
https://doi.org/10.1007/s40295-021-00272-1

ORIGINAL ARTICLE

Perturbed State-Transition Matrix for Spacecraft
Formation Flying Terminal-Point Guidance

Yazan Chihabi1 ·Steve Ulrich1

Accepted: 19 May 2021
© American Astronautical Society 2021

Abstract
This paper presents a guidance solution of relative motion between two spacecraft
using relative classical orbital elements for on-board implementation purposes. The
solution is obtained by propagating the relative orbital elements forward in time using
a newly formulated state-transition matrix, while taking into account gravitational
field up to the fifth harmonic, third-body effects up to the fourth order and drag, then
calculating the relative motion in the local-vertical-local-horizontal reference frame
at each time-step. Specifically, utilizing Jacobian matrices evaluated at the target
spacecraft’s initial orbital elements, the solution proposed in this paper requires only
a single matrix multiplication with the initial orbital elements and the desired time
to propagate relative orbital elements forward in time. The new solution is shown to
accurately describe the relative motion when compared with a numerical simulator,
yielding errors on the order of meters for separation distances on the order of thou-
sands of meters. Additionally, the solution maintained accurate tracking performance
when used within a back-propagation, or terminal-point, guidance law.

Keywords Spacecraft formation flying · Spacecraft relative motion ·
Spacecraft dynamics · Spacecraft formation flying guidance · Analytical ·
Orbital elements

Introduction

Formation flying of multiple spacecraft is a key technology for space-related ven-
tures as it offers lower costs and increased efficiency by reducing the mass, power
demand and size of the spacecraft buses when compared to the use of single space-
craft. For instance, NASA’s MMS mission uses four spacecraft flying in formation
in attempt to study the magnetosphere [36]. However, formation flying has many
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complexities when compared to that of single spacecraft missions. Fuel-efficient for-
mation keeping and reconfiguration maneuvers require accurate guidance systems
which calculates the required reference trajectory. Therefore, the guidance system
must account for perturbations since ignoring orbital perturbations in the calculation
of reference trajectories would result more propellant consumption than necessary.
Formulations which take into account perturbations, such as the effects of gravita-
tional field caused by oblateness of the earth, third body effects, and drag, can be
found in literature. However, these formulations are only applied to single space-
craft. Furthermore, the dynamics model must be accurate for high eccentricity values,
and large separation distances while remaining computationally in-expensive for on-
board implementation purposes. Accurate numerical models which take into account
perturbations exist; however, they are computationally expensive and can lead to
errors due to integration tolerances. Therefore, an analytical dynamics model is
required since it satisfies these conditions and does not require numerical integration.

The Hill-Clohessy-Wiltshire (HCW) model [3] provides linearized relative
dynamics based upon exact Keplerian non-linear differential equations of motion in
the LVLH (local-vertical-local-horizontal) reference frame. This model is assumes a
circular Keplerian orbit and as a result, it is in-accurate for modeling elliptical ref-
erence orbits. Specifically, the errors increase with increasing eccentricity and not
accounting for eccentricity in the HCW model can greatly outweigh the effects of
external perturbations [16]. Gurfil and Kholshevnikov [12, 13] formulated an ana-
lytical nonlinear solution, first suggested by Hill [15], that incorporates Keplerian
eccentric orbits and valid for any time-step. Taking advantage of classical orbital ele-
ments as constant parameters, the relative dynamics of a chaser spacecraft can be
calculated (analogous to a simple rotation matrix approach) instead of using carte-
sian initial conditions in the HCW model. The most important advantage of using
this approach is the fact that the orbital elements can be made to vary as a function
of time to include the effects of orbital perturbations [11, 31]. Furthermore, Schaub
[32, p. 593-673] extended Gurfil and Kholshevnikov’s equations through lineariza-
tions such that the cartesian coordinates in the LVLH reference frame are expressed
in terms of orbital element differences.

Recently, Kuiack and Ulrich [23] developed a novel method in propagating rela-
tive motion analytically. Specifically linearized short periodic and secular variations
of the orbital elements formulated by Brouwer for the second zonal harmonic (J2)
[2] were implemented into Gurfil and Kholshevnikov’s equations of motion [12,
13]. Using this formulation, Kuiack and Ulrich [23] implemented a back propaga-
tion technique such that a set of initial conditions for the chaser spacecraft in terms
of orbital elements is found to allow the spacecraft to drift into a desired relative
orbital elements. While the method presented in Kuiack and Ulrich [23] was highly
accurate when modelling the effects of J2, the solution does not account for other
significant orbital perturbations and can only find Cartesian coordinates from relative
orbital elements and not vice versa. The solution required the addition of periodic
variations at every time-step to propagate the relative motion, while the solution pre-
sented here does not. Furthermore, the solution presented by [23] cannot be used in
the development of highly sophisticated navigation and control algorithms since the
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periodic variations are a function of mean orbital elements and cannot be expressed
in state-space form.

A state-transition matrix (STM) for the perturbed relative motion that includes the
first-order secular, long-period, and short-period effects due to the dominant second
zonal harmonic perturbation was first proposed by Gim and Alfriend [8]. Specifically,
the formulation utilized a linearized geometric method for mapping the osculating
orbital element differences relative position and velocity in orbital frame. An analyti-
cal solution to propagate the averaged relative orbital elements about an oblate planet
was proposed by Sengupta et al. [33]. Furthermore, Roscoe et al. [35] formulated a
solution that included the effects of third-body perturbations on spacecraft relative
motion. An analytical solution, proposed by Mahajan et al. [26], uses linearized state
transition matrices to propagate the relative mean orbital elements forward in time
while taking into account the effects of gravitational field perturbation up to an arbi-
trary degree and their respective long and short periodic effects. The development of
this solution involves the use of Hamiltonians and is highly complex; however, once
implemented, it is simple and accurate. The main advantage of this formulation is
that it can be expanded to an arbitrary degree based on desired accuracy while tak-
ing into account the effects of tesseral harmonics. Additionally, Guffanti et al. [9]
introduced a set of state transition matrices which included singly averaged effects
of the second and third zonal harmonics, doubly-averaged third body expanded to
the second order, and solar radiation pressure where non-singular orbital elements
were used as the states. Further work was done by Guffanti et al. [19] in the devel-
opment of STM formulations using singular, quasi singular and non-singular orbital
elements that included the effects of J2, second order expansion of the third-body
disturbing function, and atmospheric drag effects on semi-major axis and eccentric-
ity. Most literature addresses the problem of spacecraft relative motion in terms of
obtaining an analytical solution that is accurate and analyzed for long term propaga-
tion and, in some cases, involves the use of mean to osculating conversions. Although
the solutions are highly accurate, guidance and control applications require accurate
dynamics for smaller time-scales and time-steps to be used with a continuous con-
troller. In addition, the solutions required the target’s perturbed orbital motion to be
propagated forward in time to obtain the solution of relative motion.

In this context, the main contributions of this paper are: (1) a new way to obtain
the linearized equations of relative motion on perturbed orbit using relative classi-
cal orbital elements and (2) a new perturbed state transition matrix formulation with
application to a terminal-point guidance law. Unlike the one formulated by Guffanti,
et al. [9] and Mahajan, et al. [26] the new STM formulation developed in this work
includes the combined effects of gravitational, third-body and drag perturbations.
Specifically, third body equations up to the fourth degree [6, 20, 22, 30], drag model
by Lawden [24] and gravitational perturbation up to the fifth zonal harmonic [2, 21,
25] are utilized in the development of the new formulation. Lawden’s atmospheric
drag model allows to compute the variations in semi-major axis, eccentricity, inclina-
tion, argument of perigee and the right ascension of the ascending node. Additionally,
the linearized equations developed by Schaub [32, p. 593-673] is used in the deriva-
tion of the STM relating relative orbital elements to relative position and velocity.
By formulating a linear time invariant solution and including more perturbations, the
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work presented in this paper aims to provide an simple and accurate solution to rela-
tive motion. However, one of the key differences when compared to the approach in
[23] is the state-transition matrix approach and the determination of relative orbital
elements using desired relative Cartesian coordinates instead of only using orbital
elements.

This paper is organized as follows: “Linearized Equations of Relative Motion
using Relative Orbital Elements” describes the linearized equations of motion for-
mulated by Schaub [32, p. 593-673] and the proposed approach to derive STM
to map relative relative orbital elements to Cartesian coordinates. “State Transition
Matrix Formulation”. provides the details of the derivation for the perturbed STM.
Next, “Terminal-Point Guidance Law” provides a description of the newly developed
terminal-point guidance law. “Numerical Simulations” presents simulation results for
the developed solution and concluding remarks are provided in “Conclusion”.

Linearized Equations of Relative Motion using Relative Orbital
Elements

The non-linear equations of motion formulated by Gurfil and Kholshevnikov pro-
vides a method of calculating the relative motion of two spacecraft in the LVLH
reference frame using each spacecraft’s orbital elements [12, 13]. However, these
equations cannot be used to determine relative orbital elements using a set of desired
Cartesian coordinates. Therefore, a set of linearized equations that describe the
relative motion must be used.

The LVLH reference frame is denoted by FL and defined by its orthonormal unit
vectors [Lx, Ly, Lz]T with its origin at the target spacecraft. The unit vector Lz

points in the same direction as the orbit’s angular momentum vector normal to the
orbital plane. Lx points in the direction of the target’s inertial position r t and Ly

completing the triad such that Ly = Lz × Lx . Schaub derived the linearized equa-
tions of motion using a first order approximation and is presented in state-space form
below [32, p. 593-673]

ρ = [
x y z

]T = A1Δx (1)

such that ρ = ρT FL and

x = [
a e i ω Ω M

]T (2)

A1 =
⎡

⎢
⎣

rt
at

−at cos θt 0 0 0 at et sin θt√
1−et

2

0 rt sin θt

1−et
2 (2 + et cos θt ) 0 rt rt cos it

rt
(1−et

2)3/2

0 0 rt sin θt 0 −rt cos θt sin θt 0

⎤

⎥
⎦ (3)

The variable Δx contains the difference in orbital elements between the chaser and
the target spacecraft such that Δx = xc −xt , where the subscripts c and t denote the
chaser and target respectively.

Schaub [32, p. 593-673] also derived equations for relative velocity in the LVLH
reference frame; however, they are derived based on non-singular orbital elements.
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The linearized equations relating relative orbital elements to relative velocity are
herein derived by taking the time derivative of Eq. 1 shown below

ρ̇ = [
ẋ ẏ ż

]T =
(

d

dt
A1

)
Δx + A1Δẋ (4)

It will be shown in the following section that Δẋ = FΔx, where F contains the
combined keplerian and perturbing effects. The relative velocity in LVLH can be
simplified as

ρ̇ = ([
A21 A22

] + A1F
)
Δx (5)

where

A21 =

⎡

⎢⎢⎢⎢⎢
⎣

ṙt
at

at θ̇t sin θt 0

0

1
1−et

2 [ṙt sin θt (2 + et cos θt )+
θ̇t cos θt rt (2 + et cos θt )+
sin θt rt (2 − et θ̇t sin θt )]

0

0 0 ṙt sin θt + rt θ̇t cos θt

⎤

⎥⎥⎥⎥⎥
⎦

(6)

A22 =

⎡

⎢⎢
⎣

0 0 at et θ̇t cos θt√
1−et

2

ṙt ṙt cos it
ṙt

(1−et
2)3/2

0 −ṙt cos θt sin θt + rt θ̇t (sin θt + cos θt ) 0

⎤

⎥⎥
⎦ (7)

The target’s radial, radial rate of change and true anomaly rate magnitudes (rt , ṙt , and
θ̇t ) are calculated as follows

rt = at (1 − et
2)

1 + et cos θt

(8)

ṙt =
√

μ

at (1 − et
2)

et sin(θt ) (9)

θ̇t =
√

μat (1 − et
2)

rt 2
(10)

where θt is the target’s true anomaly.
Since the equations shown above are functions of the true anomaly, θ , a way of

computing it is required. Gurfil and Kholshevnikov [12] proposed to numerically
integrate for the time derivative of the true anomaly, but the purpose of this paper is
to provide a fully analytical solution. Many solutions to obtain the true anomaly from
the mean anomaly, eccentric anomaly and the orbit’s eccentricity exist. Vallado illus-
trates many of these methods, including a method that uses modified Bessel functions
of the first kind paired with the eccentricity and mean anomaly to solve for the true
anomaly [37, p. 80-81]. Kuiack and Ulrich [23] modified Gurfil and Kholeshnikov’s
solution to include a analytical approximation for the true anomaly in terms of the
eccentric anomaly. The simple recursive solution is given by

E = M + e sin(M + e sin(M + e sin(M + ... + e sin(M)))) (11)
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cos θ = cosE − e

1 − e cosE
(12)

sin θ =
√
1 − e2 sinE

1 − e cosE
(13)

θ = tan−1 sin θ

cos θ
(14)

where E is the eccentric anomaly. This is a recursive solution based on the Newton-
Raphson Iteration Technique [1] which implies an infinite series. Therefore, a term
will become truncated based on the desired accuracy. The mean anomaly can be
found by

M = M0 + Ṁ(tf − t0) (15)

Ṁ = n =
√

μ

a3
(16)

This formulation assumes a Keplerian orbit and one can incorporate perturbations by
adding secular variations such that the target’s orbital elements varies with time.

State TransitionMatrix Formulation

This section presents the formulation used to derive the state transiton matrix that
maps the states at a time tf to the initial states at t0, which is the most significant
contribution of this paper. To first formulate the state transition matrix, the system
dynamics must be defined by the derivative of the state vector, ẋ, as a function of the
states

ẋ = [
ȧ ė i̇ ω̇ Ω̇ Ṁ

]T = f (x) (17)

and the function is the combination of keplerian and total perturbing effects consid-
ered represented by

f (x) = f kep(x) +
∑

f perturb(x) (18)

where

f kep(x) = [
0 0 0 0 0 n

]T (19)

f perturb(x) = [
ȧperturb ėperturb i̇perturb ω̇perturb Ω̇perturb Ṁperturb

]T
(20)

The system dynamics can now be expressed in terms of relative orbital elements by
taking the Jacobian of Eq. 17 as

Δẋ = F (x)Δx (21)

where

F (x) = ∂f (x)

∂x

∣∣∣∣
x=xt

(22)

The system represented by Eq. 21 is a state-space representation of spacecraft relative
dynamics based on equilibrium states x, or in this case the target’s orbital elements.
Depending on the dynamical representation given by Eq. 17, the system given by
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Eq. 21 can either be linear time-varying (LTV) or time-invariant (LTI). The perturb-
ing equations within Eq. 17 used to derive the Jacobian matrices is based on averaged
models (over the true anomaly) of drag, gravity and third-body perturbations and as
a result, the true anomaly does not appear in the equations for the Jacobian [24, 25,
30]. Therefore, the model represented by Eq. 21 can be assumed to be LTI since the
elements of matrix F (x) varies on the order of months or years (due to the variations
in RAAN and argument of perigee). Since this paper explores the case of relative
motion over relatively small periods (small periods being on the order of orbital peri-
ods, which equate to hours or days), the argument that the system is LTI holds, and it
would have minimal effect on the accuracy of the model.

Now that the system dynamics have been defined, it can be linearized through a
Taylor series expansion about the target’s states such that

Δxf =
[

I 6×6 + F (x)Δt + F 2(x)

2! Δt2 + F 3(x)

3! Δt3...

]

Δx0 (23)

where Δt = tf − t0 and the Jacobian matrix F (x) is evaluated at the target’s initial
states. The overall accuracy of the model can be improved by splitting the propa-
gation in shorter time-steps and not using a fixed constant initial condition for the
target, but this will not improve the accuracy by a significant amount. Furthermore,
that would defeat the purpose of this paper, which is to formulate a model that is
computationally efficient and can perform required computations with a single step.
The Keplerian Jacobian is found as

F kep(x) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1.5n/a 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(24)

Recently, Kuiack and Ulrich [23] developed a model which only includes the
second zonal harmonic in terms of its secular and short periodic variations based
off of Brouwer’s [2] gravitational equations. Vinti [38] expanded on Brouwer’s [2]
and Kozai’s [21] work to include the effects of the residual fourth zonal harmonic.
In addition, an analytical relative dynamics for a J2 perturbed elliptical orbit was
formulated by Hamel and Lafontaine [14] but only included secular variations of
RAAN, argument of perigee and mean anomaly. Liu [25] expanded on Brouwer’s
and Kozai’s work to include secular variations of eccentricity and inclination, and
concluded that their effects are small (about 0.5%more accurate). This paper uses the
secular equations reformulated by Liu [25] as a basis to derive the gravitational field
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Jacobian matrices F J (x) for relative orbital elements. The Jacobian matrix is herein
derived as

F J (x) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
FJ

21 FJ
22 FJ

23 FJ
24 0 0

FJ
31 FJ

32 FJ
33 FJ

34 0 0
FJ

41 FJ
42 FJ

43 0 0 0
FJ

51 FJ
52 FJ

53 0 0 0
FJ

61 FJ
62 FJ

63 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(25)

where the matrix elements are herein obtained as

FJ
21 = 1

64a8(e2 − 1)3n

[
3R3

Eμ sin(i)(144J3a cos(ω) − 180J3a cos(ω) sin2(i)

−144J3ae2 cos(ω)) + 165J 2
2 REe sin(2ω) sin3(i) + 330J4REe sin(2ω) sin(i)

+180J3ae2 cos(ω) sin2(i) − 154J 2
2 REe sin(2ω) sin(i)

− 385J4REe sin(2ω) sin3(i)
]

(26)

FJ
22 = − 1

32a4(e2 − 1)3

[
3J 2

2 R4
E sin(2ω) sin2(i)n(15 sin2(i) − 14)

+15J4R
4
E sin(2ω) sin2(i)n(7 sin2(i) − 6)

]

+ 1

16a4(e2 − 1)4

[
9J 2

2 R4
Ee2 sin(2ω) sin2(i)n(15 sin2(i) − 14)−

45J4R
4
Ee2 sin(2ω) sin2(i)n(7 sin2(i) − 6)

]

+3J3R3
Ee cos(ω) sin(i)n(5 sin2(i) − 4)

2a3(e2 − 1)3
(27)

FJ
23 = − 1

(8a4(e2 − 1)3)

[
3R3

E cos(i)n(4J3a cos(ω) − 15J3a cos(ω) sin2(i)

−4J3ae2 cos(ω) − 15J 2
2 REe sin(2ω) sin3(i) + 15J4REe sin(2ω) sin(i)

+15J3ae2 cos(ω) sin2(i) + 7J 2
2 REe sin(2ω) sin(i)

−35J4REe sin(2ω) sin3(i))
]

(28)

FJ
24 = 1

16a4(e2 − 1)3

[
15J4R

4
Ee cos(2ω) sin2(i)n(7 sin2(i) − 6)

−3J 2
2 R4

Ee cos(2ω) sin2(i)n(15 sin2(i) − 14)
]

+3J3R3
E sin(i) sin(ω)n(5 sin2(i) − 4)

8a3(e2 − 1)2
(29)
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FJ
31 = − 3R3

Eeμ

128a8(e2 − 1)4n

[
360J3a cos3(i) cos(ω) − 72J3a cos(i) cos(ω)

+154J 2
2 REe sin(2i) sin(2ω) + 72J3ae2 cos(i) cos(ω)

−360J3ae2 cos3(i) cos(ω) + 330J4REe sin(2i) sin(2ω)

+ −330J 2
2 REe sin(2ω) cos(i) sin3(i) − 770J4REe sin(2ω) cos(i) sin3(i)

]
(30)

FJ
32 = 1

8a4(e2 − 1)5

[
3J 2

2 R4
Ee3 sin(2i) sin(2ω)n(15 sin2(i) − 14)8a4(e2 − 1)5

+15J4R
4
Ee3 sin(2i) sin(2ω)n(7 sin2(i) − 6)

]

− 1

32a4(e2 − 1)4

[
15J4R

4
Ee sin(2i) sin(2ω)n(7 sin2(i) − 6)

−3J 2
2 R4

Ee sin(2i) sin(2ω)n(15 sin2(i) − 14)
]

−3J3R3
E cos(i) cos(ω)n(5 cos2(i) − 1)

8a3(e2 − 1)3

+9J3R3
Ee2 cos(i) cos(ω)n(5 cos2(i) − 1)

4a3(e2 − 1)4
(31)

FJ
33 = 1

16a4(e2 − 1)4

[
3R3

Ee cos(ω)n(30J3a sin3(i) − 28J3a sin(i)

−30J3ae2 sin3(i) + 30J4REe sin(ω) + 14J 2
2 REe sin(ω) + 28J3ae2 sin(i)

−165J4REe sin2(i) sin(ω) + 140J4REe sin4(i) sin(ω)

−73J 2
2 REe sin2(i) sin(ω) + 60J 2

2 REe sin4(i) sin(ω))
]

(32)

FJ
34 = 3J3R3

Ee cos(i) sin(ω)n(5 cos2(i) − 1)

8a3(e2 − 1)3

− 1

32a4(e2 − 1)4

[
3J 2

2 R4
Ee2 cos(2ω) sin(2i)n(15 sin2(i) − 14)

−15J4R
4
Ee2 cos(2ω) sin(2i)n(7 sin2(i) − 6)

]
(33)

FJ
41 = − 3R2

Eμ

256a8(e2 − 1)4n

[
3520J4R

2
E + 896J2a

2 + 3960J4R
2
Ee2 − 1792J2a

2e2

+896J2a
2e4 + 616J 2

2 R2
Ee2 − 13640J4R

2
E sin2(i) − 495J 2

2 R2
Ee2 sin4(i)

+10780J4R
2
E sin4(i) − 1120J2a

2 sin2(i) + 8360J 2
2 R2

E sin2(i)

−9790J 2
2 R2

E sin4(i) − 13860J4R
2
Ee2 sin2(i) + 10395J4R

2
Ee2 sin4(i)

+2240J2a
2e2 sin2(i) − 1120J2a

2e4 sin2(i) − 396J 2
2 R2

Ee2 sin2(i)
]

(34)
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FJ
42 = − 3R2

Een

64a4(e2 − 1)5

[
1640J4R

2
E + 256J2a

2 + 56J 2
2 R2

E + 1080J4R
2
Ee2

−512J2a
2e2 + 256J2a

2e4 + 168J 2
2 R2

Ee2 − 6220J4R
2
E sin2(i)

+4865J4R
2
E sin4(i) − 320J2a

2 sin2(i) + 3004J 2
2 R2

E sin2(i)

−3605J 2
2 R2

E sin4(i) − 3780J4R
2
Ee2 sin2(i) + 2835J4R

2
Ee2 sin4(i)

+640J2a
2e2 sin2(i) − 320J2a

2e4 sin2(i) − 108J 2
2 R2

Ee2 sin2(i)

−135J 2
2 R2

Ee2 sin4(i)
]

(35)

FJ
43 = −15J4R4

E

n

[
2 cos(i) sin(i)(252e2 + 248) − 4 cos(i) sin3(i)(189e2 + 196)

128a4(e2 − 1)4

]

−3J 2
2 R4

En

[
2 cos(i) sin(i)(36e2 − 760) + 4 cos(i) sin3(i)(45e2 + 890)

128a4(e2 − 1)4

]

−15J2R2
E cos(i) sin(i)n

2a2(e2 − 1)2
(36)

FJ
51 = 3R2

Eμ cos(i)

64a8(e2 − 1)4n

[
330J4R

2
E + 112J2a

2 + 748J 2
2 R2

E + 495J4R
2
Ee2

−224J2a
2e2 + 112J2a

2e4 + 99J 2
2 R2

Ee2 − 770J4R
2
E cos2(i)

−880J 2
2 R2

E cos2(i)2 − 1155J4R
2
Ee2 cos2(i) − 55J 2

2 R2
Ee2 cos2(i)

]
(37)

FJ
52 = 3R2

Ee cos(i)n

16a4(e2 − 1)5

[
32J2a

2 − 220J4R
2
E − 44J 2

2 R2
E − 180J4R

2
Ee2

−64J2a
2e2 + 32J2a

2e4 + 12J 2
2 R2

Ee2 + 385J4R
2
E sin2(i)

+325J 2
2 R2

E sin2(i) + 315J4R
2
Ee2 sin2(i) + 15J 2

2 R2
Ee2 sin2(i)

]
(38)

FJ
53 = 3R2

E sin(i)n

32a4(e2 − 1)4

[
16J2a

2 − 180J4R
2
E − 172J 2

2 R2
E − 270J4R

2
Ee2

−32J2a
2e2 + 16J2a

2e4 − 6J 2
2 R2

Ee2 + 210J4R
2
E sin2(i) + 240J 2

2 R2
E sin2(i)

+315J4R
2
Ee2 sin2(i) + 15J 2

2 R2
Ee2 sin2(i)

]
(39)

FJ
61 = − 1

1024a8(1 − e2)9/2n

[
52800J 2

2 R4
Eμ sin2(i) − 69168J 2

2 R4
Eμ sin(i)4

+10560J 2
2 R4

Ee2μ − 9240J 2
2 R4

Ee4μ − 5376J2R
2
Ea2μ(e2 − 1)3

−51744J 2
2 R4

Ee2μ sin2(i) + 35376J 2
2 R4

Ee2μ sin(i)4 + 10824J 2
2 R4

Ee4μ sin2(i)

+2607J 2
2 R4

Ee4μ sin(i)4 + 15840J4R
4
Ee2μ(e2 − 1)

+8064J2R
2
Ea2μ sin2(i)(e2 − 1)3 − 79200J4R

4
Ee2μ sin(i)(e2 − 1)

+69300J4R
4
Ee2μ sin2(i)(e2 − 1)

]
(40)

651The Journal of the Astronautical Sciences  (2021) 68:642–676



FJ
62 = 3J 2

2 R4
En

512a4(1 − e2)9/2

[
640e − 1120e3 + sin4(i)(316e3 + 2144e)

− sin2(i)(−1312e3 + 3136e)
]

−9J2R2
Een(3 sin2(i)2 − 2)

4a2(1 − e2)5/2
− 45J4R4

Een(35 sin2(i) − 40 sin(i) + 8)

64a4(1 − e2)7/2

+ 27J 2
2 R4

Een

512a4(1 − e2)11/2

[
sin4(i)(79e4 + 1072e2 − 2096)

+ sin2(i)(328e4 − 1568e2 + 1600) + 320e2 − 280e4
]

− 315J4R4
Ee3n

128a4(1 − e2)9/2
(35 sin2(i) − 40 sin(i) + 8) (41)

FJ
63 = 3J 2

2 R4
En

512a4(1 − e2)9/2

[
4 cos(i) sin3(i)(79e4 + 1072e2 − 2096)

+2 cos(i) sin(i)(328e4 − 1568e2 + 1600)
]

+45J4R
4
Ee2n

40 cos(i) − 70 cos(i) sin(i)

128a4(1 − e2)7/2
− 9J2R2

E cos(i) sin(i)n

2a2(1 − e2)3/2
(42)

where J2, J3 and J4 are the second, third and fourth zonal harmonics respectively,
RE is the mean radius of the Earth, μ is the gravitational constant of Earth and n is
the mean orbital motion of the satellite.

The effects of third body perturbations on satellite orbits has been studied exten-
sively in the past and continues to be in the present. Kozai [20] developed the first
secular and long-periodic equations on the effects of luni-solar perturbations on a
satellite’s orbital elements based on the assumption that the distance of the satellite
from the Earth was very small compared to the moon and that the moon’s orbit is cir-
cular. Those equations were re-visited to include short periodic terms [22]. Smith [29,
34] extended Kozai’s theory to include secular changes for a third body in an ellip-
tical orbit and found that for NASA’s Echo 1 mission, the perigee radius decreased
as much as 100 meters over 25 days. Luni-solar effects on orbital elements were
also developed by Cook [4] who also included the effects of solar radiation pres-
sure, Kaula [18] and Giacagla [7] who also developed secular and periodic variations.
Furthermore, Musen, et al. [28] expanded on Kozai’s theory where it was observed
that the third body perturbation causes the perigee height of a satellite to increase
with periodic variations over long durations (20 km increase over approximately one
month duration) due to third body effects on eccentricity. Recently, Domingos, et al.
[6] and Prado [30], developed a simplified analytical model for a satellite’s orbital
elements based on the third body disturbing function expanded in Legendre polyno-
mials up to fourth order. Specifically, the authors developed analytical model double

652 The Journal of the Astronautical Sciences  (2021) 68:642–676



averaged the expanded disturbing function over the satellite’s orbital period and then
again over the third body’s. The third body Jacobian matrix is derived in this work as

F 3rd (x) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
F3rd

21 F3rd
22 F3rd

23 F3rd
24 0 0

F3rd
31 F3rd

32 F3rd
33 F3rd

34 0 0
F3rd

41 F3rd
42 F3rd

43 F3rd
44 0 0

F3rd
51 F3rd

52 F3rd
53 F3rd

54 0 0
F3rd

61 F3rd
62 F3rd

63 F3rd
64 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(43)

where the matrix elements are herein obtained as

F3rd
21 = 45eμKn′2(1 − e2)1/2

16384a4a′2n

[
588a2 sin(2ω) + 294a2e2 sin(2ω)

+ 3087a2e2 sin(4ω) + 784a2 cos(2i) sin(2ω) + 1024a′2 sin(2ω) sin2(i)

+392a2e2 cos(2i) sin(2ω) − 4116a2e2 cos(2i) sin(4ω)
]

(44)

F3rd
22 = − 15Kn′2

8192(1 − e2)1/2a′2n

[
126a2e2 sin(2ω) − 252a2 sin(2ω)

−3969a2e2 sin(4ω) + 504a2e4 sin(2ω) + 5292a2e4 sin(4ω)

−336a2 cos(2i) sin(2ω) − 1024a′2 sin(2ω) sin2(i) + 168a2e2 cos(2i) sin(2ω)

+5292a2e2 cos(2i) sin(4ω) + 672a2e4 cos(2i) sin(2ω)

−7056a2e4 cos(2i) sin(4ω) + 2048a′2e2 sin(2ω) sin2(i)
]

(45)

F3rd
23 = −15eKn′2(1 − e2)1/2

1024a′2n

[
84a2 sin(2i) sin(2ω) − 256a′2 sin(2ω) cos(i) sin(i)

+42a2e2 sin(2i) sin(2ω) − 441a2e2 sin(2i) sin(4ω)
]

(46)

F3rd
24 = 15eKn′2 cos(2ω) sin2(i)(1 − e2)1/2

4n

+9a2Kn′2(1 − e2)1/2

65536a′2n

[
2e3 cos(2ω)(4480 cos2(i) − 560)

−4e3(2 cos2(2ω) − 1)(47040 cos2(i) − 41160)

+2e cos(2ω)(8960 cos2(i) − 1120)
]

(47)

F3rd
31 = − 45e2Kn′2 sin(2ω) cos(i)

8192aa′2 sin(i)(1 − e2)1/2n

[
784a2 cos2(i) − 512a′2 cos2(i) − 98a2

+512a′2 − 49a2e2 + 392a2e2 cos2(i) + 7203a2e2 cos(2ω)

−8232a2e2 cos(2ω) cos2(i)
]

(48)
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F3rd
32 = − 15eKn′2 sin(2ω) cos(i)

4096a′2 sin(i)(1 − e2)(3/2)n

[
672a2 cos2(i) + 1024a′2 sin2(i) − 84a2

−42a2e2 + 63a2e4 + 336a2e2 cos2(i) − 504a2e4 cos2(i)

+12348a2e2 cos(2ω) − 9261a2e4 cos(2ω) − 512a′2e2 sin2(i)
−14112a2e2 cos(2ω) cos2(i) + 10584a2e4 cos(2ω) cos2(i)

]
(49)

F3rd
33 = − 15e2Kn′2 sin(2ω)

4096a′2(1 − e2)1/2(cos2(i) − 1)n

[
1008a2 cos2(i) − 672a2 cos4(i)

−1536a′2 cos2(i) + 1024a′2 cos4(i) − 42a2 + 512a′2 − 21a2e2

+504a2e2 cos2(i) − 336a2e2 cos4(i) + 3087a2e2 cos(2ω)

−10584a2e2 cos(2ω) cos2(i) + 7056a2e2 cos(2ω) cos4(i)
]

(50)

F3rd
34 = −15e2Kn′2 cos(2ω) cos(i) sin(i)

4(1 − e2)1/2n

− 9a2Kn′2 cos(i)
65536a′2 sin(i)(1 − e2)1/2n

[
2e4 cos(2ω)(4480 cos2(i) − 560)

+2e2 cos(2ω)(8960 cos2(i) − 1120)

−4e4(2 cos2(2ω) − 1)(47040 cos2(i) − 41160)
]

(51)

F3rd
41 = 9μKn′2

16384a4a′2 (1 − e2)1/2n3

[
54880a2 cos4(i) − 40320a2 cos2(i)

+5120a′2 cos2(i) − 980a2 cos(2ω) + 5120a′2 cos(2ω) + 3360a2 − 1024a′2

−36855a2e2 + 33495a2e4 + 1024a′2e2 + 15960a2e2 cos2(i)

+68600a2e2 cos4(i) + 12600a2e4 cos2(i) − 41160a2e4 cos4(i)

+980a2e4 cos(2ω) − 5120a′2e2 cos(2ω) + 72030a2e2 cos(2ω)2

−72030a2e4 cos(2ω)2 + 7840a2 cos(2ω) cos2(i) − 5120a′2 cos(2ω) cos2(i)

+ 62720a2e2 cos(2ω) cos2(i) − 109760a2e2 cos(2ω) cos4(i)

+23520a2e4 cos(2ω) cos2(i) − 54880a2e4 cos(2ω) cos4(i)

−82320a2e2 cos(2ω)2 cos2(i) + 82320a2e4 cos(2ω)2 cos4(i)
]

(52)
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F3rd
42 = − 3eKn′2

8192a′2 (1 − e2)(3/2)n

[
3600a2 cos2(i) − 82320a2 cos4(i)

−5120a′2 cos2(i) + 420a2 cos(2ω) + 5120a′2 cos(2ω) − 61740a2 cos(2ω)2

+30150a2 − 1024a′2 − 73215a2e2 + 43065a2e4 + 1024a′2e2

−14760a2e2 cos2(i) + 99960a2e2 cos4(i) + 16200a2e4 cos2(i)

−52920a2e4 cos4(i) − 1680a2e2 cos(2ω) + 1260a2e4 cos(2ω)

−5120a′2e2 cos(2ω) + 154350a2e2 cos(2ω)2 − 92610a2e4 cos(2ω)2

−57120a2 cos(2ω) cos2(i) + 94080a2 cos(2ω) cos4(i)

+5120a′2 cos(2ω) cos2(i) + 70560a2 cos(2ω)2 cos2(i)

−13440a2e2 cos(2ω) cos2(i) + 47040a2e2 cos(2ω) cos4(i)

+30240a2e4 cos(2ω) cos2(i) − 70560a2e4 cos(2ω) cos4(i)

−35280a2e2 cos(2ω)2 cos2(i) − 141120a2e2 cos(2ω)2 cos4(i)

+105840a2e4 cos(2ω)2 cos4(i)
]

(53)

F3rd
43 = 15Kn′2 cos(i)(cos2(i) − 1)

512a′2 sin(i)(1 − e2)1/2n

[
1176a2 cos2(i) + 84a2 cos(2ω)

−128a′2 cos(2ω) − 432a2 + 128a′2 + 171a2e2 + 135a2e4

+1470a2e2 cos2(i) − 882a2e4 cos2(i) + 672a2e2 cos(2ω)

+252a2e4 cos(2ω) − 882a2e2 cos(2ω)2 − 2352a2e2 cos(2ω) cos2(i)

−1176a2e4 cos(2ω) cos2(i) + 1764a2e4 cos(2ω)2 cos2(i)
]

(54)

F3rd
44 = 3Kn′2 sin(2ω)(5 cos2(i) + 5e2 − 5)

4(1 − e2)1/2n

−9a2Kn′2 (1 − e2)1/2

32768a′2n
[2 sin(2ω)(2240 cos(2i) + 1680)

+2e2 sin(2ω)(2240 cos(2i) + 1680) − 4e2 sin(4ω)(11760 cos(2i) − 8820)
]

− 9a2Kn′2 cos(i)
65536a′2 sin(i)(1 − e2)1/2n

[
2e4 sin(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e4 sin(4ω)(11760 sin(2i) − 5880 sin(4i))

+2e2 sin(2ω) (4480 sin(2i) − 15680 sin(4i))
]

(55)
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F3rd
51 = μKn′2

16384aa′2μ sin(i)(1 − e2)1/2n

[
5040a2 sin(2i)(e2 − 1)

−9216a′2 sin(2i) + 17640a2 sin(4i)(e2 − 1)

−13824a′2e2 sin(2i) + 25200a2e2 sin(2i)(e2 − 1)

+88200a2e2 sin(4i)(e2 − 1) + 9450a2e4 sin(2i)(e2 − 1)

+33075a2e4 sin(4i)(e2 − 1) + 35280a2e2 cos(2ω) sin(2i)(e2 − 1)

−123480a2e2 cos(2ω) sin(4i)(e2 − 1) + 17640a2e4 cos(2ω) sin(2i)(e2 − 1)

−61740a2e4 cos(2ω) sin(4i)(e2 − 1) − 92610a2e4 cos(4ω) sin(2i)(e2 − 1)

+46305a2e4 cos(4ω) sin(4i)(e2 − 1) + 46080a′2e2 cos(2ω) cos(i) sin(i)
]

(56)

F3rd
52 = 3eKn′2 cos(i)(5 cos(2ω) − 3)

4(1 − e2)1/2n
− 3eKn′2 cos(i)(3e2 − 5e2 cos(2ω) + 2)

8(1 − e2)(3/2)n

−9a2Kn′2 (1 − e2)1/2

65536a′2 sin(i)n
[3200e(2 sin(2i) + 7 sin(4i))

+4e3(1200 sin(2i) + 4200 sin(4i)) + 2e cos(2ω)(4480 sin(2i) − 15680 sin(4i))

+4e3 cos(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e3 cos(4ω)(11760 sin(2i) − 5880 sin(4i))
]

+ 9a2eKn′2

65536a′2 sin(i)(1 − e2)1/2n
×

[
640 sin(2i) + 2240 sin(4i) + e4(1200 sin(2i) + 4200 sin(4i))

+e2(3200 sin(2i) + 11200 sin(4i)) + e4 cos(2ω)(2240 sin(2i) − 7840 sin(4i))

−e4 cos(4ω)(11760 sin(2i) − 5880 sin(4i))

+e2 cos(2ω)(4480 sin(2i) − 15680 sin(4i))
]

(57)

F3rd
53 = 3Kn′2 sin(i)(3e2 − 5e2 cos(2ω) + 2)

8(1 − e2)1/2n
− 9a2Kn′2 (1 − e2)1/2

65536a′2 sin(i)n
[1280 cos(2i)

+8960 cos(4i) + e4(2400 cos(2i) + 16800 cos(4i))

+e2(6400 cos(2i) + 44800 cos(4i)) + e4 cos(2ω)(4480 cos(2i) − 31360 cos(4i))

−e4 cos(4ω)(23520 cos(2i) − 23520 cos(4i))

+e2 cos(2ω)(8960 cos(2i) − 62720 cos(4i))
]

+ 9a2Kn′2 cos(i)(1 − e2)1/2

(65536a′2 sin2(i)n)
×

[
640 sin(2i) + 2240 sin(4i) + e4(1200 sin(2i) + 4200 sin(4i))

+e2(3200 sin(2i) + 11200 sin(4i)) + e4 cos(2ω)(2240 sin(2i) − 7840 sin(4i))

−e4 cos(4ω)(11760 sin(2i) − 5880 sin(4i))

+e2 cos(2ω)(4480 sin(2i) − 15680 sin(4i))
]

(58)
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F3rd
54 = 9a2Kn′2 (1 − e2)1/2

65536a′2 sin(i)n

[
2e4 sin(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e4 sin(4ω)(11760 sin(2i) − 5880 sin(4i))

+2e2 sin(2ω)(4480 sin(2i) − 15680 sin(4i))
]

− 15e2Kn′2 sin(2ω) cos(i)

4(1 − e2)1/2n
(59)

F3rd
61 = − 3μKn′2

16384a4a′2n3
[
211680a2 sin4(i) − 265440a2 sin2(i) − 6144a′2 sin2(i)

−41160a2 sin2(ω) + 68964a2 + 14336a′2 + 167685a2e2 + 25305a2e4

+6144a′2e2 − 474600a2e2 sin2(i) + 441000a2e2 sin4(i) − 840a2e4 sin2(i)

+88200a2e4 sin4(i) + 6144a′2e2 sin2(i) − 41160a2e2 sin2(ω)

−123480a2e2 sin4(ω) + 82320a2e4 sin2(ω) − 123480a2e4 sin4(ω)

+47040a2 sin2(i) sin2(ω) − 15360a′2 sin2(i) sin2(ω)

−799680a2e2 sin2(i) sin2(ω) + 987840a2e2 sin2(i) sin4(ω)

−940800a2e4 sin2(i) sin2(ω) + 987840a2e4 sin2(i) sin4(ω)

−15360a′2e2 sin2(i) sin2(ω)
]

(60)

F3rd
62 = − 3eKn′2

4096a′2n

[
63000a2 sin4(i) − 67800a2 sin2(i) + 2048a′2 sin2(i)

−5880a2 sin2(ω) − 17640a2 sin4(ω) + 23955a2 + 2048a′2 + 7230a2e2

−240a2e2 sin2(i) + 25200a2e2 sin4(i) + 23520a2e2 sin2(ω)

−35280a2e2 sin4(ω) − 114240a2 sin2(i) sin2(ω) + 141120a2 sin2(i) sin4(ω)

−5120a′2 sin2(i) sin2(ω) − 268800a2e2 sin2(i) sin2(ω)

+282240a2e2 sin2(i) sin4(ω)
]

(61)

F3rd
63 = 3Kn′2

2048a′2n

[
1080a2 sin(2i) + 3780a2 sin(4i) + 1792a′2 sin(2i)

+2250a2e2 sin(2i) + 7875a2e2 sin(4i) + 450a2e4 sin(2i) + 1575a2e4 sin(4i)

+768a′2e2 sin(2i) + 840a2 cos(2ω) sin(2i) − 2560a′2 cos(i) cos(ω)2 sin(i)

+3360a2e2 cos(2ω) sin(2i) − 4410a2e2 cos(4ω) sin(2i)

+840a2e4 cos(2ω) sin(2i) − 4410a2e4 cos(4ω) sin(2i)

−2560a′2e2 cos(i) cos(ω)2 sin(i)
]

(62)
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F3rd
64 = 9a2Kn′2

8192a′2n

[
2e4 sin(2ω)(1120 cos(2i) + 840)

+2e2 sin(2ω)(2240 cos(2i) + 1680) − 4e4 sin(4ω)(5880 cos(2i) − 4410)
]

+Kn′2 cos(ω) sin2(i) sin(ω)(15e2 + 15)

4n

−9a2Kn′2 (e2 − 1)

32768a′2n
[2 sin(2ω)(2240 cos(2i) + 1680)

+2e2 sin(2ω)(2240 cos(2i) + 1680) − 4e2 sin(4ω)(11760 cos(2i) − 8820)
]
(63)

where K = m′/(m′ + m0), m′ is the mass of the third body, m0 is the mass of the
central body, n′ is the mean orbital motion of the third body and a′ is semi-major axis
of the third body.

Although atmospheric drag is extensively studied, an exact or accurate model is
yet to exist. One of the main reasons is the fact that density is difficult to model
mainly due to the effects of solar wind activity on the atmosphere. However, ana-
lytical approximations of the effects of drag on orbital elements exist in literature
based on the exponential model for density. The first analytical model was formu-
lated by Izsak [17] where the effects were separated in terms of periodic and secular
variations. Xu et al. [10] and Watson et al. [39] also developed an analytical solu-
tion for drag, while Danielson [5] developed a semi-analytic solution and Martinusi
et al. [27] developed a first order accurate analytical solution. In addition, Law-
den formulated secular variations of all orbital elements except mean anomaly due
to atmospheric drag [24]. The drag Jacobian matrix is herein derived, based on
Lawden’s model, as

FDrag(x) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

FDrag
11 FDrag

12 FDrag
13 0 0 0

FDrag
21 FDrag

22 FDrag
23 0 0 0

FDrag
31 FDrag

32 FDrag
33 FDrag

34 0 0
FDrag

41 FDrag
42 FDrag

43 FDrag
44 0 0

FDrag
51 FDrag

52 FDrag
53 FDrag

54 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(64)

with

FDrag
11 = − 1

8Hm(e + 1)1/2

[
CDAaρexp(−c)(Hn(e + 1)1/2 − 2aen(e + 1)1/2

−8HωE cos(i)(1 − e)3/2 + 4aeωE cos(i)(1 − e)3/2)×
(4B0 + 8B1e + 3B0e

2 + 3B1e
3 + 3B2e

2 + B3e
3)

]
(65)
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FDrag
12 = 1

Hm(e + 1)1/2

[
CDAa3ρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)

×(B0 + 2B1e + 0.75B0e
2 + 0.75B1e

3 + 0.75B2e
2 + 0.25B3e

3)
]

− 1

m(e + 1)1/2

[
CDAa2ρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)

×(2B1 + 1.5B0e + 1.5B2e + 2.5B1e
2 + 0.75B3e

2
]

− 1

m(e + 1)3/2

[
2CDAa2ρωEexp(−c) cos(i)(1 − e)1/2(e + 2)×

(B0 + 2B1e + 0.75B0e
2 + 0.75B1e

3 + 0.75B2e
2 + 0.25B3e

3)
]

(66)

FDrag
13 = −2CDAa2ρωEexp(−c) sin(i)(1 − e)3/2

m(e + 1)1/2
×

[
(B0 + 2B1e + (3e2(B0 + B2))/4 + (e3(3B1 + B3))/4)

]
(67)

FDrag
21 = CDAρexp(−c)

32Hm(e + 1)1/2

(
Hn(e + 1)1/2 + 2aen(e + 1)1/2

+4HωE cos(i)(1 − e)3/2 − 4aeωE cos(i)(1 − e)3/2
)

×
[
(16B1 + 8B0e + 8B2e − 5B0e

3 − 10B1e
2 − 4B2e

3 − 2B3e
2 + B4e

3)
]
(68)

FDrag
22 = CDAaρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)

m(e + 1)1/2
×

[
1.25B1e − 0.5B2 − 0.5B0 + 0.25B3e + 15

16
B0e

2

+0.75B2e
2 − 3

16
3B4e

2
]

+ CDAa2ρexp(−c)

Hm(e + 1)1/2

(
n(e + 1)1/2

−2ωE cos(i)(1 − e)3/2
) [

B1 + 0.5B0e + 0.5B2e − 3

16
B0e

3

−5

8
B1e

2 − 0.25B2e
3 − 0.125B3e

2 + 1

16
B4e

3
]

− 2CDAaρωEexp(−c)

m(e + 1)3/2
×

(
cos(i)(1 − e)1/2(e + 2)

) [
B1 + 0.5B0e + 0.5B2e − 5

16
B0e

3 − 5

8
5B1e

2

−0.25B2e
3 − 0, 125B3e

2 + 1

16
B4e

3
]

(69)

FDrag
23 = −2CDAaρωEexp(−c) sin(i)(1 − e)3/2

m(e + 1)1/2

[
B1 − 0.125e2(5B1 + B3)

− 1

16
e3(5B0 + 4B2 − B4) + 0.5e(B0 + B2)

]
(70)
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FDrag
31 = CDAρωEexp(−c)

16Ha3mn3
[
1 − (2ωE cos(i)(1 − e)3/2)/(n(e + 1)1/2))1/2

]
(e + 1)1/2

×
[
7HμωE sin(2i)(1 − e)3/2 − 4Ha3 sin(i)n3(e + 1)1/2

+4a4e sin(i)n3(e + 1)1/2 − 4aeμωE sin(2i)(1 − e)3/2
]

×
[B0 − 2B1e + B2 cos(2ω) − 2B1e cos(2ω)] (71)

FDrag
32 = CDAaρωEexp(−c) sin(i)

4m

[
1 − (2ωE cos(i)(1 − e)3/2)

(n(e + 1)1/2)1/2

]
×

[2B1 + 2B1 cos(2ω)] + CDAa2ρωEexp(−c) sin(i)

4Hm
×

[
1 − (2ωE cos(i)(1 − e)3/2)

(n(e + 1)1/2)1/2

]
[B0 − 2B1e + cos(2ω)(B2 − 2B1e)]

− CDAaρωEexp(−c) sin(i)

8m
[
1 − (2ωE cos(i)(1−e)3/2)

(n(e+1)1/2)1/2

]
[
3ωE cos(i)(1 − e)1/2

n(e + 1)1/2

+ωE cos(i)(1 − e)3/2

n(e + 1)3/2

]
[B0 − 2B1e + cos(2ω)(B2 − 2B1e)] (72)

FDrag
33 = −CDAaρωEexp(−c)

4mnQ0.5(e + 1)1/2

[
cos(i)n(e + 1)1/2 − 2ωE cos2(i)(1 − e)3/2

+ωE sin2(i)(1 − e)3/2
]
[B0 − 2B1e + B2 cos(2ω) − 2B1e cos(2ω)] (73)

FDrag
34 =

[
CDAaρωE sin(2ω)exp(−c) sin(i)Q0.5(B2 − 2B1e)

]
/(2m) (74)

FDrag
41 = CDAρωE sin(2ω)exp(−c) cos(i)(B2 − 2B1e)

8Ha3mn3
[
1 − (2ωE cos(i)(e + 1)3/2)/(n(e + 1)1/2)

]1/2
(e + 1)1/2

×
(
2Ha3n3(e + 1)1/2 − 2a4en3(e + 1)1/2 − 7HμωE cos(i)(e + 1)3/2

+4aeμωE cos(i)(e + 1)3/2
)

(75)

FDrag
42 = CDAaρωE sin(2ω)exp(−c) cos(i)(B2 − 2B1e)

8mQ0.5

(
3ωE cos(i)(1 − e)1/2

n(e + 1)1/2

+ωE cos(i)(1 − e)3/2

n(e + 1)3/2

)
− B1CDAaρωE sin(2ω)exp(−c) cos(i)Q0.5

2m

−CDAa2ρωE sin(2ω)exp(−c)
[
cos(i)Q0.5(B2 − 2B1e)

]
/(4Hm) (76)

FDrag
43 = −CDAaρωE sin(2ω)exp(−c) sin(i)(B2 − 2B1e)

4mnQ0.5(e + 1)1/2

[
n(e + 1)1/2

−3ωE cos(i)(1 − e)3/2
]

(77)
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FDrag
44 = CDAaρωE cos(2ω)exp(−c) cos(i)Q0.5(B2 − 2B1e)/(2m) (78)

FDrag
51 = −CDAρωE sin(2ω)exp(−c)(B2 − 2B1e)

8Ha3mn3Q0.5(e + 1)1/2

[
2Ha3n3(e + 1)1/2

−2a4en3(e + 1)1/2 − 7HμωE cos(i)(1 − e)3/2

+4aeμωE cos(i)(1 − e)3/2
]

(79)

FDrag
52 = B1CDAaρωE sin(2ω)exp(−c)Q0.5

2m

+CDAa2ρωE sin(2ω)exp(−c)Q0.5(B2 − 2B1e)

4Hm

−CDAaρωE sin(2ω)exp(−c)(B2 − 2B1e)

8mQ1/2
×

[
3ωE cos(i)(1 − e)1/2

n(e + 1)1/2
+ ωE cos(i)(1 − e)3/2

n(e + 1)3/2

]
(80)

FDrag
53 = −CDAaρω2

E sin(2ω)exp(−c)
[
4mnQ0.5(e + 1)1/2

] sin(i)(B2 − 2B1e)(1 − e)3/2 (81)

FDrag
54 = −CDAaρωE cos(2ω)exp(−c)Q1/2(B2 − 2B1e)/(2m) (82)

where ωE is angular velocity of Earth. The density at the perigee ρ, modified Bessel
function of the first kind Bj with argument c and the constants c, Q and δ are given
by

ρ = ρ0 exp(−hp − h0

H
) (83)

hp = ā(1 − ē) − RE (84)

Bj (c) = (
c

2
)
j

∞∑

k=0

( c
2 )

2k

k!	(j + k + 1)
(85)

c = āē

H
(86)

Q = 1 − 2ωE(1 − ē)1.5

n̄
√
1 + ē

cos(ī) (87)

δ = QACD

m
(88)

where ρ0 is the atmospheric density in kg/m3 and H is the scale height at a reference
altitude h0, hp is altitude of perigee,Q is the factor for rotation of Earth’s atmosphere
(between 0.9-1.1), A is exposed area in m2 to the direction of fluid flow and CD is
the coefficient of drag and m is mass of the spacecraft in kg.
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Terminal-Point Guidance Law

This section presents the procedure, summarized in steps, of a terminal-point (or
back-propagation) guidance law by using the new STM formulation developed in the
previous sections. In most formation flying applications, the desired relative motion
at some point later in time is known. Taking these conditions and back-propagating
through the previously presented equations, the ideal initial motion of the chaser
spacecraft may be calculated. That is, the set of initial relative orbital elements which
will result in the desired formation at the final time can be calculated. This should
result in reduced fuel consumption, as instead of forcing the chaser to track some
arbitrary trajectory until a specific relative motion is achieved, the chaser is initially
placed onto a natural trajectory that considers orbital perturbations. In other words,
a set of initial conditions can be calculated such that the chaser spacecraft naturally
drifts without the use of actuation into a desired final formation. The steps are as
follows:

1. A set of Keplerian osculating orbital elements are first initialized for the target:
[at0, et0 , it0 , ωt0 , Ωt0, θt0]T such that the Jacobian matrices are evaluated as:

F (x) = Fkep(x) + FJ (x) + F3rd(x) + FDrag(x) (89)

2. Select the desired final time, Δt , at which the chaser is to drift into the desired
final LVLH coordinates, ρf and ρ̇f .

3. The desired relative orbital elements, Δxf can be found using Eqs. 2-16 and the
following equation

Δxf =
[
A11 A12
A21 A22

]−1 [
ρf

ρ̇f

]
(90)

4. Finally, using Eq. 23, the initial relative orbital elements are found with a single
step:

Δx0 = [
I 6×6 + F (x)Δt

]−1
Δxf (91)

Numerical Simulations

This section presents a comparison of results obtained using the equations developed
in this paper against a numerical propagator that integrates the exact nonlinear differ-
ential equations of motion in FI to verify the accuracy of the model. The numerical
propagator integrates the inertial two-body equation of motion to which the iner-
tial perturbing accelerations due to gravitational field by expanding the gravitational
potential function up to degree and order 180, third body effects of the sun, moon
and solar system planets, ocean and solid Earth tidal effects, relativity, solar radiation
pressure, and drag were added then converted from FI to FL. The developed STM
was applied to both the Proba-3 mission and fictitious mission involving a chaser
spacecraft in formation around the decommissioned Alouette-2 communication satel-
lite. Additionally, the terminal-point guidance method presented in this paper was
applied to Alouette-2 for rendevous formation, for which a sensitivity analysis by
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varying the drift time was performed. For all simulations, the osculating orbital ele-
ments for Alouette-2 and Proba-3 were respectively initialized as a = 7947 km,
e = 0.134, i = 79.8◦, ω = 151.9◦, Ω = 348.3◦, and θ = 0◦ and a = 36944 km,
e = 0.811, i = 59.0◦, ω = 188◦, Ω = 84.0◦, and θ = 0◦, respectively.

Figures 1, 2, 3 and 4 show the results for the Proba-3 and Alouette-2 cases
using the new STM formulation, where two simulations with initial relative orbital
elements initialized as Δx0 = [0, 5 × 10−4, 0, 0, 0, 0]T and Δx0 = [0, 5 ×
10−4, 0.1◦, 0.1◦, −0.1◦, −0.1◦]T , respectively, for both cases. The Alouette-2 case
shows a growth in error in all directions, with significant growth in the cross-track
direction, when observing Figs. 1 and 2. When comparing Figs. 3 and 4, the in-plane
errors remained nearly the same whereas the cross-track errors increased from near
100 meters to just below 15000 meters which has minimal effects on accuracy when
taking into account the relative distances involved. In both the Alouette-2 and Proba-3
cases, the results show that the solution maintains accuracy for an arbitrary eccentric
orbit and large separations distances.

Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13 show a sensitivity analysis by varying eccen-
tricity and inclination of the proba-3 case with the same relative orbital elements
condition of Fig. 4. The errors associated with the analytical model decrease as eccen-
tricity or inclination decrease when observing the figures. Specifically, the results
show that at the end of each orbit (i.e. at the perigee after each orbital period), the
errors associated with the analytical model increases sharply which can be seen when
comparing the figures with eccentricity variation. This is caused by the conversion
of mean anomaly to true anomaly through the eccentric anomaly, which specifically
affects the matrix that maps the propagated relative orbital elements to the cartesian
coordinates in LVLH. However, the errors remain minimal and insignificant during
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Fig. 1 Alouette-2: STM for Δx0 = [0, 5 × 10−4, 0, 0, 0, 0]T
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the time in between perigee passages, and in addition, the errors overall are mini-
mal when observing the relative motion in LVLH. Furthermore, the decrease in error
associated with the reduction in inclination is caused by the fact that solar radiation
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Fig. 3 Proba-3: STM for Δx0 = [0, 5 × 10−4, 0, 0, 0, 0]T
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Fig. 5 Proba-3: STM for e = 0.6, Δx0 = [0, 5 × 10−4, 0.1◦, 0.1◦,−0.1◦,−0.1◦]T
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Fig. 11 Proba-3: STM for i = 40◦, Δx0 = [0, 5 × 10−4, 0.1◦, 0.1◦,−0.1◦,−0.1◦]T
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Fig. 12 Proba-3: STM for i = 25◦, Δx0 = [0, 5 × 10−4, 0.1◦, 0.1◦,−0.1◦,−0.1◦]T
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Fig. 13 Proba-3: STM for i = 5◦, Δx0 = [0, 5 × 10−4, 0.1◦, 0.1◦,−0.1◦,−0.1◦]T
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pressure, which is not accounted for in the STM, and third-body perturbations have
the highest effect on polar orbits.

The proposed terminal-point guidance law was validated against the same numer-
ical simulator where the sensitivity with respect to time was analyzed by varying
the final time from tf = 2T to tf = 15T and the obtained results are provided in
Figs. 14, 15, 16, 17, 18 and 19. Since the back-propagation is a single-step propa-
gation, this allows to analyze the effects of step-time on the accuracy of the model.
In all cases, Alouette-2 was used as the target spacecraft and final desired cartesian
coordinates were selected as 2 km in the along-track and radial directions, and no
cross-track separation. In all cases, the chaser drifted into the desired position with
minimal error when compared to the numerical simulator. However, the main dis-
crepancies were found with the desired back-propagation time, where the calculated
initial along track position error increased as the desired time increased. For exam-
ple, Fig. 17 shows a desired time of 8 orbital periods having desired position errors
were less than 100 meters in the along-track direction and no offset in the radial and
cross-track directions. On the other hand, Fig. 19 shows a desired time of 15 orbital
periods having desired position errors were about 400 meters in the along-track direc-
tion and nearly no separation in the radial and cross-track directions. The growth in
error are likely caused by the truncation in the Taylor series expansion in the STM
formulation.

Table 1 shows the CPU time for each back-propagation case. For each case pre-
sented in the table, the CPU time is a collection of ten runs added together within
a for-loop to provide the most accurate estimation of computational load. The back-
propagation algorithm showed an increase in required computational time as the
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Fig. 14 Alouette-2: Desired Drift Time = 2 Orbital Periods Δx0 = [2.21 km,−9.8086 ×
10−6, 6.37 × 10−6◦

,−3.71 × 10−2◦
,−1.40 × 10−4◦

, 0.34◦]T
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Fig. 15 Alouette-2: Desired Drift Time = 4 Orbital Periods Δx0 = [2.21 km,−9.0202 ×
10−6, 6.44 × 10−6◦

,−3.76 × 10−2◦
,−2.75 × 10−4◦
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Fig. 16 Alouette-2: Desired Drift Time = 6 Orbital Periods Δx0 = [2.20 km,−8.2873 ×
10−6, 6.51 × 10−6◦

,−3.82 × 10−2◦
,−4.08 × 10−4◦

, 0.94◦]T
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Fig. 17 Alouette-2: Desired Drift Time = 8 Orbital Periods Δx0 = [2.19 km,−7.6086 ×
10−6, 6.58 × 10−6◦

,−3.87 × 10−2◦
,−5.41 × 10−4◦
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Fig. 18 Alouette-2: Desired Drift Time = 10 Orbital Periods Δx0 = [2.18 km,−6.9827 ×
10−6, 6.64 × 10−6◦

,−3.92 × 10−2◦
,−6.72 × 10−4◦

, 1.52◦]T
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Fig. 19 Alouette-2: Desired Drift Time = 15 Orbital Periods Δx0 = [2.15 km,−5.6394 ×
10−6, 6.76 × 10−6◦

,−4.07 × 10−2◦
,−9.92 × 10−4◦

, 2.23◦]T

back-propagation duration increase. However, the change is relatively small (on
the order of micro-seconds). When comparing the STM computational time to the
numerical method, the STM resulted in 4-5 orders of magnitude reduction. Further-
more, as the back-propagation duration increased, the numerical model resulted in a
much larger increase in computational time as opposed to the proposed STM. The
results are as expected since the STM sacrifices some accuracy for a significant boost
in computational efficiency.

Table 1 Computational time (CPU time) in seconds for each back propagation case

Back Propagation Time STM Formulation CPU Numerical Propagator

(Orbital Periods) Time (sec) CPU Time (sec)

2 0.0061017 16.836537

4 0.0062752 33.679562

6 0.0062299 49.930321

8 0.0064228 76.078415

10 0.0066063 91.589339

15 0.0067833 125.55079
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Conclusion

This paper developed a new state transition matrix for spacecraft relative motion
under third-body, drag and gravitational perturbations. When the state-transition
matrix was compared to the numerical simulator, the solution yielded relatively small
errors. Use of the state transition matrix allows for the guidance system to propagate
relative motion in terms of relative orbital elements as a linear time-invariant sys-
tem, since the Jacobian matrices need only be calculated once. In other words, the
new solution allows to propagate relative orbital elements by multiplication of con-
stant matrices with time and initial relative orbital elements while considering the
effects of J2 to J5, fourth order expansion of the third-body perturbation, and atmo-
spheric drag effects on all orbital elements except mean and true anomalies. Previous
analysis found in literature addressed the problem of relative motion for long-term
analytical propagation; however, the solution presented in this paper was specifically
derived for sophisticated guidance and control applications where smaller duration
and time-steps are essential in the design. Additionally, the solution presented in this
paper does not employ conversion of mean to osculating elements which reduces the
computational load while maintaining accuracy. Application of the state transition
matrix in the terminal-point guidance law allows for the computation of initial rela-
tive orbital elements such that the chaser spacecraft passively drifts into the desired
position with a single step. While the solution maintains accurate tracking perfor-
mance for the terminal-point guidance law, main discrepancies lie within desired
time since the state transition matrix is formulated as a Taylor series expansion which
needs to be truncated. Future work will be done to include effects of solar radia-
tion pressure within the state transition matrix and apply it two a two-point boundary
value problem.
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