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Abstract
A key challenge in low-thrust trajectory design is generating preliminary solutions
that simultaneously specify the spacecraft position and velocity vectors, as well as
the thrust history. To mitigate this difficulty, dynamical structures within a combined
low-thrust circular restricted 3-body problem (CR3BP) are investigated as candidate
solutions to seed initial low-thrust trajectory designs. The addition of a low-thrust
force to the CR3BP modifies the locations and stability of the equilibria, offering
novel geometries for mission applications. Transfers between these novel equilib-
ria are constructed by leveraging the associated stable and unstable manifolds and
insights from the low-thrust CR3BP.

Keywords Trajectory design · Low-thrust · Multi-body dynamics ·
Dynamical systems theory

Introduction

A key challenge in low-thrust trajectory design is the construction of a preliminary
solution that simultaneously supplies the position, velocity, and thrust vector histo-
ries. Although many strategies have emerged to construct spacecraft position and
velocity histories in various dynamical models such as the 2-body problem (i.e.,
Keplerian dynamics) and the circular restricted 3-body problem (CR3BP), fewer
methodologies are available to identify a preliminary thrust history. Several strategies
to construct a thrust history in the 2-body problem are available [12, 19], but do not
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accommodate multi-body dynamics. Those methods that do incorporate additional
gravitational fields often rely on optimization algorithms to solve boundary value or
initial value problems that include the control variables [1, 16, 21]. Some strategies
employ machine learning to design an initial guess for thrust histories [6, 17], while
others rely on robust collocation schemes to correct rough initial designs [11, 20, 23].
Due to the chaotic nature of the multi-body dynamics, the results obtained from each
of these corrections and/or optimization processes are frequently highly dependent
on the initial design. Thus, a strategy to construct preliminary low-thrust trajectory
designs is useful to improve the convergence and predictability of these algorithms.
Additionally, an improved understanding of the low-thrust, multi-body dynamics
facilitates the exploration of solutions that are not obvious in simpler models.

In this investigation, dynamical systems techniques are applied to a combined
low-thrust, CR3BP (CR3BP+LT) model to gain insights that may be applied to con-
struct preliminary solutions that include low-thrust arcs. Dynamical structures from
the CR3BP such as equilibrium solutions, forbidden regions, periodic orbits, and
invariant manifolds are already available to inform ballistic designs [13] and have
been leveraged in numerous mission scenarios [10, 14, 24]. Several authors com-
bine these ballistic structures with simple low-thrust arcs (e.g., thrust aligned with
velocity) to construct low-thrust trajectories in multi-body regimes [18, 23] but, thus
far, do not apply dynamical systems techniques to the combined dynamics to gain a
fundamental understanding of the flow. A notable exception is the literature detail-
ing investigations into solar sail dynamics in the Earth-Sun and Earth-Moon 3-body
systems. These studies offer guidance to select sail parameters that facilitate stable
orbits around artificial equilibria [15] and transfers between sequences of artificial
equilibria [8]. Subsequent examinations of the combined CR3BP-solar sail dynamics
reveal a rich variety of dynamical structures, including invariant manifolds, periodic
orbits, and quasi-periodic orbits [7, 9]. Additionally, studies that include the effects
of an electrodynamic tether on the spacecraft motion also reveal useful dynamical
structures [2]. Similar to the CR3BP-solar sail model or the CR3BP-tether model,
the CR3BP+LT supplies structures such as equilibrium points, periodic orbits, invari-
ant manifolds, and forbidden regions to guide the flow [4, 5]. However, in contrast
to the solar-sail and tether models, the low-thrust acceleration in the CR3BP+LT
may be oriented independently of the spacecraft location (e.g., a sail cannot “thrust”
toward the Sun, but a low-thrust engine can deliver such a force). Due to this inde-
pendence, the CR3BP+LT facilitates a wider range of thrust strategies and may be
more readily simplified to gain useful insights. Subsequently, low-thrust paths may
be tailored more specifically to a particular mission scenario, expediting convergence
in optimization or other numerical algorithms.

Two key properties that are deduced in the CR3BP+LT are leveraged to inform
low-thrust trajectory design in this analysis. First, by assuming a constant low-thrust
acceleration vector and restricting the motion to the xy-plane, the CR3BP+LT is
reduced to a conservative, autonomous, Hamiltonian system. The natural energy (i.e.,
the Jacobi constant) varies when low-thrust is included, but evolves independently
of the spacecraft path and is described by a plane in x-y-energy space. This geomet-
ric result supplies intuition that links the evolution of energy along an arc with the
low-thrust parameters. Second, the equilibrium solutions in the planar CR3BP+LT
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occur in unique configurations with manifolds that guide global flow in novel ways.
The number and locations of the low-thrust equilibria vary with the magnitude and
orientation of the low-thrust acceleration vector, including equilibrium point con-
figurations not available in the natural model [4, 5, 7]. Additionally, the stability
properties of the low-thrust equilibria differ from the natural CR3BP equilibria, sup-
plying stable and unstable manifolds that describe new flow patterns throughout the
system. Thrust vector parameters are straightforwardly selected to leverage mani-
folds that facilitate a transfer between regions of the CR3BP+LT separated in both
position and energy. This strategy, introduced by Farrés for Sun-Earth solar sail trans-
fers between equilibria [7], is extended to the Earth-Moon low-thrust system and
additional insights from the CR3BP+LT are employed to guide the design.

Dynamical Model Development

The first step in computing and leveraging dynamical structures within the
CR3BP+LT is the development of the dynamical model. An energy-based approach
is first employed to derive the governing equations in the CR3BP and produce an
expression for the natural Hamiltonian. By augmenting the CR3BP equations of
motion (EOMs) with a low-thrust term, the CR3BP+LT is constructed and the asso-
ciated low-thrust Hamiltonian is defined. Reasonable assumptions applied to the
CR3BP+LT yield a conservative, autonomous system with properties that may be
leveraged to facilitate low-thrust trajectory designs.

Circular Restricted 3-Body Problem

The CR3BP describes the motion of a relatively small body, such as a spacecraft,
in the presence of two larger gravitational point masses (P1 and P2) with paths that
evolve along circular orbits about their mutual barycenter (B). To simplify the gov-
erning equations and enable straightforward visualization of periodic solutions, the
motion of the spacecraft is described in a right-handed frame (x̂, ŷ, ẑ) that rotates
with the two primaries, as seen in Fig. 1, where x̂, ŷ, and ẑ are vectors of unit

Fig. 1 CR3BP system
configuration; two point masses,
P1 and P2, proceed on circular
orbits about their mutual
barycenter, B. The behavior of a
third, relatively massless particle
is described within the rotating
coordinate frame, (x̂, ŷ, ẑ)
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length. The system is parameterized by the mass ratio, μ = M2/(M1 + M2), where
M1 and M2 are the masses of the primaries and M1 ≥ M2. To facilitate numerical
integration, the dimensional values are nondimensionalized by characteristic quanti-
ties such that the distance between P1 and P2 is unity, the mean motion of the two
primaries is unity, and the masses of each body range from zero to one [22]. The
spacecraft is located relative to the system barycenter in the rotating frame via the
vector r = { x y z }T .

The equations of motion governing the CR3BP are derived via a Hamiltonian
energy approach. Let the kinetic (T ) and potential (V ) energies corresponding to the
CR3BP system be defined by

T = 1

2

[
(ẋ − y)2 + (ẏ + x)2 + ż2

]
, (1)

V = −(1 − μ)

r13
− μ

r23
, (2)

where ẋ, ẏ, and ż are the derivatives of the position states with respect to nondi-
mensional time as observed in the rotating frame, and r13 and r23 are the distances
between the spacecraft (P3) and the first and second primaries, respectively:

r13 =
√

(x + μ)2 + y2 + z2 , r23 =
√

(x − 1 + μ)2 + y2 + z2.

Next, form the Hamiltonian,

Hnat = 1

2
v2 − 1

2

(
x2 + y2

)
− 1 − μ

r13
− μ

r23
, (3)

where the squared velocity magnitude is v2 = ẋ2 + ẏ2 + ż2. By applying Hamilton’s
canonical equations of motion, a set of differential equations that govern the motion
of P3 emerges,

ẍ = 2ẏ + Ωx, (4)

ÿ = −2ẋ + Ωy, (5)

z̈ = Ωz, (6)

where Ω is the CR3BP pseudo-potential function,

Ω = 1

2
(x2 + y2) + 1 − μ

r13
+ μ

r23
, (7)

and Ωx , Ωy , and Ωz represent the partial derivative of Ω with respect to the sub-
scripted variables x, y, and z, respectively. Because the CR3BP is autonomous and
conservative, Hnat is constant and equivalent to the Jacobi integral, i.e., the Jacobi
constant. The Jacobi constant, C = −2Hnat , is commonly leveraged as a measure of
the energy associated with arcs in the CR3BP.
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CR3BP Incorporating Low-Thrust

To incorporate low-thrust into the CR3BP multi-body model, the low-thrust acceler-
ation vector is first defined. This vector,

alt = f

m
âlt , (8)

is oriented relative to the rotating frame via the unit vector âlt and scaled by the nondi-
mensional thrust magnitude, f , and nondimensional spacecraft mass,m = M3/M3,0,
where M3 is the instantaneous spacecraft mass and M3,0 is the initial (wet) space-
craft mass. The nondimensionalization of the thrust magnitude leverages the CR3BP
characteristic time, t∗, and characteristic length, l∗, for consistency with the CR3BP
coordinate nondimensionalization, i.e.,

f = F t2∗
l∗M3,0

. (9)

In this expression, F describes the thrust magnitude in kilonewtons, l∗ represents the
distance between P1 and P2 in kilometers, t∗ is the inverted system mean motion,
t∗ = 1/N , in seconds, and M3,0 is defined in terms of kilograms. A nondimensional
thrust magnitude of f ≈ 1e-2 in the Earth-Moon and Sun-Earth CR3BP+LT systems
is consistent with current spacecraft capabilities, such as Deep Space 1, Dawn, or
Hayabusa [4]. Accordingly, a low-thrust acceleration magnitude of alt = f/m =
7e-2 (i.e., ≈ 0.19 mm/s2, consistent with the Deep Space 1 capability) is frequently
leveraged in this analysis to represent a large but reasonable low-thrust capability in
the Earth-Moon system.

To apply an energy-based derivation of the CR3BP+LT EOMs similar to the
derivation leveraged for the CR3BP, the CR3BP dynamics are augmented with
a low-thrust acceleration term. While the spacecraft kinetic energy expression in
Eq. 1 remains unchanged, the potential energy expression incorporates a low-thrust
acceleration term, i.e.,

Vlt = −(1 − μ)

r13
− μ

r23
− r · alt . (10)

This additional term propagates through the derivation to yield the low-thrust
Hamiltonian,

Hlt = 1

2
v2 − 1

2

(
x2 + y2

)
− 1 − μ

r13
− μ

r23
− r · alt , (11)

which may also be written in terms of the natural Hamiltonian, i.e.,

Hlt = Hnat − r · alt . (12)

Due to the time-varying nature of the spacecraft mass, the governing equations are
not available directly from Hamilton’s canonical equations. However, the low-thrust
Hamiltonian offers useful insights into the relationship between the total energy and
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alt that may be used to simplify the dynamical model. Newton’s law is applied to
yield the EOMs,

ẍ = 2ẏ + Ωx + alt · x̂, (13)

ÿ = −2ẋ + Ωy + alt · ŷ, (14)

z̈ = Ωz + alt · ẑ, (15)

ṁ = −f l∗
Ispg0t∗

, (16)

where Isp is the specific impulse associated with the propulsion system, and g0 =
9.80665e-3 km/s2. These low-thrust EOMs are consistent with Eqs. 4, 5 and 6 that
govern the natural CR3BP; the low-thrust equations are simply augmented with the
alt terms.

CR3BP+LT Simplifications for Global Insight

To facilitate analyses in the CR3BP+LT, simplifications are applied to reduce the
number of dimensions in the problem. The conservative, natural problem admits one
integral of the motion (the Hamiltonian, Hnat ), reducing the natural problem dimen-
sion by one. However, due to the non-autonomous nature of the CR3BP+LT, the
low-thrust Hamiltonian is not constant in general and, thus, does not necessarily offer
a similar dimension reduction. Nevertheless, an analysis of the time derivative of the
low-thrust Hamiltonian supplies useful insights. First, differentiate the first term in
Eq. 12, i.e., the expression for the natural Hamiltonian,

∂Hnat

∂τ
= ẋ (ẍ − Ωx) + ẏ

(
ÿ − Ωy

) + ż (z̈ − Ωz) , (17)

where τ is nondimensional time. Substitute the CR3BP+LT equations of motion from
Eqs. 13–16 into this derivative expression and simplify:

∂Hnat

∂τ
= ẋ

(
2ẏ + alt · x̂) + ẏ

(−2ẋ + alt · ŷ) + żalt · ẑ = v · alt , (18)

where v = { ẋ ẏ ż }T is the spacecraft velocity vector in the rotating frame. The
derivative of the second term in Eq. 12 is straightforwardly evaluated,

∂

∂τ
[r · alt ] = v · alt + r · ȧlt . (19)

Combine (18) and (19) to yield the time derivative of Hlt ,

∂Hlt

∂τ
= −r · ȧlt . (20)

If alt is constant, both in magnitude and orientation as viewed in the rotating frame,
then ȧlt = 0 and Hlt is constant during low-thrust propagations. Essentially, if alt

is constant, the CR3BP+LT is a conservative system and the low-thrust Hamiltonian
may be leveraged as an integral of the motion in the low-thrust problem.

While preserving a fixed orientation, i.e., a fixed âlt vector, is a familiar attitude
control strategy, preserving a constant acceleration magnitude, alt , is less common.
Consider the expression, alt = (f/m)âlt with a fixed orientation and a fixed thrust

The Journal of the Astronautical Sciences (2020) 67:977–1001982



magnitude (âlt = constant, f = constant) but with variable mass. Accordingly, the
time derivative of alt , evaluated as

ȧlt = f ṁ

m2
âlt = −a2lt

l∗
Ispg0t∗

âlt , (21)

is non-zero when ṁ �= 0. To determine if ȧlt , given by the scalar coefficient,
a2lt l∗/(Ispg0t∗), is sufficiently small to be ignored, compare ȧlt with the energy range
associated with the natural equilibrium solutions, i.e., theHnat values associated with
the CR3BP Lagrange points. For example, let alt = 7e-2, a large but reasonable
acceleration magnitude, and let Isp = 1500 seconds, a relatively low efficiency for
a low-thrust system. The ȧlt magnitude in the Earth-Moon CR3BP-LT evaluates to
approximately 3.4e-4 while the energy range between the Lagrange points with the
highest and lowest energies, ΔHnat = Hnat (L5) − Hnat (L1), is approximately 0.1,
three orders of magnitude larger than ȧlt . Subsequently, the Hlt variations due to
the time-varying spacecraft mass are very small compared to the L5 → L1 energy
range, and Hlt is reasonably approximated as a constant for propagations with a max-
imum mass consumption of 15%, i.e., m(τ) > 0.85. Note that the magnitude of ȧlt

increases quadratically with alt ; accordingly, this assumption is valid only for small
acceleration magnitudes, i.e., low-thrust capabilities. Additionally, this assumption is
not applicable to all systems, particularly those with large l∗/t∗ ratios (resulting in a
large ȧlt magnitude) and with very small L5 → L1 energy ranges, such as the Sun-
Earth system (where ȧlt /ΔHnat ≈ 22). As the analyses in this investigation leverage
the dynamics of the Earth-Moon system, Hlt and alt are reasonably approximated as
constants without adjustments to the characteristic quantities. Accordingly, the vari-
able acceleration quantity f/m is replaced by the constant value alt , removing the
need for the mass time-derivative in Eq. 16. These simplifications – a constant low-
thrust Hamiltonian and a constant acceleration magnitude – effectively reduce the
problem dimension by two.

The simplifying assumption of a constant low-thrust acceleration vector yields
additional insights to guide low-thrust trajectory design. Although Hnat does not rep-
resent a dynamically significant quantity in the CR3BP+LT (rather, it is merely a
component of the low-thrust Hamiltonian, expressed in Eq. 11), it remains a useful
reference to the natural CR3BP. Low-thrust arcs are frequently a means to transi-
tion between natural structures with fixed Hnat values; thus, the evolution of Hnat

in the CR3BP+LT is relevant. While Hnat is not constant in general when low-thrust
is active, Hnat evolves independently of the spacecraft path when alt is fixed in the
rotating frame. This property is available from the time-derivative of Hnat , expressed
in Eq. 18. As the alt vector is constant, this expression is integrable, yielding the
equation

Hnat (τf ) − Hnat (τ0) =
τf∫

τ0

v · altdτ = (r(τf ) − r(τ0)) · alt . (22)

Accordingly, the natural Hamiltonian value along any low-thrust arc is available
given the initial Hnat value, the initial and final position, and the fixed low-thrust

The Journal of the Astronautical Sciences (2020) 67:977–1001 983



acceleration vector. This relationship supplies useful insights that link the geometry
of low-thrust arcs to the evolution of Hnat , facilitating intuitive design strategies.

Finally, to further reduce the system complexity, only planar motion is explored.
Thus, z(τ ) = ż(τ ) = 0 for all τ , and the low-thrust pointing vector, âlt , is described
by the planar vector

âlt = {
cosα sinα 0

}T . (23)

These simplifications facilitate the analysis of the dynamical structures in the
CR3BP+LT while also supplying insights that are useful for spatial (3D) path
planning.

Energy Planes

In the planar CR3BP+LT, every low-thrust arc with alt fixed in the rotating frame lies
entirely within a plane oriented in x-y-Hnat space by the low-thrust orientation angle,
α, and the magnitude, alt . This energy plane includes the initial position and energy
along the low-thrust arc, defined by an initial control point, ρ0 = { x0 y0 Hnat,0 }T .
A low-thrust trajectory may be represented by the control point variation,

Δρ(τ) = ρ(τ) − ρ0 = Δxx̂ + Δyŷ + ΔH Ĥ (24)

where ρ(τ ) = { x(τ) y(τ ) Hnat (τ ) }T is a control point that reflects the spacecraft
position and Hnat value at nondimensional time τ . Accordingly, Δρ(τ ) locates the
spacecraft relative to the origin of the energy plane, as depicted in Fig. 2a. The plane
is oriented via two rotations: a rotation of α about Ĥ = Ĥ′ to the intermediate frame,
(x̂′, ŷ′, Ĥ′), followed by a rotation of γ about ŷ′ = ŷ′′ to a frame fixed in the energy
plane, (x̂′′, ŷ′′, Ĥ′′), as seen in Fig. 2b. The first angle, α, orients the low-thrust accel-
eration vector, as noted in Eq. 23. The second rotation angle, γ , is related to the
low-thrust acceleration magnitude via the relationship

tan γ = −alt . (25)

Fig. 2 The energy plane is located and oriented relative to the rotating x-y frame with a third dimension
representing Hnat
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As a short proof that such a plane exists with this orientation, rewrite the general
control point variation in Eq. 24 in the energy plane-fixed frame,

Δρ = [
ΔxCαCγ + ΔySαCγ − ΔHSγ

]
x̂′′ + [ΔyCα − ΔxSα] ŷ′′

+ [
ΔxCαSγ + ΔySαSγ + ΔHCγ

]
Ĥ′′ , (26)

where Cα = cosα, Sα = sinα, Cγ = cos γ , and Sγ = sin γ . A trajectory confined
to the plane possesses a zero-valued Ĥ′′ component; thus, rearrange the terms in the
Ĥ′′ component and equate them to zero,

ΔH + tan γ (ΔxCα + ΔySα) = 0 . (27)

When Eq. 25 is substituted for the tan γ term, Eq. 27 is identical to the energy
path-independence relationship in Eq. 22. Subsequently, Eq. 27 represents the true
dynamics; the out-of-plane component of Δρ(τ ) is identically zero for all τ and
the low-thrust arc is confined to the energy plane while alt remains fixed in the
CR3BP+LT rotating frame. This plane links a particular energy change to the geom-
etry of a low-thrust transfer arc. If the geometry of such a transfer is relatively
unperturbed by variations in the low-thrust acceleration vector, α and alt may be
selected to orient the energy plane to deliver a desired energy change based on the
existing geometry. Additionally, these results supply an analytical basis for previ-
ous findings that the energy along low-thrust arcs varies as a function of the angle
between the low-thrust acceleration vector and the spacecraft rotating velocity vec-
tor, i.e., the angle between âlt and v [4]. When v is aligned with âlt , the spacecraft
moves “uphill” on the energy plane, increasing the Hnat value. Similarly, a space-
craft with âlt ⊥ v follows a path that contours across the energy plane at a constant
value of Hnat . While these properties of the Hnat value are straightforwardly derived
from the time derivative in Eq. 18, the energy plane supplies a more intuitive rep-
resentation of the energy variations. Similar to a hiker faced with a steep slope, a
low-thrust spacecraft may leverage sequential energy planes as a set of “switchbacks”
to rapidly increase energy. In fact, the well-known energy-optimal low-thrust spi-
ral that employs a control law with âlt = ±v̂ is simply a strategy to continuously
reorient the energy plane such that the spacecraft is always moving along the steep-
est energy gradient. Accordingly, α and alt are straightforwardly selected to deliver
specific energy evolutions during the preliminary design process.

GatewayManipulation Using Energy Planes

Bounds on the spacecraft motion in the natural CR3BP, termed forbidden regions, are
linked to the instantaneous value of Hnat along a trajectory [22]. Let these bounds be
represented by the set of points Fnat = Fnat (Hnat ). The Hnat values associated with
the natural equilibrium solutions, L1, . . . , L5, represent critical configurations at
which the forbidden regions shrink (or grow) to permit (or restrict) access to regions
in the xy-plane. For example, forHnat values slightly higher than theHnat (L1) value,
the forbidden regions include a narrow neck near the L1 point, i.e., a “gateway,”
through which trajectories may pass to transit between the P1 and P2 regions. Similar
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gateways form as Hnat increases past the L2 and L3 energy levels, and the Hnat

value corresponding to the L4/5 equilibrium points is the highest energy for which
planar motion is restricted by the forbidden regions in the CR3BP. Accordingly, to
enable transit between regions in the CR3BP, the Hnat value along an arc must be
sufficiently high to open the required gateways.

Since the Hnat value changes along low-thrust arcs, the Fnat structures are not
static and are, thus, difficult to visualize and employ in the low-thrust trajectory
design process. However, recall that when alt is fixed in the rotating frame, the low-
thrust Hamiltonian, Hlt , remains constant. Accordingly, a set of bounding low-thrust
forbidden regions, Flt = Flt (Hlt ), are available. These Flt structures are related to
the Fnat structures via the energy plane, as illustrated by the sample configuration in
Fig. 3.

An “energy surface”, shown in blue, is constructed from planar Fnat structures
across a range of Hnat values; each horizontal slice through this surface is a natu-
ral forbidden region at a specific Hnat value. This structure bounds all planar motion
over the full range of Hnat values; thus, low-thrust arcs are bounded by the energy
surface even as Hnat varies. Because Hnat varies along an energy plane, the inter-
section of the energy plane and the forbidden region energy surface bounds the
low-thrust motion. This intersection, plotted as white contours in Fig. 3a and as black
contours in Fig. 3b, defines the low-thrust forbidden region, Flt (Hlt ). In this exam-
ple, the origin of the energy plane (a maroon plane in Fig 3a) is located by the control
point, ρ = { 0.5 0 −1.55 }T , plotted as a red point, and oriented by the low-thrust
orientation angle, α = 80◦, and the low-thrust acceleration magnitude, alt = 7e-2.
Variations in Hnat (the third component of ρ) translate the plane vertically, while
changes in alt affect the inclination of the plane and adjustments to α rotate the
energy plane about the control point. Due to this coupling between theHnat evolution
and the geometry of low-thrust arcs, a preliminary set of control parameters are intu-
itively available: To ensure a gateway is open when the spacecraft arrives there, select
α and alt to incline and orient the energy plane such that Flt permits transit through

Fig. 3 Earth-Moon CR3BP+LT forbidden regions for alt = 7e-2, α = 80◦, and Hlt = −1.5561
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the gateway. Similar strategies are straightforwardly derived from these relationships
to facilitate access to other regions of the CR3BP.

To illustrate the manipulation of the forbidden regions via insights from an energy
plane, consider a ballistic path that passes from the system interior (i.e., near P1)
through the L1 and L2 gateways to the exterior region, as plotted in black in Fig. 4a.
Assume that the path must be modified to prohibit one or both gateway transits; the
exact locations along the ballistic arc at which to enable the low-thrust system are
available from the geometry of the associated energy plane. For example, to avoid
escape to the system exterior, it is sufficient to reduce the Hnat value along the low-
thrust arc such that, at the location of the L2 gateway transit, the spacecraft Hnat

value is lower than the Hnat value at L2, Hnat (L2). Let the low-thrust magnitude be
alt = 7e-2 and the low-thrust orientation be α = 180◦. In this configuration, the
change in the Hnat value along the resulting low-thrust propagation is proportional
to the change in x position, i.e.,

ΔHnat = −altΔx. (28)

This relationship, while simple due to the convenient choice of α, is straightforwardly
derived from any energy plane orientation via trigonometric expressions.

To determine if applying low-thrust with α = 180◦ will sufficiently decrease Hnat

to close the L2 gateway, the initial Hnat value on the escaping ballistic path as well as
the distance from L2 along the x-axis are considered. As the goal in this low-thrust
application is the reduction of Hnat to Hnat (L2) at x = xL2 , where xL2 is the location
of L2 on the x-axis, rearrange (28) and solve for the right-most x-coordinate at which
thrusting may be to sufficient to reduce Hnat ,

Δx = −1

alt

ΔHnat ,

max x0,lt = xL2 + 1

alt

(
Hnat (L2) − Hnat,0

)
, (29)

Fig. 4 The transit behaviors of low-thrust arcs (colored) in the Earth-Moon CR3BP+LT for alt = 7e-2
and α = 180◦ originating from different locations on a ballistic arc (black) are predicted by a simple
trigonometric property of the energy plane geometry
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where Hnat,0 is the energy of the ballistic arc. If low-thrust is enabled before the
spacecraft reaches this x-coordinate along the ballistic arc, the Hnat value decreases
more than enough to close the L2 gateway by the time the spacecraft reaches xL2 .
Similarly, if thrust is enabled after the spacecraft has passed this x-coordinate, the L2
gateway will not be closed when the spacecraft reaches xL2 and the possibility exists
that the spacecraft will escape. This boundary is marked in Fig. 4b by a left-pointing
black arrow at the top of the plot. Each colored, dotted line in this plot represents the
energy plane associated with a low-thrust propagation that begins at Hnat,0 = −1.55
and a range of x-coordinates. Accordingly, the transition from blue arcs (arcs that
cannot transit the L2 gateway) to green arcs (arcs that may transit L2) corresponds
with the energy plane that intersects L2 in this x vs. Hnat space. The configuration
space (x vs. y) representation of these arcs, plotted in Fig. 4a, also demonstrate these
transit properties; none of the blue trajectories pass through the L2 gateway while
many of the green trajectories do escape to the system exterior. However, note that
some of the green trajectories do not escape through the L2 gateway in the allotted
propagation time. The Hnat values on these arcs are too high to prohibit transit, but
the higher energy values do not guarantee transit. Finally, note that a similar min x0,lt
may be defined to locate the right-most x-coordinate at which the low-thrust must
be enabled to transit the L1 gateway. This value, marked by a right-pointing triangle
in Fig. 4b, is collocated with the transition between red and blue arcs, where red
represents paths that sufficiently decrease Hnat to close the L1 gateway by the time
the spacecraft reaches xL1 . Similarly, the blue arcs represent low-thrust arcs that do
not decrease Hnat to close the L1 gateway. Many of these arcs transit through the
open L1 gateway but, like the green arcs, some do not transit despite possessing
sufficient energy.

This analysis demonstrates that the energy plane is a useful tool to predict the tran-
sit or capture behavior along a low-thrust arc. The geometry of the ballistic transit
arc employed in this example (seen in black in Fig. 4b) is only slightly modified by
a low-thrust force during the approach to the P2 vicinity; thus, the energy along the
low-thrust arcs is straightforwardly controlled as the path moves predictably along
the prescribed energy plane. However, as the arcs traverse the dynamic regions near
L1, P2, and L2, the trajectory geometry is significantly affected by the addition of
low-thrust and, thus, is more difficult to predict. Regardless of these sensitivities, the
energy along each low-thrust arc is confined to the energy plane and transit (or cap-
ture) is well-predicted by the sufficient conditions derived from the energy history.
This strategy is also applicable to scenarios other than gateway transit behavior; any
problem that requires a specific energy value at a specific location (i.e., targeting a
control point, ρ = { x y Hnat }T ) is facilitated by the CR3BP+LT energy planes.

Planar Low-Thrust Equilibrium Solutions

While insights from the energy plane are useful to modify ballistic paths, dynamical
structures from the CR3BP+LT supply additional geometries that may be lever-
aged to facilitate low-thrust trajectory design. One such group of structures is the
equilibrium solutions associated with the planar (2D) dynamics in the CR3BP+LT;
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these solutions supply an initial characterization of the local and global dynamics
when low-thrust is included in the model. Linearizations of the nonlinear dynam-
ics relative to the equilibria describe local stable, unstable, and center manifolds.
To represent the full nonlinear flow, global invariant manifolds are constructed by
transitioning the linear results to the nonlinear model [22]. By manipulating the low-
thrust acceleration vector, the number and location of equilibrium solutions in the
CR3BP+LT are affected, which subsequently affects the existence and characteris-
tics of various nearby dynamical structures. Accordingly, the equilibrium solutions
in the CR3BP+LT are relevant to low-thrust mission applications, particularly as the
equilibria locations evolve relative to the familiar CR3BP equilibrium points.

To initiate a fundamental understanding of the flow in the CR3BP+LT consider
the simplified planar dynamics with a fixed alt vector, consistent with the previous
simplifications. The equilibrium solutions solve (13) and (14) when all time deriva-
tives (ẋ, ẍ, ẏ, ÿ) are zero. In the natural CR3BP (alt = 0), five such equilibria exist,
i.e., the Lagrange points or libration points [22]. As the addition of the perturbing
low-thrust acceleration introduces two new variables, the thrust orientation angle, α,
and magnitude, alt , the locations of the equilibrium solutions are no longer fixed [4,
5, 7]. Given a value of alt , the locations of the equilibrium solutions vary with α,
as plotted in Fig. 5. The location of each equilibrium solution identifies a point in
the xy-plane where the low-thrust acceleration vector offsets the natural acceleration
vector to yield a net-zero acceleration in the rotating frame. Accordingly, the closed,
colored contours of equilibria depicted in Fig. 5 are termed zero acceleration con-
tours (ZACs) [4]. Each ZAC represents a set of equilibria at a fixed alt value for the
full range of α values with at least one equilibrium solution on each ZAC for every
value of α. To identify these structures independently of the natural equilibrium point
solutions, let the ZACs near L1 and L2 be notated E1 and E2, and let the C-shaped
ZAC that includes points near L3 be labeled E3. Note that these designations are spe-
cific to the alt value that yields the ZACs. For instance, when alt is small, the ZACs
remain near the natural solutions, yielding five ZACs: E1, E2, . . . , E5. However,
as alt increases, ZACs merge [4, 5]. In this investigation, alt = 7e-2 is employed for

Fig. 5 Low-thrust equilibrium solutions (colored by α) in the Earth-Moon CR3BP+LT for alt = 7e-2 and
α ∈ [−180◦, 180◦]; the natural equilibrium solutions are included as black asterisks
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consistency; at this low-thrust magnitude, the E3, E4 and E5 structures are combined
into the E3 ZAC. Groups of equilibria at specific α values are denoted via function
notation, i.e., E3(−60◦) specifies the set of low-thrust equilibria within the larger E3
set at α = −60◦. Note that the E3(−60◦) may include multiple equilibrium points
on the E3 contour that correspond to an α angle of −60◦. To identify specific equi-
librium points on a ZAC, the notation E

j
i (α) is employed, where i references the

ZAC, Ei , and j designates the individual equilibria in order of ascending Hlt value.
For example, E3(−60◦) includes three equilibria; thus, E1

3(−60◦) corresponds to the
equilibria with the lowest Hlt value, E2

3(−60◦) possesses an intermediate Hlt value,
and E3

3(−60◦) is characterized by the highest Hlt value. In the absence of a super-
script, e.g., E1(−60◦), only one equilibrium solution exists on the specified ZAC at
the given angle.

As the locations of the low-thrust equilibrium solutions evolve with variations in
alt and α, the stability properties of each point also vary. These properties are deter-
mined by inspecting the eigenvalues of the Hessian matrix, ∂q̇/∂q, evaluated at the
equilibrium point location, where q = { x y ẋ ẏ }T is the state vector and q̇ reflects
the time derivatives of the states consistent with Eqs. 13 and 14. Real eigenvalues (in
the complex plane) represent stable (negative) and unstable (positive) motion, while
eigenvalues on the imaginary axis reflect oscillatory motion. Combinations of the
two types are also possible and are characterized by spiral-shaped flow patterns in
position space (i.e., the xy-plane). Due to the Hamiltonian nature of the CR3BP+LT
with alt fixed in the rotating frame, eigenvalues occur in pairs, either as real pairs
symmetric across the imaginary axis (i.e., ±λ) or as complex conjugate pairs. The
former pair, characterized by stable and unstable motion, is termed a saddle, while a
pair of imaginary eigenvalues is denoted a center mode; the combined saddle-center
(e.g., spiral) motion is termed a mixed mode.

The linear modes associated with an equilibrium solution identify the local
dynamics and may predict nonlinear flow patterns. For example, oscillatory motion
(periodic or quasi-periodic) is frequently available near an equilibrium solution with
a center mode, i.e., a center subspace. Similarly, trajectories that asymptotically
approach an equilibrium point in forward and reverse time are guided by the stable
and unstable manifolds of the saddle mode. The four-dimensional phase space near
each planar equilibrium point is described by four eigenvalues (two pairs), or two
modes. In practice, these modes occur in four different combinations: (i) saddle ×
center (S×C); (ii) center × center (C×C); (iii) mixed × mixed (M×M); and (iv)
saddle × saddle (S×S). The Earth-Moon CR3BP+LT equilibria for alt = 7e-2 are
characterized by the first three combinations at various locations in the xy-plane, as
apparent in Fig. 6. The dynamics near equilibria on E1 and E2 are consistent with
the S×C motion associated with natural L1 and L2 equilibria, as observed in Fig. 6b.
In contrast, E3 includes S×C motion on the “inner ring,” C×C motion on the “outer
ring,” and some M×Mmotion near the tips of the C-shaped contour. Due to the prox-
imity of different linear modes, the low-thrust dynamics in some locations are very
sensitive to the value of α employed to orient the low-thrust vector. For instance,
both C×C and S×C equilibrium solutions are available near the L4 and L5 points
at the same alt value and the opposite α values (opposite by 180◦). As a result, the
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Fig. 6 Low-thrust equilibrium solutions (colored by stability) in the Earth-Moon CR3BP+LT for alt =
7e-2 and α ∈ [−π, π]; the natural equilibrium solutions are included as black asterisks

global flow in a single area (e.g., near L4/5) is controllable via manipulations of the
low-thrust acceleration vector and suitable parameters may be identified to yield flow
structures for inclusion in low-thrust trajectories.

Stable and Unstable Invariant Manifolds

The linear dynamics in the vicinity of the low-thrust equilibrium points are straight-
forwardly transitioned to the full nonlinear model to supply insight into global flow
patterns in the CR3BP+LT. Whereas the eigenvalues of the Hessian matrix describe
the type of motion (e.g., stable, unstable, oscillatory), the eigenvector associated
with each eigenvalue defines the direction of the flow in four-dimensional space. For
example, the eigenvector associated with the positive, real eigenvalue lies tangent to
the unstable manifold near the equilibrium solution. Similarly, the eigenvector asso-
ciated with the negative, real eigenvalue is tangent to the stable manifold near the
equilibrium point. Thus, by perturbing the equilibrium solution along the stable or
unstable eigenvector and propagating the resulting trajectory in the nonlinear model,
a representation of the global stable or unstable invariant manifold associated with
the equilibrium point is constructed, as depicted for the natural L1, L2, and L3 saddle
modes in Fig. 7. While these manifolds originate tangent to the eigenvectors near the
equilibria, the nonlinear flow diverges from the linear approximation as the distance
from the equilibrium solution increases. The natural triangular points, characterized
by C×C modes, do not possess stable or unstable manifolds to guide the flow into
and out of the L4 or L5 regions. Additionally, note that the Hnat value along each
manifold arc remains constant, as evident in Fig. 7b, as Hnat is a constant integral of
the motion in the natural CR3BP.

By applying the same approach, manifolds are constructed for the Earth-Moon
CR3BP+LT equilibrium points. While these manifolds appear similar to the ballistic
manifolds, there are several key differences. The Earth-Moon low-thrust equilibria
for alt = 7e-2 and α = 180◦, plotted as black diamonds in Fig. 8a, are similar in
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Fig. 7 Manifolds associated with the natural Earth-Moon CR3BP equilibria; L1, L2, and L3 possess sad-
dle modes with stable and unstable manifolds whileL4 andL5 are characterized by center× center modes,
represented by circles about these equilibria

location and stability to the natural equilibria, although the E3(180◦) solutions that
are not located on the x-axis (i.e., E2

3(180
◦) and E3

3(180
◦)) lie noticeably closer to

the Moon than the natural triangular points. Furthermore, the geometries of the stable
and unstable manifolds corresponding to the E1(180◦) and E2(180◦) points remain
very similar to the natural manifolds plotted in Fig. 7. One key difference between
the low-thrust equilibria manifolds and the natural equilibria manifolds is the energy
profile for each manifold, plotted in Figs. 8b and 7b, respectively. While Hnat is
constant along the ballistic CR3BP arcs, Hnat varies from the originating state along
the low-thrust structures. Accordingly, the low-thrust equilibrium point manifold arcs
may be employed to transit throughout the xy-plane while simultaneously delivering
an energy change prescribed by the associated energy plane.

Fig. 8 Manifolds associated with the Earth-Moon CR3BP+LT equilibria for alt = 7e-2 and α = 180◦
maintain a similar geometry and qualitative stability characteristics as the natural equilibria manifolds, but
vary in energy
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Transit Design LeveragingManifold Arcs

To illustrate the use of the energy plane and the manifolds associated with the low-
thrust equilibrium points, consider the design of a transfer from the lunar vicinity
to a stable orbit near the natural Earth-Moon L5 point. One option is to construct a
transfer from the L1 and L2 equilibria manifold arcs that depart the lunar vicinity and
move throughout the xy-plane. However, these trajectories, plotted in Fig. 7a, do not
approach theL5 region, even when propagated for longer time intervals than depicted
in the plot. Furthermore, these natural manifold paths maintain a fixed Hnat value
consistent with the originating equilibrium point and, thus, do not approach the much
higher Hnat (L5) value. An additional complication arises from the fact that L5 is
characterized by C×C motion and, thus, possesses no stable or unstable manifolds to
further attract the flow. Farrés mitigates this problemwhen designing similar transfers
in the Sun-Earth-solar sail system by searching a grid of sail orientations and states
near the triangular point that, when propagated in reverse time, may be linked to
the E1(0) or E2(0) unstable manifolds in both position and energy [7]. While this
method is effective, insights from the energy planes combined with the novel unstable
equilibria near L5 in the CR3BP+LT may be leveraged to construct a design without
reliance on a grid search.

A transfer design that incorporates both the energetic and geometric differences
between the L5 and lunar regions is facilitated by leveraging manifolds associated
with the low-thrust equilibria. Motion near the Moon is available from the manifolds
associated with points on the E1 and E2 sets. Because the E1 and E2 structures for
alt = 7e-2 are characterized by S×C motion regardless of α, many manifolds that
depart the region are available. A survey of these manifolds over the full range of
α values indicates that, while small differences are apparent as α varies, the general
flow geometry (as visualized in Fig. 8a) remains consistent. Thus, the energy on
these manifold trajectories may be designed relatively independently of the geometry
by selecting an α value to supply an appropriate energy plane, i.e., an energy plane
sloped in a desirable orientation.

To develop an initial guess for a transfer between the Moon and L5, the manifolds
associated with an Earth-Moon CR3BP+LT E2 solution are explored (alternatively,
manifolds corresponding to an E1 point may be leveraged). As illustrated in Fig. 9b,
the Hnat value associated with L5 is significantly larger than the Hnat values at the
E2 (or E1) sets. To maximize the Hnat value available at L5 along a single low-
thrust arc originating from one of these low-thrust equilibria, the energy plane is
aligned with the Moon-L5 line, e.g., α = −120◦, as plotted in Fig. 9. However, even
with the plane oriented to maximize the energy at the L5 location, the slope of the
energy plane is too shallow to reach Hnat (L5) at the L5 position, visualized as an
“energy gap” between the energy plane and the L5 point in Fig. 9b. The slope of the
plane is a function of the low-thrust acceleration magnitude, alt , and is limited by the
capabilities of the propulsion system. Accordingly, given the limitation of alt = 7e-2,
a single manifold arc originating from an E2 point cannot reach the natural L5 point
with the desired energy. Additional energy manipulations are required to construct a
set of “energy switchbacks” that reach both the L5 position and energy level.
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Fig. 9 The energy plane associated with the Earth-Moon CR3BP+LT E2(−120◦) point for alt = 7e-2
(γ ≈ 4◦) is too shallow to reach Hnat (L5) at the L5 location

To facilitate an energy increase from Hnat (L2) to Hnat (L5), low-thrust flow origi-
nating near the naturalL5 point is linked to low-thrust flow near theMoon. In contrast
to the natural CR3BP, the CR3BP+LT possesses equilibrium points near L5 on the
E3 structure with S×Cmotion. In the Earth-Moon CR3BP+LT with alt = 7e-2, these
equilibria, plotted as red points in Fig. 6a, are located near L5 when α ≈ −60◦.
While the locations and energies of the equilibria on E1 and E2 vary only a small
amount with α, the E3 equilibrium point locations shift over large distances through-
out the xy-plane as α varies. Accordingly, only the E1

3(−60◦) solution near L5
supplies manifolds that evolve sufficiently to attract flow. The energy along these
manifold trajectories evolves on the energy plane oriented by α = −60◦, as depicted
in Fig. 10. A transfer from E2(−120◦) to E1

3(−60◦) may leverage flow along both
energy planes. Such a transfer originates at the E2(−120◦) point and subsequently
flows along the corresponding energy plane. Then, at an intersection between the

Fig. 10 The energy planes corresponding to the low-thrust equilibrium points E1
3(−60◦) near L5

and E2(−120◦) contain all trajectories originating from the two equilibria; control adjustments at the
intersection of the two planes facilitates transfers between the two points
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E2(−120◦) energy plane and the E1
3(−60◦) energy plane, α is switched from −120◦

to −60◦. The resulting propagation then flows along the E1
3(−60◦) energy plane,

which includes the E1
3(−60◦) equilibrium solution very near the location and energy

of the natural L5 point, facilitating the required energy change.
The intersection of two energy planes defines a line, H1,2, in x-y-Hnat space. Let

ρref be a reference control point located anywhere on H1,2, as depicted in Fig. 11.
This reference point may be chosen arbitrarily, but can offer useful insights when
located at a convenient geometric location or Hamiltonian value. Additionally, define
a vector, Hint , that points along the H1,2 intersection line. The set of control points
on the intersection line are given by

H1,2 : ρ = ρref + lHint , (30)

whereHint is derived from the cross product of the two energy plane normal vectors,
Ĥ

′′
1 and Ĥ

′′
2,

Hint =
⎧⎨
⎩
cos ([α1 + α2]/2)
sin ([α1 + α2]/2)
alt cos ([α2 − α1]/2)

⎫⎬
⎭ , (31)

and both energy planes correspond to the same alt value (i.e., the same γ angle) but
different α values. Note thatHint is not directly equal to the cross product of the nor-
mal vectors but is scaled to satisfy (30). Finally, let ΣH1,2 represent the projection
of H1,2 into the xy-plane and define a coordinate, l, measured along ΣH1,2 rela-
tive to ρref where l > 0 maps to points on H1,2 with Hnat values greater than the
Hamiltonian at ρref .

To identify links between trajectories on these energy planes, theΣH1,2 hyperplane
is employed as a stopping condition for planar trajectories. Because H1,2 defines
points that lie on both energy planes, proximity between two points (i.e., similar l

values) on the projection, ΣH1,2 , indicates not only similar positions in the xy-plane,
but also similar Hnat values. Furthermore, a switch from α1 to α2 at a point on ΣH1,2

ensures that the trajectory transitions from the first energy plane to the second.
While the displacement along ΣH1,2 relative to ρref , represented by l, supplies

position and energy information, an additional coordinate is required to represent the

Fig. 11 The intersection of two
energy planes, H1,2 is
decomposed into the Hint vector
and the l coordinate, measured
along the projection of the
intersection line, ΣH1,2 ; the
base point, ρref , locates the line
in x-y-Hnat space
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Fig. 12 The stable manifold arcs (blue) of theE1
3(−60◦) point and the unstable manifold arcs (magenta) of

theE2(−120◦) point are propagated in the Earth-Moon CR3BP+LT for alt = 7e-2; crossings of the energy
plane intersection line are marked and included in a Poincaré map to identify a transfer with minimal
discontinuities

full spacecraft state. Given l, the spacecraft position and Hnat value are computed
via (30). Additionally, the velocity magnitude at this point is available by solving the
Hnat expression in Eq. 3 for the spacecraft speed in the rotating frame, v. Only the
velocity direction is undefined; thus, a Poincaré map leveraging the coordinates l and
θv = arctan(ẏ/ẋ) supplies the complete spacecraft state; intersections on this map
guarantee full state continuity between trajectories. In contrast to traditional Poincaré
maps in the CR3BP that include only trajectories at one energy level, this represen-
tation incorporates arcs with various Hnat values. Additionally, as the full state of
each map crossing is available from the 2D representation, multiple low-thrust paths
may be linked together, or low-thrust and natural arcs may be connected. Such a
map is leveraged to identify a transfer between the unstable manifold of E2(−120◦),
plotted in magenta in Fig. 12, and the stable manifold of E1

3(−60◦), plotted in blue.
Each manifold trajectory crosses the the ΣH1,2 hyperplane (or, equivalently, H1,2 in
x-y-Hnat space), plotted as a dashed red line in Fig. 12a, at least once. The hyper-
plane crossing points are transformed to l and θv coordinates and plotted in polar
form on the Poincaré map in Fig. 12b. Each ΣH1,2 crossing on the E1

3(−60◦) stable
manifold is marked by a black square and labeled with a lowercase roman numeral
to link the points between configuration space and the map. The E2(−120◦) unsta-
ble manifold crossings are left unlabeled as several occur far from the primaries and
are not depicted in Fig. 12a. In this example, ρref is selected such that the reference
Hnat value is identical to the natural L2 energy, Hnat (L2). Accordingly, l > 0 cor-
responds to energies greater than Hnat (L2) and l < 0 indicates lower energy values;
the boundary at l = 0 is plotted as a dashed-gray circle in Fig. 12b for reference.

By leveraging the information available from the Poincaré map, a transfer from the
lunar vicinity to L5 is constructed. Two points near l = 0 and θv = 160◦, one from a
stable manifold and another from an unstable manifold, are selected due to their close
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Fig. 13 The unstable E2(−120◦) manifold arc (magenta), stable E1
3 (−60◦) manifold arc (blue), and

natural L5 short period orbit (green) are linked together as an initial design for a Moon to L5 transfer

proximity to one another on the map. The corresponding trajectories, plotted in blue
and magenta in Fig. 13, are discontinuous in position, velocity, and natural Hamil-
tonian value. Thus, some corrections are required. To preserve the lunar flybys, the
initial state on the E2(−120◦) unstable manifold trajectory is constrained in position
and energy (Hnat ). Additionally, near the destination, a single revolution of a small,
naturalL5 short period orbit is included to ensure the spacecraft remains nearL5 after
arrival; this orbit is fully constrained to preserve its geometry and energy. Each mani-
fold arc is subdivided into smaller segments, each of which maintains a fixed α value,
independent of the other segments, and a thrust magnitude of alt = 7e-2 as in a turn-
and-hold strategy. A multiple shooting differential corrections algorithm, consistent
with the algorithm described by Cox [3], is then applied to eliminate the position and
velocity discontinuities between the arcs. The position and velocity vectors and the
spacecraft mass at the beginning of each segment are allowed to vary, as is the epoch
associated with the beginning of each segment. The only control variable included
in the corrections is the α angle; both β and alt are held constant. As a result of the
corrections, a continuous transfer is constructed and plotted as a solid arc in Fig. 14,
with low-thrust segments in orange and ballistic segments in blue. To achieve this
result, the initial design is first corrected in the simplified CR3BP+LT with constant
alt on all low-thrust arcs. Following convergence in the simplified model, the trans-
fer is transitioned to the unrestrained CR3BP+LT with variable mass (i.e., variable
alt = f/m) where the thrust magnitude is fixed at f = 7e-2 and the engine efficiency
is parameterized by Isp = 3000 seconds. Although the initial design is constructed
by leveraging insights from the simplified model with a constant alt value, conver-
gence in the unrestrained model is achieved rapidly, i.e., in fewer than 20 iterations.
The final spacecraft mass along the converged trajectory in Fig. 14 is 0.9668; thus,
the spacecraft requires propellant equivalent to approximately 3.32% of the space-
craft wet mass to complete the transfer. This mass fraction may be reduced further
by applying optimization techniques, but represents a feasible scenario even without
optimization. For comparison, Deep Space 1, with low-thrust capabilities consistent
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Fig. 14 Following corrections, the transfer is continuous in position, velocity, mass, and energy; the
majority of the transfer leverages low-thrust (orange segments) to reach the natural L5 SPO (blue)

with this example, was equipped with 82 kg of Xenon propellant for maneuvers, i.e.,
about 17% of the spacecraft wet mass.1

As the initial design, represented by dashed arcs, includes minimal discontinuities
due to the Poincaré map analysis, the converged solution consequently maintains the
geometry of the initial guess in x-y-Hnat space. Additionally, the control history,
plotted in Fig. 14d, remains similar to the preliminary solution with α ≈ −120◦
for the first 5.5 time units and reaches α ≈ −60◦ over the duration of the final
thrusting segments. The variations in α between the preliminary design and the con-
verged solution (most notably the final segment with α ≈ −10◦) are the control
response adjusting the preliminary solution to meet the constraints imposed as part
of the corrections process. These similarities between the initial and final solutions
are not surprising as the differential corrections algorithm employs an update that
minimizes the variations from the initial design (i.e., a “minimum-norm” update).
While the convergence properties of the algorithm depend on many variables, includ-
ing the numerical implementation strategy, convergence in any corrections scheme

1See the Deep Space 1 Asteroid Flyby press kit, https://www.jpl.nasa.gov/news/press kits/ds1asteroid.pdf
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is generally more rapid and more consistent with the initial design when the discon-
tinuities (i.e., constraint violations) are initially small; a very discontinuous initial
guess forces the differential corrections algorithm to make more significant changes
to the design to meet the specified constraints. Thus, by leveraging insights from the
CR3BP+LT, an initial design is straightforwardly constructed with minimal discon-
tinuities in both configuration space and in energy that may be rapidly corrected. In
contrast to a transfer construction procedure that employs only arcs from the natu-
ral CR3BP, these low-thrust dynamical insights supply a preliminary control profile
(i.e., α, β, and alt for the low-thrust segments) that subsequently delivers a suitable
transfer geometry and a suitable energy profile.

Concluding Remarks

By leveraging reasonable simplifying assumptions, the high-dimensional, non-
conservative low-thrust multi-body model is reduced to a simpler, conservative
system with properties that supply useful insights for the generation of preliminary
low-thrust trajectory designs. One such property is the existence of an energy plane
that describes the evolution of the natural Hamiltonian term along any low-thrust
arc. The geometry of the plane relates the control variables, i.e., the magnitude and
orientation of the low-thrust acceleration vector, to the energy evolution along a tra-
jectory. As a result of this relationship, an initial guess for the control history may be
designed to satisfy the energetic constraints on the trajectory. One application of this
plane is the analytical prediction of an arc’s transit and capture properties given only
the initial position, velocity, and control states. Additionally, a Poincaré map incorpo-
rating intersections between two energy planes supplies a useful interface to identify
links between low-thrust and natural arcs at various energy levels. By selecting map
crossings near one another on this map, initial designs with minimal discontinuities
are constructed and may be straightforwardly corrected with a variety of constraints.
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