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Abstract
Solving minimum-time low-thrust orbital transfer problems in the three-body prob-
lem by indirect methods is an extremely difficult task, which is mainly due to the
small convergence domain of the optimal solution and the highly nonlinear nature
associated with the three-body problem. Homotopy methods, the principle of which
is to embed a given problem into a family of problems parameterized by a homotopic
parameter, have been utilized to address this difficulty. However, it is not guaran-
teed that the optimal solution of the original problem can be obtained by most of the
existing homotopy methods. In this paper, a new bounding homotopy method is pro-
posed, by which the continuous homotopy path can be constructed and the optimal
solution of the original problem is guaranteed to be found. In the parameter bounding
homotopy method, an initialized problem with much higher thrust is constructed and
a state-of-the-art parameter bounding homotopy approach is utilized to connect sepa-
rated homotopy branches outside the predefined domain of the homotopic parameter.
Furthermore, multiple optimal solutions of the original problem can be obtained if
the homotopic approach continues after the first solution, among which the best solu-
tion can be figured out. Finally, numerical solutions of minimum-time low-thrust
orbital transfers from GEO to Moon orbit and from GTO to halo orbit in the circular
restricted three-body problem are provided to demonstrate the effectiveness of the
homotopy method.
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Introduction

As the development of the low-thrust technologies, the use of low-thrust propul-
sion becomes more realistic and frequent, such as in the missions Deep Space 1 [1],
Hayabusa [2], SMART-1 [3], and the recent BepiColombo [4]. It allows a substantial
reduction of propellant consumption owing to the higher specific impulse compared
with that of the traditional chemical propulsion [5, 6]. However, the design of optimal
low-thrust trajectories remains a challenging task, especially in the restricted three
body problem, where multi-body dynamics is important and trajectories are highly
sensitive to the initial values during the long-duration of the orbital transfer with
many revolutions [7].

In the past decades, many methods have been proposed to solve low-thrust tra-
jectory optimization problems in the Earth-Moon system, which can be categorized
as direct methods and indirect methods. Direct methods convert the optimal con-
trol problem into a parameter optimization problem by appropriate discretization,
and then a nonlinear programming problem solver is used to find the optimal solu-
tion. Various direct methods have been developed to solve such problems since
1990s, such as sequential quadratic programming based methods [8, 9], collocation
or pseudo-spectral based methods [10–13], etc. Direct methods are straightforward
and robust to accommodate complex conditions. However, the optimality of the
obtained solutions is not guaranteed.

Unlike direct methods, indirect methods convert the optimal problem into a two-
point boundary-value problem (TPBVP) according to the optimal control theory
[14, 15], the solutions of which are guaranteed to be at least local extremals. The
main disadvantages associated with TPBVP are that the convergence domain of
the solution method is narrow and the solution is extremely sensitive to the ini-
tial unknowns [16, 17], especially for the low-thrust trajectory optimization problem
in the Earth-Moon three-body problem. In the 1990s, Kluever proposed a hybrid
direct/indirect approach, which utilizes the benefits of a direct method and an indirect
method, to reduce the convergence sensitivity associated with the indirect method in
the context of the classical restricted three-body problem [18, 19]. Gao also utilized
the hybrid direct/indirect approach to design low-thrust Earth-Moon transfer trajecto-
ries, taking into consideration the shadow effects, the oblateness and the gravitational
forces perturbations [20]. Russell developed a modified adjoint control transforma-
tion to estimate physical control variables instead of the initial costates in order to
reduce problem sensitivity and provide more physical meaning[21]. Later, Howell
also utilized the adjoint control transformation approach to construct preliminary
designs for low-thrust transfers to the libration point orbits [22]. In 2012, a new ini-
tial costate estimation method was proposed to solve the specific energy-targeting
problem defined in the Earth-Moon rotating system by [23], which can efficiently
produce accurate initial guess sets. Recently, homotopy methods, the principle of
which is that a given problem is embedded into a family of problems parameter-
ized by a homotopic parameter, and the optimal solution to the original problem is
obtained by tracing the optimal solutions of the embedded problems [24–26], have
also been utilized to overcome the above sensitivity problem. One of the most signifi-
cant contributions to the homotopy method in trajectory optimization is that Bertrand
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built a regular controls by using different perturbed terms to increase the convergence
radius, and developed the smoothing techniques for solving bang-bang control fuel-
optimal problems [27]. Caillau proposed a homotopy method to solve minimum-time
low thrust trajectory optimization problem in the circular restricted three-body prob-
lem (CRTBP), in which two homotopic parameters are introduced into the ratio of
the primaries masses (or the position angle) and the thrust magnitude, respectively
[28, 29]. Later, Caillau also studied the minimum-fuel problem in the CRTBP, in
which the homotopic parameter is embedded into the performance index [30]. In
2015, Zhang revisited the minimum-time and minimum-fuel low thrust orbital trans-
fer problems by homotopy methods in the CRTBP, following similar approaches as
in [28, 29] with additional analytical derivatives and switching detection techniques
[31]. Then the homotopy method was applied in the study of near Earth-objects
capture mission incorporating low-thrust propulsion and invariant manifolds [32].
Pèrez-Palau designed minimum-fuel low-thrust transfers between a low Earth orbit
and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem
by combining the homotopy method and massive exploration [33]. Most of homo-
topy paths in these works are tracked using parameter continuation method, where
the homotopic parameter was initiated at zero and monotonically increased to unity.
This procedure is simple and straightforward, but only discontinuous homotopy paths
can be obtained, and it might even fails around turning points. Although the pseudo-
arclength method is used in other works, it is not guaranteed that the optimal solution
of the original problem can be obtained along the continuous homotopy path from a
single starting point, since it may fail midway or turn back to another starting point.
It has been observed that the above homotopy methods only succeed when the solu-
tions of the initial problem and the original problem share the same number of orbital
revolutions, and it possibly fails if the revolution number of the initial problem differs
from the one of the original problem [26, 29]. Thus, constructing homotopy meth-
ods with continuous homotopy path to solve the minimum-time low-thrust orbital
transfer problem in the CRTBP still remains challenging.

In this paper, the parameter bounding homotopy method is utilized to design
minimum-time low-thrust orbital transfer trajectories, by which the continuous
homotopy path can be constructed and the solutions of the original problem are guar-
anteed to be found from a single starting point. As the general homotopy method
mentioned above, the homotopic parameter is embedded into the thrust magnitude,
which is designed to provide the starting solution of the initialized problem that
can be easily solved. However, in the case of starting point multiplicity of the gen-
eral homotopy method, there exist many separate homotopy path branches that run
through the different starting points, and some of them fail to approach the solutions
of the original problem. By taking the advantages of the parameter-bounding homo-
topy approach, which was proposed by Ref. [34] to force the homotopy path to stay
inside the predefined homotopic parameter space, multiple separate homotopy path
branches can be connected. Thus a continuous homotopy path can be constructed fol-
lowing the connected homotopy branches, which will eventually reach the solutions
of the original problem. The solution multiplicity of the minimum-time problem in
the CRTBP is studied since multiple solutions lie on different branches are obtained
by tracking the homotopy path from a single starting point, and then the best solution
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with the least performance index is determined. It is more efficient than the com-
plicated two-phase homotopy proposed in Ref. [35], in which a similar parameter
bounding fixed-point homotopy is utilized to seek multiple solutions of the initialized
problem in the first phase, and then another homotopy is required to track multiple
homotopy paths starting from these initial solutions in the second phase.

This paper is organized as follows. In Section “Problem Formulation”, minimum-
time orbital transfer problem in the CRTBP is formulated. In Section “Parameter
Bounding Homotopy Method”, details of the proposed bounding homotopy method
are presented. The numerical demonstrations are provided in Section “Numerical
Demonstration”, in which the minimum-time transfer trajectories with a thrust-to-
weight ratio in the order of 10−5N/kg are obtained by the proposed homotopy
method from a single starting point.

Problem Formulation

The CRTBP studies the motion of a spacecraft P3, moving under the gravity of
the two primary bodies P1 and P2 in the same plane. The two primaries of masses
m1 and m2 move in circular orbits around their center of mass at constant angular
speed, and the motion of them will not be affected by the spacecraft. The equa-
tions of motion are formulated in a rotating synodic reference, which has the origin
at the center of mass of P1 and P2, the x-axis aligned along P1P2 direction, and
the z-axis parallel to the angular momentum. For better numerical conditioning, the
equations of motion are normalized. The nondimensionalization is such that the dis-
tance between the primaries and their angular velocity are set to unity, exactly as
1 LU = 3.84405 × 105 km, 1 TU = 3.75676967 × 105 s in the Earth-Moon system.
With the nondimensionalization, the system depends only on the mass parameter,
defined as μ = m2/(m1 + m2). Thus, Earth and Moon are located at (−μ, 0) and
(1 − μ, 0), respectively. The nondimensional equations of motion of the spacecraft
under the gravitational influence of the two primaries are given by

ṙ = v (1)

v̇ = g(r) + h(v) + uTmax

m
α (2)

ṁ = −Tmaxu

Ispg0
(3)

where r = [x, y, z]T and v = [vx, vy, vz]T are the spacecraft’s position and velocity
vectors, respectively, m is the mass of the spacecraft, Tmax is the thrust magnitude,
Isp is the thruster specific impulse, and g0 is the standard acceleration of gravity at
sea level. The control variables consist of the throttle factor u ∈ [0, 1] and the unit
vector of thrust direction α. Besides, the functions g(r) and h(v) are defined by

g(r) = −
[
∂U

∂x
,
∂U

∂y
,
∂U

∂z

]T

(4)

h(v) = [
2vy, −2vx, 0

]T (5)

1223The Journal of the Astronautical Sciences  (2020) 67:1220–1248



U(x, y, z) = −1

2
(x2 + y2) − 1 − μ

r1
− μ

r2
− 1

2
(1 − μ)μ (6)

where r1 = √
(x + μ)2 + y2 + z2 and r2 = √

(x − 1 + μ)2 + y2 + z2 represent
the distances between spacecraft to the Earth and Moon, respectively, and U is the
effective potential.

To minimize the transfer time, the corresponding performance index is expressed
by

J =
∫ tf

t0

1dt (7)

where t0 and tf are the initial and terminal flight time, respectively. Based on the
optimal control theory [14], the Hamiltonian is given as follows:

H = λT
r v + λT

v

[
g(r) + h(v) + uTmax

m
α

]
− λm

Tmaxu

Ispg0
+ 1 (8)

where λr = [λx, λy, λz]T , λv = [λvx , λvy , λvz ]T and λm are the costate vectors
associated with r , v and m, respectively. To minimize the Hamiltonian, the optimal
thrust direction and magnitude are determined as follows [28, 31]:

α∗ = − λv

‖λv‖ (9)

u∗ = 1 (10)

Then the governing differential equations of costate are given as

λ̇r = −
(

∂g(r)

∂r

)T

λv (11)

λ̇v = −λr −
(

∂h(v)

∂v

)T

λv (12)

λ̇m = −Tmax ‖λv‖
m2

(13)

For the trajectory optimization problem, k dimensional equality constraints that
combine the boundary conditions both at initial time and terminal time must be
satisfied, which are imposed in the form of

ψ(x(t0), x(tf ), t0, tf ) = 0 (14)

Then the corresponding transversality conditions are derived as follows:

λ(t0) + χ · ∂ψ

∂x(t0)
= 0 (15)

−λ(tf ) + χ · ∂ψ

∂x(tf )
= 0 (16)

−H(t0) + χ · ∂ψ

∂t0
= 0 (17)

H(tf ) + χ · ∂ψ

∂tf
= 0 (18)
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where χ is k dimensional numerical multiplier, λ = [λr ; λv; λm] and x = [r; v; m].
Thus the trajectory optimization problem is converted into a TPBVP, the solutions

of which can be obtained by the shooting method. The unknown variables consist
of the numerical multiplier χ , the initial time t0 and the terminal time tf , the states
and costates at either the initial time or the terminal time. Meanwhile, there are equa-
tions with the same dimension, consisting of the boundary conditions in Eq. 14 and
the transversality conditions in Eqs. 15–18. Note that it is not necessary to solve all
these variables when solving a specific problem, since some of them can be removed
by appropriate transformations. For example, the initial time t0 is removed by set-
ting t0 = 0, and the transversality condition in Eq. 17 no longer exists since t0
is fixed. Besides, the multiplier χ is usually eliminated by transforming boundary
constraints and transversality conditions, which will be introduced in the numerical
demonstration.

Although the TPBVP can be solved theoretically by the shooting method, it is
difficult to find the solutions due to the strong nonlinearity of CRTBP. Therefore, the
homotopy method is used to solve the low-thrust problem in this paper.

Parameter Bounding Homotopy Method

Homotopy methods have long served as useful tools to find extremals of low-thrust
trajectory optimization problems, most of which are focused on the two-body prob-
lem [26, 36–43]. The main principle is to track the homotopy path with the aid of the
homotopic parameter κ , from a known solution y0 of the initialized problem at κ = 0
to the optimal solution y∗ of the original problem at κ = 1. The homotopy function
is typically defined by

�(y, κ) = κF (y) + (1 − κ)G(y) (19)

where y ∈ Rn denotes the combination of unknown variables, F : Rn → Rn and
G : Rn → Rn are shooting functions of the original problem and the initialized
problem, respectively. Depending on the selection of the function G(y), different
kinds of homotopy can be designed, parts of which are concluded in Ref. [26]. The
difficulty in low-thrust transfer trajectory optimization is mainly on account of the
narrow convergence domain since it is sensitive to the disturbance of the initial value
during the long-term transfer. It is relatively easier to solve the problem with higher
thrust magnitude and shorter transfer time. Therefore, the problem is usually solved
by continuation of thrust magnitude, regarding the minimum-time low-thrust transfer
problem as the original problem and the similar transfer problem with a high thrust
magnitude as the initialized problem. Although Refs. [28, 29, 31] proposed several
homotopy methods to design minimum-time low-thrust trajectories in the CRTBP,
it is usually not guaranteed that the optimal solution of the original problem can be
obtained along the homotopy path by these methods. In this paper, the parameter
bounding homotopy approach is proposed to solve minimum-time low-thrust orbital
transfer problems in the CRTBP, in which an initialized problem with much higher
thrust is constructed and a parameter bounding homotopy approach is utilized to
connect separated homotopy branches outside the predefined homotopic parameter.
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Thus by utilizing the proposed homotopy method, the optimal solution of the origi-
nal problem can be guaranteed to be found from a single solution of the initialized
problem.

Homotopy on thrust magnitude

The initialized problem of the proposed homotopy method is constructed by embed-
ding the homotopic parameter into the thrust magnitude, based on the observation
that it is relatively easier to solve this optimal control problem with higher thrust
magnitude. By introducing the homotopic parameter κ into the thrust magnitude, the
equations of motion of the spacecraft in the rotating frame becomes

ṙ = v (20)

v̇ = g(r) + h(v) + [(1 − κ)TL + κTmax]
u

m
α (21)

ṁ = − [(1 − κ)TL + κTmax]
u

Ispg0
(22)

where TL is a sufficiently high thrust magnitude. With the above equations of motion
and the performance of minimum-time, the Hamiltonian is rewritten as

H = λT
r v+λT

v [g(r) + h(v)]+ [(1 − κ)TL + κTmax] u

(
λT

v α

m
− λm

Ispg0

)
+1 (23)

The optimal thrust direction vector α∗ and thrust magnitude u∗ remain the same as
in Eqs. 9–10. The corresponding differential equations of λr and λv are independent
of the thrust magnitude and consistent with that in Eqs. 11–12, and the differential
equation of λm becomes

λ̇m = − [(1 − κ)TL + κTmax] ‖λv‖
m2

(24)

For the above homotopy approach, each subproblem with the homotopic parame-
ter κ ranging from 0 to 1 is a minimum-time problem with thrust Tm = (1 − κ)TL +
κTmax . The solution of the original problem with Tm = Tmax is expected to be
obtained by increasing κ from 0 to 1, which usually can’t be achieved.

Homotopy methods consist not only of the homotopy function, but also the
homotopy path tracking methods. The most commonly used methods for track-
ing the homotopy path are discrete parameter continuation method and continuous
pseudo-arclength method.

As illustrated in Fig. 1, the homotopic parameter κ of the parameter continuation
method is increased monotonically from 0 to 1, and the solution yi at a value of κi is
used as the initial guess ỹi+1 for the iterative solution process at κi+1. Although it is
extensively used in aerospace applications, the parameter continuation method also
has drawbacks: 1). The homotopy procedure may fail around the turning points since
the initial guess ỹi+1 at κi+1 is far from the solution yi+1; 2). The solution may jump
from one branch to another, as illustrated in Fig. 1, the solution yi jumps from c2
branch to c1 branch; 3). At most one solution to the original problem can by obtained.
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Fig. 1 Geometric interpretation of parameter continuation method

The pseudo-arclength method is one of the continuous homotopy methods that
have yielded extremely important contributions towards numerical solutions of non-
linear systems and is proved to be a robust predictor-corrector curve tracking method.
This method is capable to circumvent the turning points by taking the unit direction
tangent to the curve as prediction, and the convergence is guaranteed if the predictor
step length is sufficiently small. Suppose a solution yi of �(κi, y) = 0 is already
obtained, the unit tangent vector of the curve at (κi, yi ) is defined as

I i = (ẏT
i κ̇i )

T

‖ ẏT
i κ̇i ‖ = (ẏ

T

i κ̇ i )
T (25)

where (κ̇i , ẏi ) is the tangent vector of the curve at (κi, yi ). As illustrated in Fig. 2,
take a steplength �s in the direction of I i to form a plane that is perpendicular to
I i , and then the next solution point (κi+1, yi+1) is sought in this plane. This process
amounts to solve the following nonlinear equations

�(κ, y) = 0 (26)

(y − yi )
T ẏi + (κ − κi)κ̇i − �s = 0 (27)

When the continuous pseudo-arclength method is adopted, the homotopy curve
can be tracked no matter how many turning points encountered. However, the solution
to the original problem is not guaranteed, since that the homotopy curve may turn
around at the turning point and then gradually tends to negative infinity, as shown by
the curve c2 in Fig. 2. Thus in this paper, the parameter-bounding homotopy approach
is introduced to tackle these difficulties by constructing connections between separate
homotopy path branches.
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Fig. 2 Geometric interpretation of pseudo-arclength continuation method

Parameter-Bounding Homotopy

Once the initialized problem is solved, the parameter-bounding homotopy approach
is utilized to bound the homotopy path inside of the predefined homotopic parameter
space κ ∈ [0, 1]. From a mathematical viewpoint, the homotopy is defined for all
parameter κ ∈ (−∞, ∞). In the proposed homotopy method, the reasons to bound
the homotopy parameter space κ ∈ [0, 1] are: 1) the values between κ = 0 and κ = 1
are important as they are connections between the solutions of the initialized and the
original problems; 2) the homotopy path may run outside the homotopy parameter
space and never come back; 3) it may make long unnecessary curves outside the
homotopy parameter space of interest, even though the homotopy path may come
back [34, 35, 44].

A general homotopy method that includes parameter bounding can be formulated
as

�b(κ, y) = π(κ) [κF (y) + (1 − κ)G(y)] + υκ(κ) − υκ(κb) (28)

where π(κ) is the penalty function that annihilates the standard homotopy function
�b whenever the path runs outside the predefined space, and it is defined by

π(κ) = 1 − ρ(|κ − κb|, δ) (29)

ρ(|κ − κb|, δ) =
{

a5|κ−κb|5+ a4|κ − κb|4+ a3|κ− κb|3, |κ−κb|�δ

1, |κ−κb|>δ
(30)

where δ is a positive constant measuring the width of the bounding zone. The function
υκ : Rn → Rn is the auxiliary function utilized to compensate the annihilation.
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When the function values of F (y) have the same order of magnitude, the auxiliary
function can be formed as

υκ(κ) = Mκe (31)

where e ∈ Rn is a column vector where every element has the value of one, and
the numeric value of the coefficient M ∈ (−∞, ∞) needs to be selected prop-
erly depending on the problem to be solved. Then the following expression of the
parameter-bounding homotopy is achieved

�b(κ, y) = π(κ) (κF (y) + (1 − κ)G(y)) + M(κ − κb)e (32)

Since the homotopic parameter κ is an artificial parameter without physical mean-
ing, [0, 1] is selected as the domain that the homotopic parameter is forced to run
inside of it. In Eq. 30, the parameters are set to a5 = 6/δ5, a4 = −15/δ4, a3 = 10/δ3

and δ = 1. Therefore, the parameter κb is defined as that in Ref. [34]

κb = κ −
(

6|κ − κ ′
b|5 − 15|κ − κ ′

b|4 + 10|κ − κ ′
b|3

) (
κ − κ ′

b

)
(33)

where the parameter κ ′
b is defined as

κ ′
b =

⎧⎨
⎩

0, κ < 0
κ, 0 ≤ κ ≤ 1
1, κ > 1

(34)

The penalty function π(κ) generates a scalar value, which is determined by

π(κ) = 1 −
(

6|κ − κb|5 − 15|κ − κb|4 + 10|κ − κb|3
)

, −1 � κ � 2 (35)

The graph for π(κ) and (κ − κb) is presented in Fig. 3, which shows that both
the penalty function and the auxiliary function are continuously differentiable. With
these assumptions, the bounded homotopy method �b(κ, y) coincides with standard
homotopy [κF (y) + (1 − κ)G(y)] when the parameter κ ∈ [0, 1]. Under the effect
of the penalty function and the auxiliary function, κ is forced to move back whenever
the homotopy path runs outside the predefined domain. As illustrated in Fig. 4, the
connections between separated branches of the homotopy path are built by the seg-
ments in the bounding zone, which can be changed by selecting different value of the
coefficient M . Therefore, the multiple solutions to the original problem at κ = 1 are
obtained by tracking the homotopy path starting from a single initial point y0.

In the process of homotopic prediction and correction, the convergence rate is
affected by the magnitude of the unknown variables, i.e., the larger of the magni-
tude, the slower the convergence rate. The costates in the variables have no physical
meaning, and their value can be on the order of 103 in the homotopy, which is much
larger than other variables. In order to facilitate variables bounding within a narrow
bounding zone while enabling accurate path tracking, Ref. [34] applied variables
mapping to map the original finite variables into the infinite variables space. In this
paper, variables mapping is used to make the orignal infinite variables mapped into
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Fig. 3 The variations of the penalty function π(κ) and the term (κ − κb) in the auxiliary function

the finite variables space to improve calculation efficiency. The mapping from the
original infinite space into the finite space is carried out as follows

ym
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log10

[
bmax
i −bmin

i

2(bmax
i −yi )

]
, yi ≤ bmax

i −bmin
i

2

log10

[
2(yi−bmin

i )

bmax
i −bmin

i

]
, yi >

bmax
i −bmin

i

2

(36)

Fig. 4 Illustrations of the parameter-bounding homotopy method
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where yi denotes the unknown costate, ym
i is the mapped finite variable, the maxi-

mum bmax
i and minimum bmin

i values are the upper limit and lower limit of variable
yi , respectively. The mapped variables are only used as the shooting variables, and
should be converted into the original variables before integrating the equations of
motion in the shooting function. The mapping from the finite space to the original
space is carried out as follows

yi =
{

bmax
i − 1

2 (bmax
i − bmin

i )
/

10ym
i , ym

i ≤ 0

bmin
i + 1

2 (bmax
i − bmin

i ) × 10ym
i , ym

i > 0
(37)

Figure 5 shows the relation between the original variable yi and the mapped vari-
able ym

i when bmin
i = −10 and bmax

i = 10. Even if the original variable is really
large, the mapped variable remains a small value, thus the convergence efficiency in
the homotopy path tracking is improved.

Numerical Demonstration

In this section, two numerical examples of the minimum-time problem in the CRTBP
are provided to demonstrate the effectiveness of the proposed homotopy method,
which are the planar transfers from a geosynchronous orbit (GEO) toward an orbit
around the moon, referred to as MO, and spatial transfers from a geostationary
transfer orbit (GTO) to an L1 halo orbit.

Fig. 5 The relationship between the original infinite variable yi and the mapped finite variable ym
i
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Table 1 Physical constants
Physical constant Value

Mass parameter μ 1.215006683 × 10−2

Gravitational field g0 9.80665 m/s2

Length Unit, LU 3.84405 × 105 km

Time Unite, TU 3.75676967 × 105 s

Mass Unite, MU 1500 kg

Transfers from a GEO to a MO

The moon’s gravity has a negligible effect on the spacecraft in near-Earth space, and
the gravity of the Earth and the moon affects the spacecraft simultaneously mainly in
the transfer segment, not in the escape segment and the capture segment. Therefore,
the GEO is selected as the initial orbit rather than a low-Eath orbit. Since both the ini-
tial GEO and terminal MO are located in the xy plane, the optimal transfers are also
located in the xy plane, and thus it can be regarded as a special case of CRTBP, that
is, the planar CRTBP. The similar scenario is studied in Ref. [29], and the difference
is that the mass variation is considered, and the transfers with lower thrust magnitude
are obtained in this paper. The physical constants used in this paper are summarized
in Table 1, and the parameters in this example are provided in Table 2, both of radius
and velocity of GEO and MO are the same as those in Ref. [29]. The initial mass of
the spacecraft is m0 = 1500 kg, and the thrust magnitude is Tmax = 0.5 N. Thus, the
initial thrust-to-weight ratio is 3.3333 × 10−4 m/s2 .

At the initial time t0, the spacecraft is located in a planar GEO orbit, which can be
determined by

x0 = [
rgeo cos θ0 − μ, rgeo sin θ0, 0, −vgeo sin θ0, vgeo cos θ0, 0

]T (38)

where the subscript 0 denotes the initial time, rgeo and vgeo are the nondimensional
radius and velocity of the GEO, respectively, and θ0 denotes the free position of
the spacecraft on the GEO. At the terminal time tf , the state of the spacecraft is
determined as follows

xf = [
rmo cos θf + 1 − μ, rmo sin θf , 0, −vmo sin θf , vmo cos θf , 0

]T (39)

Table 2 Parameters for the
transfers from a GEO to a MO Parameter Value

Radius of GEO, LU 0.109689855932071

Velocity of GEO, LU/TU 3.000969693845573

Radius of MO, LU 0.034

Velocity of MO, LU/TU 0.59786

Initial Mass m0, kg 1500

Specific impulse Isp , s 2000

Thrust magnitude Tmax , N 0.5
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where the subscript f denotes the final time, rmo and vmo are the radius and velocity
of the MO, respectively, and θf denotes the free position of the spacecraft on the MO.
The positive and negative signs in Eq. 39 indicate that the spacecraft can run either
anti-clockwise or clockwise in the moon orbit. Ref. [29] pointed out that the transfers
can be classified into three types according to the growth in energy, as shown in
Fig. 6, among which the type I2 requires the least transfer time. Therefore, only the
type I2 is studied in this paper, that is the transfers arrive to the MO anti-clockwise.

Since the optimal transfers from a GEO to a MO are transfers in the xy plane, the
components in z-axis are ignored, that is z = vz = λz = λvz = 0. In the calcula-
tion, the transfer trajectories are integrated backward in time, and the states xf and
costates λf at the terminal time are selected as the shooting variables. Besides, the
terminal states xf are determined by the angle θf in Eq. 39, and two transversallity
conditions are deduced as follows based on Eq. 16:

(xf + μ − 1)λyf − yf λxf + vxf λvyf − vyf λvxf = 0 (40)

λmf = 0 (41)

Therefore, the mutiplier χ is eliminated, leaving only 6 unknowns, which are y =
[θf , λxf , λyf , λvxf , mf , tf ]T . Equations 40–41 are not parts of shooting function,
but are utilized to determine the terminal costates λvyf and λmf . The initial state
constraints in Eq. 38 are rewritten as

(x0 + μ)2 + y2
0 − r2

geo = 0 (42)

v2
x0 + v2

y0 − v2
geo = 0 (43)

(x0 + μ)vx0 + y0vy0 = 0 (44)

Another transversality condition is obtained as

(x0 + μ)λy0 − y0λx0 + vx0λvy0 − vy0λvx0 = 0 (45)

Thus the shooting function consists of the initial state constraints Eqs. 42–44, the
initial transversality condition Eq. 45, the dimensionless initial mass m0 = 1 and the
terminal transversality condition Hf = 0.

Following the principle of the proposed homotopy method, the initialized prob-
lem is constructed with a relatively large thrust magnitude TL = 10 N, the optimal
solution of which can be easily obtained by the simple shooting method as follows:

y0 = [5.33485775, 3.10222581,−3.58290814, 0.30848977, 0.84617353,

1.20624302]T (46)

Figure 6b shows the corresponding optimal transfer trajectory, which takes only one
revolution to complete the transfer, and the transfer time is 5.2384 days.

The proposed homotopy method is implemented with the optimal solution of the
initialized problem as the starting point. It is observed that the homotopic param-
eter κ increases along the homotopy path firstly, and then the path turns back to
(κ, tf ) = (0, 2.3126) after several turning points encountered. Then the part of κ < 0
in the homotopy path is mainly affected by the coefficient M , and different homo-
topy paths can be formed by changing the value of M . Several paths starting from
the point (κ, tf ) = (0, 2.3126) and moving in the negative direction are provided
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Fig. 6 Three different types of transfer trajectories from GEO to MO

1234 The Journal of the Astronautical Sciences  (2020) 67:1220–1248



in Fig. 7, in which M is set to {−100, −10, 0, 10, 100}, respectively. As illustrated
in Fig. 7, for the unbounded homotopy path with M = 0, there is no turning point
encountered and κ gradually tends to negative infinity along the path. Besides, the
shape of the unbounded homotopy path is changed by the sign of the coefficient M .
When M takes a positive value, the homotopy path turns upward and then returns
to κ = 0 after encountering a turning point, while when M is negative, the homo-
topy path turns downward and then also returns to κ = 0. Thus the bounded paths
with M = {10, 100} and M = {−100, −10} are above and below the unbounded
path, respectively. Furthermore, the absolute numerical value of M has an effect on
the arclength of the bounded homotopy path, i.e., the arclengths of these curves with
M = 100 and M = −100 are shorter than that with M = 10 and M = −10, respec-
tively. Although Ref. [34] presented that different solutions can be approached from a
selected starting point by changing the value of M , Fig. 7 shows that all of these four
paths with M = {−100, −10, 10, 100} reach the same point (κ, tf ) = (0, 2.3103).
These examples clearly demonstrate that the connections between multiple solutions
to this problem can be constructed by non-zero value of M . In order to make the seg-
ments of κ < 0 in homotopy paths clearly displayed in the following figures, M = 10
is selected since this curve has the longest arclength.

The complete homotopy curve of tf with M = 10 is provided in Fig. 8, and
it clearly illustrates that the optimal solution of the original problem with Tmax =
0.5 N can be obtained. As illustrated in Fig. 8b, the first turning point occurs at
(κ, tf ) = (0.8207, 3.9988), and many more turning points are encountered before
the path turns back to another solution at κ = 0. As illustrated in Fig. 8c, once the
homotopy path wanders outside of the predefined domain, the parameter-bounding
approach takes effect and forces the homotopy path to return the predefined domain.
Note that if the homotopy path tracking is continued after the homotopy path reaches
κ = 1, more intersections with κ = 1 will be obtained. As illustrated in Fig. 8d, 4
intersections between the complete homotopy curve and κ = 1 are obtained, and then
the homotopy path tracking is terminated after the fourth intersection. Each point on
the homotopy curve in the domain κ ∈ [0, 1] is a solution to the subproblem with
Tm = κTmax + (1 − κ)TL. However, the solutions are local extremals since only the

Fig. 7 The homotopy paths with different coefficient M values starting from (0, 2.41557206)
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Fig. 8 Homotopy curve of the transfer time tf (κ) in the example of GEO-to-MO transfers

first-order necessary conditions for optimality are considered. As shown in Fig. 8,
the homotopy curve self-intersects many times. By connecting the segments between
adjacent intersections in the domain κ ∈ [0, 1], a new curve is constructed, referred
to as best curve, and each solution on this curve is the best solution with the least
performance index.

Figure 9 illustrates the final mass mf along the homotopy path. For the minimum-
time problem, the optimal thrust magnitude reveals that the thruster must keep the
maximum value, and the fuel consumption is proportional to the transfer time. These
solutions on the best curve consume less fuel and remain more final mass than the
other solutions. The final mass of the spacecraft varies between 1629.26 kg and
1349.80 kg along the best curve with the thrust magnitude decreases from 10 N to
0.5 N.

The homotopy path of the unknown variable θf is illustrated in Fig. 10. θf is a
small value when TL = 10 N since the spacecraft enters the target orbit quickly, and
it is a relatively larger value when Tmax = 0.5 N since it takes time to reduce the
energy. The angle θ0, which represents the initial position on the GEO, is obtained
on the bases of the assumption that L1 is located in the direction of θ0 = 0, and the
initial position on the GEO is θ0 < 0. The curve of θ0 along the homotopy path is
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Fig. 9 Homotopy curve of the final mass mf (κ) in the example of GEO-to-MO transfers

illustrated in Fig. 11. The revolutions of transfers near the Earth in the rotating frame
ϒrot can be denoted by θ0 divided by 2π . Then the revolutions of transfers in the
Earth-centered inertial frame ϒint is obtained by adding the rotational angle of the
rotating frame to ϒrot , and the curve of ϒint is plotted in Fig. 12.

Among these 4 solutions with Tmax = 0.5 N, the 3rd one has the minimum transfer
time and maximum final mass, thus it is taken as the best solution y∗

y∗ = [4.44648843,−22.66443402, −79.28502018, 5.61514028, 0.89935984,

15.78224662]T (47)
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Fig. 10 Homotopy curve of the angle θf in the example of GEO-to-MO transfers

1237The Journal of the Astronautical Sciences  (2020) 67:1220–1248



-0.2 0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

0/ra
d

Fig. 11 The variation of θ0 with κ in the example of GEO-to-MO transfers

Figures 13 and 14 plot the optimal transfer trajectory in the rotating frame and
in the Earth-centered inertial frame, respectively, with the transfer time of 68.5380
days and the fuel consumption of 150.96 kg. In the rotating frame, the spacecraft
takes about 20 revolutions around the Earth and 2 revolutions around the moon, and
in the Earth-centered inertial frame, the complete transfer trajectory takes about 23
revolutions.
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Fig. 12 The variation of revolutions ϒint with κ in the Earth-centered inertial frame
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Fig. 13 The minimum-time GEO-to-MO transfer trajectory with Tmax = 0.5 N: rotating frame

It should be noted that in the region with κ < 0, the constraints of shooting func-
tion is changed by the penalty function π(κ) and the auxiliary function υκ as defined
in Eq. 32, and the initial state constraints are no longer satisfied. The initial state x0

Fig. 14 The minimum-time GEO-to-MO transfer trajectory with Tmax = 0.5 N: Earth-centered inertial
frame
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of the spacecraft in the homotopy process is illustrated in Fig. 15. The initial position
(x0, y0) with κ > 0 varies on the circular orbit, and when κ < 0, the initial posi-
tion gradually deviates from the GEO at the beginning, and eventually returns back
the GEO under the effect of parameter-bounding. Thus the solutions on different
branches are connected.

Transfers from a GTO to L1 Halo Orbit

In the Earth-Moon system, L1 is located at a distance of 58019 km from the moon
along the Earth-moon line and between the Earth and the moon, while the distance
between the Earth and the moon is about 384400 km. The Libration Point Orbit
(LPO) is appealing as it can be used as a parking orbit for Earth-moon transfers. In
this example, the minimum-time transfers from a GTO orbit towards to a halo orbit
are studied. The scenario is similar to that described in Ref. [31], the only difference
is that the initial point in Ref. [31] is fixed, while the initial point in this paper is
limited to the perigee of a GTO orbit in the xy plane, which can be determined by

x0 = [
rgto cos θ0 − μ, rgto sin θ0, 0, −vgto sin θ0, vgto cos θ0, 0

]T (48)

where rgto is the perigee distance of a GTO orbit, and vgto is the perigee velocity.
The final point is fixed on a halo orbit. These parameters used in this example are
provided in Table 3.

Fig. 15 The initial position of the spacecraft (x0, y0) during the parameter-bounding homotopy
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Table 3 Parameters for the transfers from a GTO to a Halo orbit

Parameters Value

Perigee distance of GTO, LU 0.017632801342334

Perigee velocity of GTO, LU/TU 9.808551398531181

Final position, LU [0.823385182067, 0, -0.022277556273]

Final velocity, LU/TU [0, 0.134184170262, 0]

Initial Mass m0, kg 1500

Specific impulse Isp , s 3000

Thrust magnitude Tmax , N 0.6

In this example, the trajectories are also propagated backward in time, there-
fore the shooting variables are 8-dimensional y = [λxf , λyf , λzf , λvxf , λvyf ,

λvzf , mf , tf ]T , and the shooting functions consist of the following equations

(x0 + μ)2 + y2
0 − r2

gto = 0 (49)

v2
x0 + v2

y0 − v2
gto = 0 (50)

(x0 + μ)vx0 + y0vy0 = 0 (51)

(x0 + μ)λy0 − y0λx0 + vx0λvy0 − vy0λvx0 = 0 (52)

z0 = 0 (53)

vz0 = 0 (54)

m0 = 1 (55)

Hf = 0 (56)

The minimum-time problem with TL = 10 N is constructed as the initialized
problem, and the solution is obtained by shooting method. Then the homotopy path
is tracked with the solution as the starting point. During the homotopy path tracking,
κ varies repeatedly between adjacent turning points along the homotopy curve, and
returns to predefined domain κ ∈ [0, 1] under the effect of parameter bounding after
entering the region with κ < 0 several times, and then reaches κ = 1 eventually.
Figures 16 and 17 illustrate the complete homotopy curve of tf and mf , respectively.
Along the best curve with the thrust magnitude decreases from 10 N to 0.6 N, the
transfer time tf increased from 1.6300 TU to 19.4770 TU, and the final mass mf

varies from 1291.86 kg to 1350.77 kg.
Many local extremals with different thrust magnitude are obtained along the

homotopy path, including 131, 115, 57 and 1 solutions with thrust magnitude of
10 N, 3 N, 1 N and 0.6 N, respectively. The solutions on the best curve with the
least performance indices are selected as best solutions. The results of best solutions
with these four thrust magnitude are listed in Table 4, and the transfer trajectories in
rotating frame and in Earth-centered inertial frame are shown in Fig.18 and Fig.19,
respectively.

Table 5 summarizes both the best solutions obtained in this paper and the solutions
in Ref. [31]. The energy remains the same whether the initial state is free or fixed,
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Fig. 16 Homotopy curve of the transfer time tf (κ) in the example of GTO-to-Halo tranfers

so the calculation results in these situations should be similar, and the difference
between the transfer times should be less than one period, which is 0.44 days. It is
clear from Table 5 that in all of these cases with thrust magnitude varying from 10 N
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Fig. 17 Homotopy curve of the final mass mf (κ) in the example of GTO-to-Halo transfers
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Fig. 18 Minimum-time GTO-to-Halo transfer trajectories for different values of Tmax : rotating frame

1244 The Journal of the Astronautical Sciences  (2020) 67:1220–1248



Fig. 19 Minimum-time GTO-to-Halo transfer trajectories for different values of Tmax : Earth-centered
inertial frame

Table 5 Minimum-time solutions to GTO-to-Halo transfers with different values of Tmax

Tmax , N Tmax/m0, m/s2 Best solutions in the paper Solutions in Ref. [31]

tf , days mf /m0 tf , days mf /m0

10 6.6667×10−4 7.0875 0.8612 7.8549 0.8462

9 6.0000×10−4 7.5091 0.8677 8.6861 0.8469

8 5.3333×10−4 8.0150 0.8745 9.6522 0.8488

7 4.6667×10−4 8.8906 0.8782 10.8133 0.8518

6 4.0000×10−4 10.1480 0.8808 12.6278 0.8516

5 3.3333×10−4 11.8889 0.8836 12.9634 0.8730

4 2.6667×10−4 14.7263 0.8847 16.0510 0.8742

3 2.0000×10−4 18.7147 0.8901 21.1363 0.8758

2 1.3333×10−4 27.0057 0.8943 29.1512 0.8858

1 6.6667×10−5 51.6363 0.8989 56.2458 0.8898

0.9 6.0000×10−5 56.8831 0.8998 59.8376 0.8945

0.8 5.3333×10−5 64.0951 0.8996 64.6165 0.8987

0.7 4.6667×10−5 73.0396 0.8999 80.2242 0.8900

0.6 4.0000×10−5 84.6882 0.9005 87.6674 0.8970
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to 0.6 N, the best solutions take less transfer time tf and remain more final mass mf

than these solutions in Ref. [31]. Compared with these solutions in Ref. [31], the best
solution can reduce the transfer time by up to 7.1846 days with Tmax = 0.7 N, and
the best solution to the original problem with Tmax = 0.6 N reduces the transfer time
by 2.9792 days, which indicate that the results obtained in the papar are significantly
better.

Conclusions

The minimum-time low-thrust trajectory optimization in the CRTBP is studied based
on the combination of indirect method and homotopy method. Although homo-
topy methods have been used to overcome the difficulties of initial value sensitivity
and narrow convergence radius by building the connection between the easier high-
thrust problem and the original low-thrust problem, the failure of tracking continuous
homotopy path may appear due to the existence of turning points. The parameter-
bounding homotopy method, which forces the homotopic parameter inside the
predefined domain by introducing the penalty function and auxiliary function in
the homotopy function, is used to generate the continuous homotopy curve. The
parameter-bounding homotopy is capable of finding not just one local extremal, but
many more extremals by following the homotopy path, then the extremal with the
least performance index is taken as the best solution. Numerical demonstrations of
minimum-time low-thrust GEO-to-MO transfers and GTO-to-Halo transfers are pro-
vided, which reveal the multiplicity of the solutions and the reliability of the proposed
method.
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