape. An alpha shape covers a set of points, 

(20)
��d(t)

��u(t0)
=

��d(t)

��(t)

��(t)

��(t0)

��(t0)

��u(t0)
||��(t0)

(21)= HΦ(t, t0)
��(t0)

��u(t0)
||��(t0)

(22)
𝜕�̇d(t)

𝜕�u(t0)
=

𝜕�̇d(t)

𝜕�(t)

𝜕�(t)

𝜕�(t0)

𝜕�(t0)

𝜕�u(t0)
||��(t0)

(23)= ḢΦ(t, t0)
𝜕�(t0)

𝜕�u(t0)
||��(t0)

(24)
𝜕�̇d

𝜕�d
=

𝜕�̇d(t)

𝜕�u(t0)

(
𝜕�d(t)

𝜕�u(t0)

)−1||||��(t0),t
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and may be conceptualized as the intersection of a set of closed discs with a speci-
fied �-radius containing each point [32].

Once particles are determined to be within the field of view associated with a 
specified action, the projection of these particles at the end of the search period may 
be used to form an alpha shape, and the area of the shape may be used to drive 
weighting for MCTS. When a shape is generated, the boundary edges are found and 
used to compute instantaneous rates of change of search regions.

4  Evolving Estimates of Search Sets

In order to instantiate an estimation scheme, one must first consider how to represent 
the probability density function (PDF) over the feasible set within which the target 
lies. The probability density over this region may be uniform [10] or non-uniform, 
as in the case of the probabilistic admissible region [11] or a reachable set generated 
with some a priori knowledge on maneuver probability. It is clear that it is illogical 
for the probability density to be represented by a univariate Gaussian, and that the 
density is typically quite non-Gaussian. Particle representations may be considered, 
but these methods suffer from a curse of dimensionality and quickly become com-
putationally expensive. Thus, the DeMars method [13] for instantiating a Gaussian 
mixture representation of probability density for an admissible region is considered 
in further detail.

4.1  Gaussian Mixture Approximation for Admissible Regions

Broadly, the AR approximation process may be considered an extension of the prob-
lem of approximating a univariate uniform distribution. This approximation may be 
solved as a root finding problem with several constraints on the structure of mix-
ands. Assuming equal variance �2 , equal weights � =

1

L
 for L mixands, and evenly 

distributed mixand means � , an optimization may be performed to determine opti-
mal variances. Specifically, the L2 distance [13] between the mixture PDF q and a 
uniform PDF p with support on the closed interval [a, b] is

and

The derivative of the L2 distance with respect to standard deviation may then 
be explicitly or numerically computed using any optimizer. In this work, the 

(25)

L2[p��q] = 1

b − a
+

�2

2
√
��

L�
i=1

L�
j=1

exp

�
−
1

4

�
�i − �j

�

�2
�

−
�

b − a

L�
k=1

�
erf(Bk) − erf(Ak)

�

(26)Ak =
a − �k√

2�
Bk =

b − �k√
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Levenberg-Marquardt algorithm is utilized with support from the Eigen template 
library.

To extend this methodology to the two-dimensional problem of approximation 
for admissible regions successive one-dimensional approximations are applied. 
First, consider that at any range within the AR, the marginalized density over range 
rate is uniform. However, the range-marginal PDF, computed as the integral over 
range rate, is generally not uniform. To account for this, a further optimization may 
be performed on mixand weights once the univariate uniform distribution has been 
approximated over the support of the range-marginal PDF. In order to perform this 
optimization, M ranges must be sampled over the support of the range-marginal 
PDF. One may then compute the i × j likelihood matrix Λ , where Λ(i, j) is the likeli-
hood range i is drawn from mixand j. The vector � is then computed by evaluating 
the range-marginal PDF at each sampled range. A least-squares problem may then 
be formulated as

where � is the concatenated set of weights.
Finally, taking the mean range at each mixand in the approximated range-mar-

ginal PDF, range rate may be incorporated. Considering range rate as an independ-
ent random variable, standard deviation in range rate may be optimized using the 
same process. Mixands may be augmented with no correlation between range and 
range rate uncertainties Note that care is taken to determine the number of mixands 
L to utilize in each case as a function of minimum desired variance in range and 
range rate. Further detail on this process may be found in [13]. The resultant mix-
ands, augmented with the measurement utilized to generate the AR � with measure-
ment uncertainty R, may then be linearly transformed into state space. Note that the 
ensuing subsection is meant as a summary of this methodology.

4.2  Measurement updates in the presence and absence of observations

Given the generated set of mixands, one may now consider how mixands are 
updated when tasking decisions are made and measurements are taken. The simpler 
scenario is that of a newly made detection. Here, a typical measurement update for a 
Gaussian sum filter may be performed.

It is important to first note the measurement model utilized in this work. Optical 
sensors make angular detections on the celestial sphere, and during long exposures, 
angular rates may also be determined. Right ascension and declination measure-
ments are computed as

(27)min J = ||� − Λ�|| subject to � ≥ � and �T� = 1

(28)� = arctan

(
�y

�x

)
⋅

(29)� = arcsin

(
�z

||�||
)
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and

is the expected relative position in an inertial frame. � is the object position, and � is 
the observer position. Since the angular measurements are explicitly a function of � , 
one may apply the measurement jacobian H =

d�

d�
 , where � = [� �] , to compute 

angular rates. Then,

and the expected relative velocity vector �̇ is easily computed given knowledge of 
the observer trajectory and the object state estimate. With angular uncertainty R� , 
angular rate uncertainty is explicitly R�̇� =

2R

Δt2
 for exposure time Δt [7].

Given measurement and measurement uncertainty

the traditional Gaussian sum filter updates may be performed [33]. In this work, 
unscented measurement updates are utilized [34], with likelihood-based weight 
updates in addition such that

and

Updating the PDF when no detection is made introduces further complexities. First, 
one must consider the probability that the target SO lies in a given field of view 
(FOV) of an optical sensor. If mixand uncertainties are sufficiently small in range 
space relative to the range between the mixand and the optical sensor, one may 
assume that the probability of detection pD is uniform over the mixand. Then, the 
cumulative likelihood of observing the target is

Applying the mixand representation of the PDF, a distinct probability of detection 
may be assumed for each mixand, and

(30)� = � − �

(31)
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One must then evaluate the observation likelihood P(�|k = i) conditioned on mix-
and i. Note that the transformation from state space to measurement space is locally 
linear with the same assumptions on range. Therefore, the mixand density projected 
into measurement space is still Gaussian, with

It is also clear that the integral is separable, and thus,

To compute the likelihood of observation, one must then evaluate the Gaussian inte-
gral in measurement space over the rectangular FOV. Methods such as Genz integra-
tion [26] or expectation propagation [27] may be applied for this purpose. Given this 
result, one must now consider how a null detection may affect existing mixands. It is 
clear that the probability a null detection occurs is the complement of Eq. 38. Then, 
one must consider how to apply this result to knowledge on each mixand. Working 
from first principles, we may apply Bayes rule.

Immediately, challenges arise when considering the term P(� = �|�, k = i) , the 
probability a null detection is made, conditioned on the SO state captured by mixand 
i. Consider the PDF for mixand i in further detail, with the temporary assumption 
that the projection of probability density into measurement space is larger in spread 
than the sensor field of view. At any point within the support of the projected PDF 
outside of the field of view, the probability of a null detection must be unity, since 
that point simply cannot be captured during the observation. This leads to a scenario 
in which a subset of the mixand is scaled as a function of the probability of detec-
tion, while the remainder is unaffected. The structure of this update is clearly non-
Gaussian, and is further illustrated in Fig. 2.

(36)P(� ≠ 0) = �FOV

L∑
i=1

pD,i�iP(�|k = i)d�

(37)P(�|k = i) ≈ N
(
�(�i), HPiH

T
)
.

(38)P(� ≠ 0) =

L∑
i=1

(
pD,i�i �FOV

P(�|k = i)d�

)

(39)P(�|k = i, � = �) =
P(� = �|�, k = i)P(�|k = i)

P(� = �)

Fig. 2  Non-Gaussianity in a negative information update
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This behavior may be broadly categorized into distinct groups. First, the density 
captured in the field of view can be relatively small; this commonly occurs when the 
mixand is either a large normalized distance away from the sensor FOV in measure-
ment space, or quite large in spread in measurement space as compared to the field 
of view. In this case, a null detection’s impact on the PDF is negligible, since the 
probability P(� = �|�, k = i) is effectively unity. Alternatively, the probability den-
sity may be almost entirely captured by the sensor FOV, in which case the entire 
mixand is rescaled and the null detection probability for the given mixand nears 
zero. The third case, in which the sensor field of view overlays a significant portion 
of the mixand, but not the entirety, requires further consideration. To resolve this 
case, a splitting method is proposed to reduce the projected spread of mixands in 
measurement space and ensure negative information updates remain Gaussian.

4.3  Oriented Gaussian splitting

Consider a mixand with mean � and covariance P in state space S . This mixand 
may be defined relative to an observer O with measurement function � . Letting the 
measurement function be differentiable, the local behavior of � may be examined 
utilizing the gradient. For each scalar measurement, this leads to a tangent that may 
be normalized and considered as the direction in state space leading to a maximal 
change in the associated scalar measurement. The resultant set of tangent vectors 
forms the basis of a tangent space of dimension n, where n is the rank of the meas-
urement Jacobian. Each measurement tangent vector may be explicitly computed as

It is desired to split the mixand into a set of mixands with unknown means and 
equivalent covariance P, while enforcing that the combined PDF of the resultant 
mixands captures the same first and second moment of the original mixand. Addi-
tionally, it is desired that the observer is also taken into consideration, such that the 
new mixands are perturbed about the defined measurement bases. Without loss of 
generality, let the new set contain 2m + 1 mixands, where m is the dimension of the 
measurement space. Let one mixand be placed at the original mean, with another 
pair of mixands evenly distanced along the the tangent vector associated with each 
scalar measurement with distance akP

1

2 , where P
1

2 is the matrix square root of the 
original mixand covariance. Note that this methodology is typical when considering 
transformations on Gaussians, exemplified by the work of Havlak and Campbell 
[35]. The matrix square root is incorporated to ensure that similar mixand structure 
is in place, and to enforce positive-definiteness. Additionally, let each new mixand 
have equivalent weight � =

1

2m+1
 . The mean of the resultant distribution is then

(40)l̂i =

𝜕hi

𝜕�
|T
𝜇

| 𝜕hi
𝜕�
|T
𝜇
|
.
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The covariance of the new distribution must also be determined. For a Gaussian 
mixture, the total covariance is

In this case, then, we find

With this result, one can determine the updated covariance

With this result in mind, it is still important to consider whether P∗ is positive defi-
nite. The key determination is whether the eigenvalues of P∗ are all positive. It is 
possible to left and right multiply P∗ by P−

1

2 and maintain the definiteness of the 
matrix such that

Now, any eigenvector for the summation must also be an eigenvector of PNORM . For 
each eigenvector �i , the associated eigenvalue of the summation is �i , and the eigen-
value of PNORM must be enforced to be strictly greater than zero such that

This allows for gains ak to be chosen as a function of the structure of the cumulative 
outer product of the tangent space. First, consider the outer product l̂k l̂Tk  . Since the 
tangent vectors are normalized, this matrix is symmetric and positive semi-definite 
with a single eigenvalue at unity. This offers an upper bound on the eigenvalues of 
the summation. If each tangent vector is collinear, the summation will then have a 
single nonzero eigenvalue
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that must be less than unity. Gains must in general then be no greater than

Note that these gains may be increased if there is further knowledge of the measure-
ment space. If two unit vectors are orthogonal, one may infer that the sum of outer 
products of these vectors has two eigenvalues at unity in addition to zero eigenval-
ues. This argument may be expanded, considering the full set of tangent vectors in 
the space. The maximum eigenvalue of the summed matrix must be no greater than, 
assuming gain is held constant,

where rank(H) is the rank of the measurement Jacobian, which is equivalent to the 
rank of the set of tangent vectors.

This result may explicitly be demonstrated for an optical case in which right 
ascension and declination measurements are taken. This is the critical case for 
negative information updates, because projected mixands must be split in angular 
space to ensure the update remains Gaussian. For this case, the dimension of the 
measurement is m = 2. It is also known that the gradients of right ascension and 
declination are orthonormal in state space. Therefore, we have

and

It is then ensured that newly generated mixands continue to have positive defi-
nite covariances as splitting occurs. Note that while this gain is the theoretical 
maximal bound to ensure positive definite covariances, it is not advisable to use. 
As gain nears this quantity, the projected PDF of the split mixands will become 
drastically small in the eigendirection associated with the eigenvalues nearing 
zero. This behavior is visualized in Fig. 3, where the PDF is presented for a mix-
and before a split, with a split using reasonable gains, and a split with gains near-
ing the theoretical maximum. With this projection, it is most clear that mixand 
uncertainties become quite small in the �̂� direction, and they also become quite 
small in the 𝛿 direction (which is largely out of the plane). More specifically, as 
the gain approaches the theoretic maximum, the projections of uncertainties into 
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measurement space collapse into discrete points. This behavior is demonstrated in 
Fig. 4, where mixands are projected into measurement space.

Understanding this behavior helps visualize a trade in gain selection. Increased 
gain ensures a reduction in spread for the mixands utilized, but also increases 
relative entropy between the original mixand and resultant mixand. Care must be 
taken to allow new mixands to become as small as needed while maintaining a 
distribution sufficiently close to the original.

4.4  Updating Gaussians

Now that a formulation for splitting Gaussians such that they will be sufficiently 
small in measurement space is outlined, a criterion for determining whether a mix-
and shall be split must be established. It is logical to incorporate some measure of 
offset from the center of the sensor FOV in measurement space and the comparative 
spread of uncertainty to the sensor FOV. A critical Mahalanobis distance may be 
defined, such that a mixand shall only be split if

Fig. 3  Mixand densities in a subset of position space before and after splitting
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Additionally, the angular spread may be defined as the square root of the maximal 
diagonal value of the projected covariance trace

This may be compared with a critical value that is a function of the diagonal field of 
view of the sensor.

Once mixands are rescaled such that they are either sufficiently distant in 
measurement space from the sensor FOV or of comparable size to the sensor 
FOV, the negative information update may be considered in further detail. Revis-
iting Eq. 38, the problematic term may now be considered approximately discrete 
in that the mixand is either fully covered by the sensor FOV or is sufficiently far 
from the sensor. As such, it is now logical to consider Eq. 38 as a weight update 
on each mixand in much the same manner as a particle filter, using the intermedi-
ate density

(52)DM(𝜇i,Pi;O) < d∗.

(53)s =
√
max(HPHT ) > s∗.

Fig. 4  Mixand densities in measurement space before and after splitting
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The denominator can simply be considered a normalization, while the numerator 
may be approximately evaluated as

Note that it is still useful to explicitly compute the Gaussian integrals over the FOV 
because of the stopping criterion on splitting; these results may be scaled by the tail 
probabilities computed.

4.5  Merging and Filter Outline

With the filter update fully expressed, one now must ensure there is no hypothesis 
explosion in mixands so that the filter remains computationally efficient. With a goal of 
minimizing Kullbeck–Liebler divergence during the merging process, the well-known 
Runnall’s method is utilized [36]. A discrimination bound,

may be iteratively computed with the merged covariance for mixands i and j, Pij . 
Merging is iteratively performed until a threshold maxima of mixands is reached. 
Pruning may also be applied if weights are sufficiently small, but care must be taken 
to ensure that this does not disregard mixands split during the negative information 
update. With this methodology in place, the full filter is outlined in Fig. 5.

(54)
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P(� = ���, k = i)
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(55)P(� = �|�, k = i) ≈
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)
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Fig. 5  Gaussian Sum Filter 
diagram. Major contribution 
highlighted in blue
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5  Results

The methodology is now presented for a case in which a prior detection is made and 
follow-up observation is desired.The object tracked has the true initial state (in kilom-
eters and kilometers per second)

in the Earth-centered inertial (ECI) frame. An observation is made by an observer at 
the initial ECI position (in kilometers)

An admissible region is then formed from knowledge of observer state and the 
attributable vector (in radians and radians per second) as

Angular uncertainties of 5 arcseconds and angular rate uncertainties of 1.825 arc-
seconds per second are assumed in the attributable vector generation. The admis-
sible region is first instantiated in the unobservable range range-rate halfplane. To 
constrain the admissible region, several assumptions are made on feasible orbits and 
applied in this space. The assumption is made that the target SO is on an elliptic tra-
jectory following two body dynamics, with energy less than 0. A maximal eccentric-
ity of 0.3 is applied. Finally a minimum radius of periapsis of 6500 km is assumed, 
ensuring the target will not collide with Earth. The admissible region is approxi-
mated using a mixture representation, again in range and range rate. The resultant 
admissible region is visualized in Fig. 6. In the Figure, the feasible set is presented 
in the range-range rate half plane. For further use, the admissible region is linearly 
transformed into the full state space (Cartesian position-velocity space). The admis-
sible region may then propagated forward in time until the next possible observation 

(57)� =
[
−27100 −32300 −100 2.36 −1.98 0

]

(58)� =
[
517.859 −5281.538 3526.190

]
.

(59)� =
[
𝛼 𝛿 �̇� �̇�

]
=
[
−2.36716 −0.093581 7.30762e−5 −1.53752e−9

]
.

Fig. 6  GMM representation of a 
geostationary admissible region 
in the range-range rate halfplane
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period, here assumed to be 2 h. Finally, the propagated admissible region may then 
projected into the optical observer field of regard in Fig. 7.

Several characteristics may be noted from Figs. 6 and 7. First, probability density 
is uniform over the unobservable subspace, as no information is available on the 
SO range or range rate. Therefore, each feasible range and range rate pair has equal 
probability. However, this is not true when this feasible set is projected into another 
space. One may consider that the admissible region manifests as a point in measure-
ment space, where it was fully observed. As the admissible region is propagated 
over time, the feasible region then grows in measurement space through a combi-
nation of dynamical uncertainty and rotation of the field of view of the observer, 
allowing the state to eventually become fully observable. Because different subsets 
of the admissible region grow at different rates, and because the projection of the 
admissible region into measurement space may still be concentrated around the 
mean angular rates over the set, the projection is decidedly not uniform in measure-
ment space. Figure 7 demonstrates this fact, and this behavior is important to note 
when considering searching for the SO over the region. A successful tasking meth-
odology captures two objectives in approaching this goal. First, it is critical to con-
sider what regions of the feasible set are growing quickly in measurement so that it 
is possible to exhaust the admissible region over time. Second, it is critical to search 
over subregions with high probability density to maximize probability of detection.

Before search heuristics are considered, it is critical to provide an overview of 
the structure of the admissible region over time. As a baseline, it is worth noting an 
approximate end projected area of the admissible region of 15 deg2 . With a sensor 
field of view of 0.25 deg2 , at least 60 observations of the region would be required 
at this point. This is quite a conservative estimate, as this makes assumptions about 
the region at its largest point, but additional challenges arise in that the region is 
dynamic, and in that the set covering problem is NP-hard. As such, naive or rand-
omized search methodologies are expected to struggle. With these points in mind, 
it is also important to consider the structure of the region over the course of a typi-
cal search. It is apparent that an effective search strategy must also carefully handle 
leftover regions of search space, in order to minimize cleanup after the vast majority 

Fig. 7  An admissible region for 
a GEO object propagated over 
time and projected into the field 
of regard of a ground-based 
observer
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of the feasible search region is exhausted. Figure 8 presents a visualization of the 
tasking process midway through a search routine. Note that particle sets are utilized 
in this visualization, unlike in Fig. 7.

In order to provide a comparison to the MCTS methodologies, a scanning strat-
egy is developed, utilizing scenario-specific knowledge that the fastest-growing sub-
set of the search space is that where right ascension is largest. A striping method is 
applied, moving along increasing declination and decreasing right ascension, hoping 
to capture these quickly growing subsets early in the search scenario. Results for 
this point of comparison are shown in Fig. 9, demonstrating how this methodology 

Fig. 8  The admissible region after 10 observations have been taken

Fig. 9  Admissible region area and probability of detection over time using a naive scanning pattern
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reduces admissible region area and increases probability of detection over time. As 
the reward functions utilized in MCTS, admissible region area and probability of 
detection will be the primary indicators of the relative merits of differing search 
strategies.

This baseline scanning pattern is able to complete the search campaign in the 
allocated period of 100 observations at a 15 s observation cadence (25 min of instru-
ment time). 66 observations are required, and this result may be assumed as a mini-
mum goal for the MCTS methodology. With this knowledge, tree search results are 
presented in two stages. For each rollout heuristic used, a greedy version is consid-
ered to determine that the heuristic is logical in application to the problem at hand. 
Then, MCTS is run to demonstrate the advantages of a search over a receding hori-
zon, illustrating the combinatoric challenges of the problem. MCTS is run for 100 
iterations down the search tree at each time step, with a search depth of 40 obser-
vations. As the search period nears the end of the 100 allocated observations, this 
depth is reduced accordingly such that only 100 observations are considered across 
the scope of the problem. Figure 10 gives some intuition in terms of the intrinsic 
value of further search over time. In the Figure, we observe that the rollout heu-
ristics (in this case, the probability of detection heuristic) can very quickly achieve 
decision quality close to the maximum value found. However, this gain is still sig-
nificant, especially for what is a relatively low number of search iterations.

The first tree search strategy to demonstrate considers probability of detection as 
a rollout heuristic and reward. The search space is discretized with a covering set of 
potential observational actions, and for each possible action, a value is determined 
by any previously unobserved particles lying in the field of view. The greedy and 
MCTS results are presented in Fig. 11.

Both the greedy and MCTS methods here offer significant gains as compared 
to the scanning strategy. Notably, the methods used are much more efficient early 
in the search period, achieving an almost constant rate of decrease in remaining 
search area over the first 40 measurements used. After this period, the comparative 
advantages of the MCTS method are revealed, and that method begins to achieve 
increased value as less of the search area remains. Logically, this is the result of 

Fig. 10  Normalized value 
estimated over a large set of tree 
search runs
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improved planning early in the search period; the greedy method is inefficient in that 
it leaves more small, disjoint regions that must be individually observed late in the 
search period in order to exhaust the search. This is, in effect, a gain of 10 observa-
tions that may be utilized for different sensor tasking objectives. The MCTS method 
here requires 59 observations to complete the campaign, and the greedy method 
takes 69 observations.

Next, the final projected area of a subset captured in an observation is consid-
ered using the lookahead heuristic. Cumulative probability of detection is again 
utilized as a reward. The search space is discretized with a covering set of poten-
tial observational actions, and for each possible action, the final projected area of 
particles within the field of view is applied as an observation weight. The greedy 
and MCTS results for this scenario are presented in Fig. 12.

Fig. 11  Admissible region area and probability of detection over time using the probability of detection 
heuristic

Fig. 12  Admissible region area and probability of detection over time using the lookahead heuristic
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There are several differences from the prior case noted in this result. With this 
heuristic, there seems a clear trade between gaining early decreases in search set 
area while also noting a slightly smaller probability of detection. It is likely that 
this behavior was influenced by the reduction in area reward function utilized 
in tandem with the lookahead heuristic. Interestingly, the MCTS version of the 
lookahead methodology offers vast improvements on the greedy version, requir-
ing 64 observations as compared to 83. One explanation for this is that it seems 
this methodology requires significant cleanup at the end of search, and MCTS is 
able to minimize that need.

Finally, more immediate behavior of an observed subset is considered using the 
immediate change in area heuristic. The greedy and MCTS results for this scenario 
are presented in Fig. 13.

Fig. 13  Admissible region area and probability of detection over time using the immediate change in 
area heuristic

Fig. 14  Comparisons between each MCTS scenario and the naive scanner
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The structure of these results is much the same as the other two MCTS scenarios. 
Similar gains are made in this case, as compared to the scanning result, and as such 
it is most useful to make comparisons between each MCTS case. In Fig. 14, one 
may observe that this scenario seems to offer a middle ground in that it trails the 
lookahead heuristic in reducing area and it trails the probability of detection heuris-
tic in achieving cumulative probability of detection. Each method offers clear advan-
tages over the scanning methodology. The general structure of the growth of the 
unobserved region over time is also shown.

With these results outlined, MCTS is then applied in combination with the 
developed estimation paradigm. As in the initial search case, observations are 
taken at a 15 s cadence until the search region is exhausted; the first follow-up 
observation is performed 2 h after the initial detection. The admissible region, 
with initial area in measurement space of approximately 7 deg2 , is exhausted with 
a sequence of 66 observations, using a sensor with a square field of view of 0.25 
deg2 . At the time of the 66th observation, the projected admissible region has an 
area of approximately 12 deg2 . Over the course of this tasking solution, a single 
observation is made at timestep t15 = 7410 s when the observer is pointing at the 
angular coordinates � = −1.82939 rad, � = −0.093562 rad . In each other case, no 
detection is made, and the negative information is processed. Figure 15 visualizes 
the effects of processing negative information 7 observations into the tasking sce-
nario. Note that probability density in the observed subset of measurement space 
has been greatly reduced.

In Fig.  15, the most recent observation is represented by a shaded rectan-
gle, and the true state, at � = −1.8346 rad and � = −0.09318 rad, is marked by 
a plus sign. Observed regions are most visible from � = −1.87 to −1.85 radians 
and � = −0.1 to −0.09 radians. Because of these reductions, unobserved subsets 
of the projected admissible region are now comparatively more likely. Indeed, 
the density at the true state is approximately 10 percent higher than prior to the 
processing of any negative information. This result is quite comparable in essence 
to the spooky effect described by Franken et  al [18]. The negative information 
in this case describes missed detections on a subset of mixands in the ensemble, 

Fig. 15  The admissible region 
projected into measurement 
space after 7 null detections
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increasing the likelihood that each other mixand is “truth” and may be associated 
with the true state.

It is also important to consider the behavior of the filter when a measurement 
is received. Figure 16 demonstrates the reduction of the mixture when this occurs 
at time t15 . Here, the projected area of the mixture is now reduced to that of meas-
urement uncertainty, assumed to be on the order of 5 arcseconds in this simula-
tion. After this observation is made, there is negligible effect on the state estimate 
through further processing of negative information, but this is still critical to do 
in real scenarios, when the likelihood of false alarm measurements is non-negligi-
ble. Finally, Fig. 17 visualizes estimation error over the course of the simulation. 
Note that the estimation error remains within the covariance bounds throughout 
the simulation, and is greatly reduced when the follow-up observation is received.

The covariance bounds are a bit conservative in this context because of the rela-
tively short time between observations for a geostationary object. Interestingly, the 
full state is only weakly observable, and though positional uncertainties are reduced 

Fig. 16  The admissible region 
projected into measurement 
space after a follow up detection 
is made. Uncertainty in angular 
space is equivalent to measure-
ment uncertainty

Fig. 17  Estimation errors before and after the detection is made
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by an order of magnitude, there is still significant uncertainty in the sensor line of 
sight direction after the measurement, on the order of 2000 km 3 − � . This a reflec-
tion of the Too Short Arc problem [37], and the unobservable subset of state space 
has not fully rotated into the field of regard of the observer. However, uncertainty is 
sufficiently reduced such that only a small number of mixands are needed to effec-
tively represent probability density after the measurement. There is little impact on 
the processing of negative information on estimation error, but this is as expected. 
Before a detection is made, the PDF is still quite large in state space; while some 
mixands are eliminated through processing negative information, the ensemble 
mean is not very useful for such a large PDF, and in this case, it just happens to be 
that the original mean is somewhat close to the true state. It would be interesting to 
determine whether the ensemble mean becomes more useful in cases where most of 
the feasible region is exhausted before a follow-up detection is made.

6  Discussion

Generally, all of the methods developed performed very well. An interesting ave-
nue of further research would be in the process of discretizing the search space. A 
relatively efficient gridding method is utilized, but it is likely that further improve-
ments could be seen in treating the sub problem of determining feasible actions as a 
covering or packing problem. That problem is NP-hard, but it is likely that utiliza-
tion of more rigorous partitioning of the action space using approximate covering 
algorithms could lead to more efficient options, especially when the search region 
becomes somewhat sparse.

Also of interest for further study is the extension of this research to probabilistic 
admissible regions (PARs) and reachable sets. Incorporation of a non-unity obser-
vation probability when actions are taken is a useful consideration for challenging 
cases with dim and distant, near-cislunar objects, as well as for flexibility if compar-
atively poor sensors are in operation. Searching reachable sets is a critical problem 
as well, and this methodology is quite applicable for maintaining state estimates on 
maneuvering objects. It is important to note that the tasking process is essentially 
analogous for these extensions, but that particle weights may change according to 
the probability density of the PAR or a priori knowledge on a maneuver or unmod-
eled force.

Additional avenues may also considered for the second contribution of this work. 
While the logical focus for processing negative information in this paper is the con-
text of optical observations, this methodology could also be extended for utilization 
with radar measurements and a variety of novel observational techniques. The key 
use case is any situation in which the spread of the projected state estimate exceeds 
the sensor field of regard in measurement space.

Theoretic bounds on the size of Gaussian mixand splits are outlined, but it is 
noted that further perturbation along measurement axes comes with an increase in 
Kullbeck–Liebler divergence from the original mixture. Future work may aim to for-
mally pose this splitting methodology as an optimization in which Kullbeck–Liebler 
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divergence is minimized with an additional cost objective comparing the spread of 
resultant mixands to a target value (for example, a sensor field of view).

This splitting methodology is utilized to ensure that the weight update remains 
Gaussian, and it is important to make further comparisons to particle representations 
of the state estimate, as this state representation is considered for instantiation of 
the tasking contributions. Particles may also be utilized with likelihood updates on 
particles within a sensor field of view when no detection is made, but the Gaussian 
mixture representation may be considered advantageous in this context for several 
reasons. First, it allows for a smooth representation of probability density over the 
support of the state estimate. This is quite useful in regions of measurement space 
where particles may be quite sparse. Additionally, there are computational advan-
tages to utilizing Gaussian mixture representations, in that a large set of particles 
need not be sampled; this is especially critical when particles are sampled from a 
high-dimensional state space. In the context of admissible regions, this is not the 
case, but a curse of dimensionality becomes rather important when considering 
search over reachable sets in Cartesian position-velocity space.

In general, results demonstrate advantages in utilization of negative information 
before follow-up detections are made. Extensions of these results will be made con-
sidering a variety of target orbits, utilization of more interesting dynamics, and fol-
low-up tracking of maneuvering objects.

Finally, it is important to note that the end goal of this research is incorporation 
in an online manner. The problem of tracklet association for multiple generated 
admissible regions is solved, but this research is beneficial when there is immedi-
ate need for follow-up observation. It would be quite interesting to consider whether 
this tasking objective may be leveraged in tandem with other objectives such as pure 
search and catalog maintenance. In future work, a primary goal is to consider the 
multi-objective optimization problem inherent to this question.

7  Conclusion

In this work, new methodologies for space object search and recovery are developed 
using Monte Carlo Tree Search. A variety of heuristics useful for object reacquistion 
are considered, and the developed techniques are applied to a scenario representative 
of modern sensor tasking needs. These methods enable optical recovery in the con-
texts of initial orbit determination and the tracking of maneuvering targets. Estima-
tion is performed along side these tasking methodologies, and special considerations 
are made such that a Gaussian Sum Filter may ingest negative information when no 
detection is made. A novel Gaussian splitting methodology is developed to ensure 
this update remains Gaussian, and the resultant filter is demonstrated to converge 
over the course of search and recovery. The developed methodologies augment the 
initial orbit determination literature, offering a new perspective that is especially 
useful for instantiating and maintaining knowledge on high-priority space objects.
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