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Abstract
This work presents a data-driven method for the classification of light curve measure-
ments of Space Objects (SOs) based on a deep learning approach. Here, we design,
train, and validate a Convolutional Neural Network (CNN) capable of learning to
classify SOs from collected light-curve measurements. The proposed methodology
relies on a physics-based model capable of accurately representing SO reflected
light as a function of time, size, shape, and state of motion. The model generates
thousands of light-curves per selected class of SO, which are employed to train a
deep CNN to learn the functional relationship between light-curves and SO classes.
Additionally, a deep CNN is trained using real SO light-curves to evaluate the
performance on real data, but limited training set. The CNNs are compared with
more conventional machine learning techniques (bagged trees, support vector
machines) and are shown to outperform such methods, especially when trained on
real data.
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Introduction

Motivated by the U.S. Air Force mission to control, protects, and maintain access to
space, Space Situational Awareness (SSA) has recently become an important research
topic [1]. Researchers, and operational engineers, rely on a large amount of track-
ing data that can be processed to identify, characterize, and understand the intention
of Space Objects (SO). The SO catalog maintained by the U.S. Air Force currently
includes upward of 19,870 SO on orbit [2], with 2,434 of such objects being actively
controlled and operated. Researchers working on SSA are interested in providing a
detailed understanding of SO population behavior, which must go beyond the cur-
rently SO catalog comprising simplified SO characteristics, such as solar radiation
pressure and drag coefficients. To provide a more realistic and reliable understanding
of the SO dynamics, future catalogs must include detailed SO characteristics (e.g.,
shape and state of motion). The latter can be employed in dynamical propagation
models to predict SO trajectory and behavior accurately.

Developing a detailed understanding of the SO population is a fundamental goal
of SSA. Such a simplified description limits the dynamic propagation model used
for predicting the state of motion of SO to models that assume cannonball shapes
and generic surface properties. The future SO catalog and SSA systems will have to
be capable of building a detailed picture of SO characteristics. Traditional measure-
ment sources for SO tracking, such as radar and optical, provide information on SO
characteristics.

Optical sensors are generally employed to track near-geosynchronous SO. Such
sensors provide both astrometric and photometric measurements. Consequently, SO
properties can be estimated from astrometry (e.g., trajectories) and photometric data
(e.g., shape and state of motion). More specifically, light-curves, i.e., flux of photons
across a wavelength reflected by the SO and collected by optical sensors, play an
important role in determining the SO attitude and state of motion. Indeed, attitude
estimation and extraction of other characteristics using light curve data have been
demonstrated in Ref. [3, 10–13].

Traditional measurement sources for SO tracking (e.g. radar and/or optical mea-
surements) have been shown to be sensitive to shape [3, 4], attitude [3, 5, 6], angular
velocity [7], and surface parameters [8, 9]. A literature review shows that recent
advancements have been made to estimate SO properties. Such techniques heav-
ily rely on estimation theory and include the development of multiple model [3,
14], nonlinear state estimation [5–7], and full Bayesian inversion [15] approaches
for SO characterization. Although grounded in a solid theoretical background, the
above-mentioned methods tend to be computationally expensive. New techniques are
sought that can provide a higher degree of accuracy, computational efficiency, and
reliability.

Generally, classifying SO is a challenging task. State-of-the-art methods rely on
well established physical models that are embedded in an inversion scheme capable
of processing the data and estimate the model parameters. For example, Refer-
ence 3 used a Multiple Model Adaptive Estimation classification approach to model
the dynamics and physics, estimate relevant parameters, and finally classify SOs.
Although such a method is one of the most promising available in the literature,
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the inversion process requires the estimation of a large number of parameters. As a
result, the computational burden is significant and may not be practical for a catalog
comprising a large number of objects. Here, we are interested in exploring a data-
driven classification approach that employs both simulated and real-data to learn the
functional relationship between observed light-curves and SO class.

Recent advancements in machine learning have included deep learning as a
critical breakthrough technology. Indeed, deep learning methods [16] have shown
groundbreaking results across a large number of domains. Deep networks are neu-
ral networks that comprise more than hidden layers of neurons in their architecture.
In such multi-layer neuronal arrangement, deep learning approaches are designed
to mimic the function of the brain by learning nonlinear hierarchical features from
data that build in abstraction [17]. The latter enabled a higher level of accuracy in
typical classification tasks. In this paper, we explore deep learning methods to clas-
sify SOs trained on their simulated and real data. More specifically, we investigate
Convolutional Neural Networks (with max-pooling and dropout) [17] for super-
vised classification of SO observational data. Here, we demonstrate the design of
CNN architectures trained both on simulated and real data, and demonstrate the
effectiveness of the proposed methodology in classifying SOs.

The Convolutions Neural Network (CNN) have achieved remarkable performance
on image processing tasks. Examples include 1) object classification [18], 2) scene
classification [19], and 3) video classification [20]. Importantly, the key enabling fac-
tor for the success of CNN is the development of techniques that can optimize large
scale networks, comprising tens of millions of parameters, as well as massive labeled
datasets. Inspired by these results, this paper studies the classification of observa-
tional data generated by both simulated and real dynamical systems. The dynamical
system investigated here is the rotational dynamics of SOs. The physical attributes of
the SOs, such as shape and mass distribution, are also included in the classification
process. The challenging aspect of the application of CNNs to physical dynamical
systems is the generation of labeled training data. In a dual-fold fashion, we first
use physical models to simulate observations by sampling randomly from a distri-
bution of physical attributes and dynamic states. Light curve measurements are used
as inputs, and classes of the SOs are used as outputs for training the CNN approach.
The 1D-CNN then learns convolutional kernels that look for characteristic features
in the light curve data. As opposed to manually specified features, the features are
adaptively learned, given the training data. Subsequently, available and labeled real
light-curves are employed to train a specified CNN architecture directly.

This work compares the CNN with two machine learning techniques that represent
somewhat the state of the art of automatic classification techniques. The first method
is called Bagged Trees, and it is an ensemble method. The idea behind ensemble
methods is to combine many weak learners into a highly accurate single ensemble
algorithm. Thus, we can consider a classification ensemble as a machine learning
model comprising a weighted combination of many individual classification algo-
rithms. This work considers a type of ensemble algorithm called Bagging (where Bag
stands for Bootstrap aggregation [21]) combined with a basic decision tree algorithm
[22]. The bagging process on a decision tree works by generating many bootstrap
replicas of the training dataset and then growing decision trees on such replicas. Each
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of the bootstrap replicas are obtained by randomly choosing N observations and con-
sidering N replacements (where N is the training set size). The method works by
simply training each of the individual weak learners on resampled versions of the
training set. The overall response of the model is obtained by average prediction
over the ensemble of individual learners. The second set of techniques is the well-
known Support Vector Machines (SVM, [23]) adapted for the multi-class case. SVM
generally classify data by finding the hyperplane that separates two classes by the
largest margin. Non-linear transformations are generally employed when the classes
are non-separable by a simple (linear) hyperplane. In this case, a variety of kernels
are available to execute the transformation. The data-driven deep learning approach is
compared with more conventional machine learning techniques (e.g., random forest
[24] and SVM [23]) to show that hierarchical feature learning is the key to building
successful discriminative models.

The organization of this paper is as follows. First, a section reviewing the light
curve and SO dynamics model used for this work is provided. Next, the generation
of training data and real data are discussed with an outline of the simulated labeled
data approach and the model used for generating attitude control profiles. Then the
theory behind the CNN is provided, followed by the t-SNE technique. Then numeri-
cal results are given. Finally, concluding remarks are provided on the performance of
the proposed CNN-based approach.

Light Curve and Dynamics of Space Objects Modeling

Light Curve Modeling

There are several models used for simulating light curve measurements in literature,
and Ref. 14 provides a good summary of the most popular ones adopted for space
objects (SO) applications. These models differ in the physics that they represent
and their level of complexity, but for SOs applications, the ability to model specular
reflection and complex shapes while converting energy is desirable. The Ashikhmin-
Shirley [25] (AS) model has all the desirable properties while producing realistic SOs
light curve. This model is based on the bidirectional reflectance distribution func-
tion (BRDF), which models light distribution scattered from the surface due to the
incident light. The BRDF at any point on the surface is a function of two directions,
the direction from which the light source originates and the direction from which the
scattered light leaves the observed surface. The model in Ref. 25 decomposes the
BRDF into a specular component and a diffuse component. The two terms sum to
give the total BRDF:

fr = (dRd + sRs) (1)

which depends on the diffuse bidirectional reflectance (Rd) and the specular bidi-
rectional reflectance (Rs) and the fraction of each to the total (d and s respectively
where d + s = 1). Each facet contributes independently to the brightness, and total
brightness is the sum over each facet’s contribution. The diffuse component repre-
sents the light that is scattered equally in all directions (Lambertian), and the specular
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component represents the light that is reflected strongly in some direction (mirror-
like). Reference 25 develops a model for continuous arbitrary surfaces but simplifies
for flat surfaces. This simplified model is employed in this work as shape models are
considered to consist of a finite number of flat facets. Therefore the total observed
brightness of an object becomes the sum of the contribution from each facet.

In each model, however, c = VT H, ρ is the diffuse reflectance (0 ≤ ρ ≤ 1),
and F0 is the specular reflectance of the surface at normal incidence (0 ≤ F0 ≤ 1).
To be used as a prediction tool for brightness and radiation pressure calculations, an
important aspect of the BRDF is energy conservation. For energy to be conserved,
the integral of the BRDF times cos (θr ) over all solid angles in the hemisphere with
θr ≤ 90 needs to be less than unity, with

∫ 2π

0

∫ π/2

0
fr cos (θr ) sin (θr ) dθrdφ = Rd + Rs (2)

For the BRDF given in Eq. 1, this corresponds to constant values of Rd = ρd and
Rs = sF0. The remaining energy not reflected by the surface is either transmitted
or absorbed. In this paper, it is assumed the transmitted energy is zero. The diffuse
bidirectional reflectance is then calculated as follows:

Rd = 28ρ

23π
(1 − sF0)

⎛
⎝1 −

(
1 − NT L

2

)5
⎞
⎠ ·

⎛
⎝1 −

(
1 − NT V

2

)5
⎞
⎠ (3)

where

F = F0 +
(

1

s
− F0

)
(1 − c)5 (4)

The vectors L(ti) and V(ti) denote the unit vector from the SO to the Sun and the unit
vector from the SO to the observer, respectively, and together they define the obser-
vation geometry (shown in Fig. 1). In addition to d , ρ, and F0, the Ashikhmin-Shirley
BRDF has two exponential factors (nu, nv) that define the reflectance properties of
each surface. The Ashikhmin-Shirley diffuse and specular reflectivities are not con-
stant but rather complicated functions of illumination angle, exponential factor, and
the diffuse and specular reflectances. In all cases, however, Rd + Rs ≤ 1, so energy
is conserved. The parameters of the Phong model that dictate the directional (local
horizontal or vertical) distribution of the specular terms are nu and nv . The specular
bidirectional reflectance for the AS model is given by

Rs = F
√

(nu + 1) (nv + 1)

8cπ max
[
NT L,NV

] (cos (α))γ (5)

where γ = nu cos2 (β) + nv sin2 (β).
The apparent magnitude of an SO is the result of sunlight reflecting off of its

surfaces along the line-of-sight to an observer. First, the fraction of visible sunlight
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Fig. 1 Reflection geometry

that strikes an object (and is not absorbed) is computed by

Fsun(i) = Csun,vis

(
uI

n(i) · uI
sun

)
(6)

Where i denotes the ith facet of the SOs. Csun,vis = 1062 W/m2 is the power per
square meter impinging on a given object due to visible light striking the surface.
If either the angle between the surface normal and the observer’s direction or the
angle between the surface normal and Sun direction is greater than π/2 then there is
no light reflected toward the observer. If this is the case then the fraction of visible
light is set to Fsun(i) = 0. Next, the fraction of sunlight that strikes an object that is
reflected must be computed:

Fobs(i) = Fsun(i)ρtotal(i)A(i)
(
uI

n(i) · uI
obs

)
‖dI‖2

(7)

The reflected light of each facet is now used to compute the total photon flux, which
is measured by an observer:

F̃ =
[

N∑
i=1

Fobs(i)

]
+ vCDD (8)

where vCDD is the measurement noise associated with flux measured by a Charge
Coupled Device (CCD) sensor. The total photon flux is then used to compute the
apparent brightness magnitude

mapp = −26.7 − 2.5 log10

∣∣∣∣∣
F̃

Csun,vis

∣∣∣∣∣ (9)

where −26.7 is the apparent magnitude of the Sun.
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Attitude Dynamics of Space Objects

A number of parameterizations exist to specify attitude, including Euler angles,
quaternions, and Rodrigues parameters [26]. This paper uses the quaternion, which
is based on the Euler angle/axis parameterization. The quaternion is defined as
q ≡ [�T q4]T with � = ê sin(ν/2), and q4 = cos(ν/2), where ê and ν are the Euler
axis of rotation and rotation angle, respectively. Clearly, the quaternion must satisfy
a unit norm constraint, qT q = 1. In terms of the quaternion, the attitude matrix is
given by

A(q) = ΞT (q)Ψ (q) (10)

where

Ξ(q) ≡
[

q4I3×3 + [�×]
−�T

]
(11a)

Ψ (q) ≡
[

q4I3×3 − [�×]
−�T

]
(11b)

with

[g×] ≡
⎡
⎣ 0 −g3 g2

g3 0 −g1
−g2 g1 0

⎤
⎦ (12)

for any general 3 × 1 vector g defined such that [g×]b = g × b.
The rotational dynamics are given by the coupled first order differential

equations:

q̇B
I = 1

2
Ξ(qB

I )ωB
B/I (13a)

ω̇B
B/I = J−1

SO

(
T + TB

srp −
[
ωB

B/I×
]
JSOωB

B/I

)
(13b)

where ωB
B/I is the angular velocity of the SO with respect to the inertial frame,

expressed in body coordinates, and JSO is the inertia matrix of the SO. The vectors
TB

srp and T are the net torques acting on the SO due to SRP expressed in body coordi-
nates and the control torque, respectively. In this work, we assume no Solar Radiation
Pressure (SRP) torque but include control torque for the SO classes with control. The
net torques are T = Tcontrol.

Training Set Generation

Simulating Labeled Training Data

For the simulated case, the labeled training data samples are generated using the light
curve model discussed above. The parameters required to define the AS light curve
model are sampled. We considered four categories, i.e., fragments, rocket bodies, reg-
ular polygon prisms, and rectangular cuboids. The SO parameter models associated
with shape and surface are randomly generated out of a uniform distribution. Impor-
tantly, the regular polygon prisms are then further divided into equilateral triangular
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prisms, square prisms, and regular hexagonal prisms. The regular polygon prisms are
prisms whose ends (i.e. top and bottom) are regular shapes. The shape of a regular
polygon prism is defined by the number of sides n, side length s, and height h. These
parameters are sampled from the following distribution

hregular = (hmin + 0.01) + (hmax − hmin − 0.01)U [0, 1] (14a)

sregular = (smin + 0.01) + (smax − smin − 0.01)U [0, 1] (14b)

Assuming constant density throughout the shape model, the moment of inertia
matrices for each of the regular polygon models are given by

Jtriangle = mSO

⎡
⎢⎣

s2

24 + h2

12 0 0

0 s2

24 + h2

12 0

0 0 s2

12

⎤
⎥⎦ (15a)

Jsquare = mSO

⎡
⎢⎣

s2

12 + h2

12 0 0

0 s2

12 + h2

12 0

0 0 s2

6

⎤
⎥⎦ (15b)

Jhexagon = mSO

⎡
⎢⎣

5s2

24 + h2

12 0 0

0 5s2

24 + h2

12 0

0 0 5s2

24

⎤
⎥⎦ (15c)

The rectangular cuboids are prisms defined by two side lengths s1 and s2 as well as
the height h. The moment of inertia matrix for the cuboids are given by

Jcuboid = mSO

12

⎡
⎣ s2

2 + h2 0 0
0 s2

1 + h2 0
0 0 s2

1 + s2
2

⎤
⎦ (16)

The models are generated by sampling side lengths and heights from a uniform
distribution on the interval [0.01, 5] m. For the regular polygon prisms, the num-
ber of sides is also selected randomly on the interval [3, 6], with all instances of
5 sides being set to 4 as pentagonal prism models are not included. In addition
to the model geometry, the material properties also need to be defined. For each
model, all facets are assumed to have the following: Rspec = 0.7, Rdiff = 0.3,
ε = 0.5. The Phong parameters nu and nv are each taken to be equal to 1000 for all
facets of every model. The mass of the SO is randomly sampled using the following
mSO = mmin + (mmax − mmin)U [0, 1].

The rocket body models are generated using octant triangulation of a sphere as
discussed in Ref. [27], which divided the surface of a sphere into N facet normal.
Then the rocket body models are generated by connecting two hemisphere ends of
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radius r with a cylinder of height l. This model is not exact for all rocket bodies but
is close enough to approximate the types of light-curves seen for rocket bodies.

Jrocket = mSO

{
Vcyl

Vtot
diag

[
1

12
(3r2 + l2),

1

12
(3r2 + l2),

r2

2

]

+Vtop

Vtot
diag

[
1

12
(3r2 + l2),

1

12
(3r2 + l2),

r2

2

]

+
(

Vtop

Vtot

(
l

2
+ 3r

8

)
+ Vcyl

Vtot

(
l

2
− 3r

8

))(
I3×3 − eeT

)

+ 2
Vtop

Vtot
r2diag

[
83

320
,

83

320
,

2

5

]}
(17)

Where e = [0, 0, 1]T and the volume of the top hemisphere is given by Vtop =
2/3πr3 and it is assumed the bottom volume is Vbot = Vtop. The volume of the
cylinder is given by Vcyl = πr2l and the total volume is Vtot = Vtop + Vbot + Vcyl.
Finally, the fragment shapes use the cuboid model but with much small aspect ratios
than payload shapes. Figure 2 shows the training data generated using the process
discussed above where the labels are shown using colored data points.

Attitude Control Profile Modeling

This section follows the simulated attitude control profiles discussed in Ref. [28].
When processing light curve observations, it may not be valid to assume that the

0 10 20 30 40 50 60

Time (min)

10

11

12

13

14

15

16

17

18

19

20

M
ag

ni
tu

de

Fig. 2 This figure shows the labeled simulated training data where each label is given a unique color
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SO is uncontrolled, and therefore, we must take into account the possibility of con-
trolled attitude states. Determining whether a SO has active control or not may also
provide a feature state that may be used for classification. For example, a determina-
tion of whether a SO is passive or active can be made based on whether light curve
observations indicated that the SO has active attitude control.

In this work, the attitude control is simulated by assuming control profiles. This
work uses three possible control profiles, Sun pointing, Nadir pointing, and spin-
stabilized. Then for each control profile, a desired angular velocity is determined,
which will allow the SO to track the relevant directions. The angular velocity profiles
are used to calculate the torque required to follow this profile. This section discusses
the attitude control approach used. This work uses a simple model for developing
the simulated attitude controllers and for more detail please refer to Ref. [29]. The
attitude control is designed to minimize the following error:

e = ω − ωd (18)

Differentiating this equation with respect to time yields

ė = ω̇ − ω̇d (19)

It is desirable for the error dynamics to decay exponential over time, i.e. e ∝ e −kpt ,
and therefore the error rate equation is desired to have the following form:

ė = −kpe (20)

Then using Euler’s equation and assuming disturbance torques are negotiable, Eq. 19
can be written as

ė = J−1
SO (Tcontrol − [ω×] JSOω) − ω̇d (21)

where Tcontrol is the torque provide by the attitude actuator. Then for an exponentially
decaying tracking error the desired torque expression becomes

Tcontrol = −J−1
SO (τ − [ω×] JSOω) + ω̇d − kpe (22)

This expression is used to calculate the torque required to maintain the desired point-
ing profile. The desired angular velocity profile, ω̇d , ωd , is determined from the
desired pointing directions used for the particular control followed by the SO. This
work uses Sun pointing, Nadir pointing, and spin stabilized control profiles, each
with a different desired angular velocity profile, ω̇d, ωd .

Training Set on Real Data

This work investigates using real light curve observations taken from the Multichan-
nel Monitoring Telescope (MMT) [30]. This data source is publicly available through
astroguard.ru. For this work, the training data was developed using segments of 500
measurement samples taken from the MMT dataset for objects with TLE informa-
tion. Their TLE numbers and TLE names label the objects in the MMT dataset, and
from the TLE names, class information can be extracted. Three classes are used in
this work, and these classes are Debris, Rocket Bodies, and Satellite. Figure 3 shows
some representative examples of the MMT data used for training. From this figure, a
clear difference can be seen from Debris, Rocket Bodies, and Satellite classes.
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Convolutional Neural Network Classification

Deep LearningMethods: Convolutional Neural Networks

Over the past few years, there has been an explosion of machine learning algorithms
[16, 17, 20, 31–33]. Such algorithms can learn from data to accomplish specific tasks
(e.g., image recognition, object identification, natural language processing, etc.).
Among the various available techniques, deep learning, comprising of methods and
techniques to design and train multi-layer neural networks, has been playing a dom-
inant role. In contrast to shallow networks, deep networks refer to a class of neural
networks with more than one hidden layer. Among all possible systems, one of the
most powerful deep architectures is called Convolutional Neural Networks (CNNs)
[18]. CNNs, which are nominally applied to input images, have been used to clas-
sify an image or determining the particular content of an image by transforming the
original image through a set of layers with specialized architectures to a class score.
Indeed, the architecture of a CNN is designed to take advantage of the 2D or 3D[
width, height, depth

]
structure of an input image which is processed as pixels val-

ues. The basic CNN structure uses many types of layers which are 1) Convolutional

Fig. 3 This figure shows the labeled real training data from the MMT database, where each label is given
a unique color
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Layer, 2) Pooling Layer, 3) Fully Connected Layer, and 4) Output Layer. Reference
31 provides a comprehensive review of CNN based methods.

The core layer, i.e., the Convolutional layer, extract features from the input volume
by applying filters on the image. It is the most demanding layer in terms of computa-
tions of a CNN, and the layer′s parameters consist of a set of learnable filters. Each
filter is a matrix spatially smaller than the image, which is scanned along width and
height (for the 2D input case). Importantly, filters (or kernels) are the weights of this
layer. In fact, as the filter is sliding on the input image, it multiplies its values with the
original pixel values of the image, and these multiplications are all summed up, giv-
ing only one number as output. Repeating this procedure for all the regions on which
the filter is applied, the input volume is reduced and transformed and then passed to
the Max-pooling layers. Mathematically, the convolutional layer can be described as
follows:

(X ∗ Y )(i, j) =
N∑

n=0

M∑
m=0

Xm,n ∗ Wcov
i−m,j−n (23)

where ∗ is the convolution operation, Wcov is the convolution kernel corresponding
to the randomly initialized weights, and X is the image with indices (m, n). CNNs
typically employs the nonlinear activation function called ReLU function (i.e., Rec-
tified Linear Unit) described as f (x) = max(0, x). Spatial pooling layers group local
features from spatially adjacent pixels to improve robustness. A set of convolutional
layers are generally stacked below a fully connected layer that feeds a soft-max layer
[32], which outputs the probability of the image belonging to one of the classes.
CNNs are easier to train due to inherent parameter sharing in the convolutional layer.
For a classification task, the cross-entropy function [32] is generally employed as the
cost to minimize. CNNs are trained in batch mode via Stochastic Gradient Descent
(SDG) [31] with variable size of mini-batches. The dropout technique improves
generalization and avoids overfitting [16].

CNN Design, Training and Classification Results: Simulated Data

This section outlines the equations of the CNN method used in this work. For a
complete discussion of CNN architectures please refer to Ref. [34]. As previously
discussed, the training data set consists of pairs of simulated light curve measurement
vectors (or real measurements) and class vectors. The input light curve and output
class vector are denoted by x ∈ R

1×m and y ∈ R
1×nc , respectively, where m and nc

denotes the number of light curve measurements and number of classes, respectively.
A CNN is trained to map the measurement vector, x, to classes, y, using a set of
training examples. The vector y is the class labels for each light curve input x. In this
work the classes used are rocket bodies, payloads, and debris. For example, y in this
case is a 3 × 1 vector and the elements represent the probability that the input light
curve belongs to the rocket bodies, payloads, and debris classes, respectively. Then
y = [0.95, 0.05, 0]T indicates that the input light curve belongs to the rocket bodies
class with probability 0.95, to the payload class with probability 0.05, and debris
with probability 0. Since the labeled training set provides supervised examples, it
has labels that indicate probability 1 for the class of the input light curve. However,
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the neural network may have uncertainty in the class output and therefore does not
typically have output labels of probability 1.

The CNN designed for this work to learn the functional relationship between
measurements and SO classes consists of 1D convolutional layers with rectified lin-
ear unit (ReLU) activation, dropout, max-pooling, and two fully connected layer
with ReLU activation (Fig. 4). The output layer uses softmax function to map to
classification states. Each convolutional layer has the following form [16]:

hcov(x) = f
(
x ∗ Wcov + bcov

)
(24)

Where ∗ denotes the convolution operator shown in Eq. 23, Wcov denotes the con-
volution kernel, and f is the activation function for each layer that adds nonlinearity
to the feature vector. This work uses ReLU for convolutional layer activation. The
ReLU function is given by f(x) = max (0, x), where it is zero for negative input val-
ues and linear for positive input values. The convolution of x with Wcov defines the
output feature map hcov(x). The number of output maps is determined by the num-
ber of convolution filters for each convolutional layer. Each convolution layer has
a collection of kernels of given size that are learned directly from the data. For the
light curve problem the convolutions are of one dimensional time-series data. Then
for input vectors having size (1, sx) the output vector is given by (1, sy) and the out-
put vector size can then be calculated from the size of the kernel, sk , and is given by
sy = sx −sk +1. After the convolution is applied, the output vector is reduced in size,
but zero padding is used in this work to keep the size of the feature vectors constant
through each convolutional layer [34].

Then a CNN applies a series of these kernels W cov in a layered fashion where each
layer has a different size kernel that learns features on a given scale. To simplify the
information in the output of each convolutional layer, max-pooling is used. In this
work max-pooling with 1×4 kernel between each convolution layer is used. The max-
pooling operation convolves the 1 × 4 kernel over the output of each convolutional
layer returning the max of the outputs over the 1 × 4 region. Finally, at the final layer
a nonlinear function is applied to the output using a traditional neural network. This
final layer uses a fully connected neural network layer and is given by

hf c(x) = f
(
Wf cx + bf c

)
(25)

Fig. 4 Network architecture
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After the fully connected layer a softmax function is used to provide outputs in the
ranges (0, 1) that add up to 1. The softmax function is defined by

yj

(
hf c(x)

)
= exp(h

f c
j )∑

i exp(h
f c
i )

(26)

The convolutional kernel and fully connected output layer parameters are arranged
into the vector θ . The cost function used for this work is the cross-entropy loss. This
loss function minimizes the cross-entropy loss between training outputs and the CNN
outputs, and is given by [34]:

L(θ) = 1

N

N∑
i=1

H(y, ỹ)

= − 1

N

N∑
i=1

[
y log ỹ + (1 − y) log(1 − ỹ)

]
(27)

where ỹ are the training examples and y are the outputs from the CNN. Then the CNN
classification approach is trained by stochastic gradient descent by minimizing the
cross-entropy loss from the outputs compared to the labeled data. Figure 4 shows the
full architecture of the network used for this work. LeCun [32] showed that stochastic
online learning is superior against the full batch mode as it is faster and results in
more accurate solutions. The weights for the output layer and the convolutional layer
are updated using the following relationship

θ(t + 1) = θ(t) + η
∂L

∂θ
(28)

where t denotes the iteration step, and η is the learning rate. The ∂L
∂θ

is the gradient of
the loss with respect to the overall network parameters. This update is calculated for
small batches over the entire training sets. Using the small batches allows for small
updates to the gradient while reducing the noise in the gradient of individual training
samples. This method of updating the parameters is referred to as stochastic gradient
descent, and the gradient is calculated with error backpropagation.

t -SNE Technique for Data Dimensionality Reduction

The triplet-distributed Stochastic Neighbor Embedding (t-SNE) is a probabilistic
technique particularly suitable for visualization of high-dimensional data [35, 36].
The overall algorithm is designed to minimize the divergence between two distribu-
tions, i.e. between a) a distribution that measures the similarities between two input
points pairwise, and b) a distribution that measures similarities of the correspond-
ing points in the embedding as mapped pairwise on the low-dimensional subspace.
The overall idea is to embed points living in a high-dimensional space into a low-
dimensional space (generally 2-D or 3-D) in such a way that the mapping preserves
similarities (distance) between points. Consequently, points that are nearby in the
high-dimensional space are expected to be close in the low-dimensional embedding.
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As such, one can visualize points in low-dimensional spaces to find natural cluster-
ing that occur in the high-dimensional spaces. The input data to the algorithm is the
matrix X = {x1, x2, ..., xN } ∈ R

D×N which contains N vectors xi ∈ R
D . After some

preprocessing (e.g. subtraction of the mean and division by the standard deviation)
the algorithm computes the distance d(xj , xk) between each pair of points compris-
ing the matrix X. The distance is then used to compute the Perplexity [35]. The latter
is generally defined in terms of a model Gaussian distribution. Indeed, one defines
the conditional probability of k given j as follows:

p(k|i) = exp
(
−d(xj ,xk)

2/(2σ 2
j )
)

∑
k 
=j exp

(
−d(xj ,xk)

2/(2σ 2
j )
) (29)

and
p(j |j) = 0 (30)

Define now the joint probability pjk as follows:

pij = p(j |k)+p(k|j)
2N

(31)

and the Shannon Entropy of Pj as follows:

H(Pj ) = −
∑

k

p(k|j) log2(p(k|j)) (32)

Where the term Pj represents the conditional probability distribution over all data
points xi . The Perplexity Perp(Pj ), which measures the number of neighbors of point
j , is defined as follows:

Perp(Pj ) = 2H(Pj ) (33)

Generally, the embedding of points contained in the matrix X into a low-dimensional
space. The t-SNE algorithm executes an optimization procedure, i.e. it attempts to
minimize the Kullback-Leibler (KL) divergence between the model Gaussian dis-
tribution of the points in X and a student t distribution of point Z in the selected
low-dimensional space. Given the points Z = {z1, z2, ..., zN } in the selected low-
dimensional embedding, the probability model of the distribution of the distances
between two points can be described as follows:

qjk = (1+‖zj −zk‖2)−1∑
m

∑
n
=m(1+‖zm−zn‖2)−1 (34)

The KL divergence between th two distributions is therefore:

DKL(P ‖Q) =
∑
j 
=k

pjk log
pjk

qjk
(35)

The minimization of the KL divergent is commonly executed by implementing a
gradient descent approach.

Numerical Results

The CNN is trained over 8000 randomly generated scenarios comprising nine (9)
possible classes of SOs. During the training, the CNN is validated against 5000
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data scenarios not used in the training set. For all training scenarios, an SO is
in near geosynchronous orbit with orbital elements given by a = 42, 364.17 km,
e = 2.429 × 10−4, i = 30 deg, ω = Ω = 0.0 deg and M0 = 91.065 deg. The sim-
ulation epoch is 15-March-2010 at 04:00:00 GST. The initial quaternion and angular
rate of the SO are given by

qB
I ≡ [0.7041 0.0199 0.0896 0.7041]T

and
ωB

B/I = [206.26 103.13 540.41]T deg/hr.

Brightness magnitude are simulated using a ground station located at 20.71◦ North,
156.26◦ West longitude and 3,058.6 m altitude. Measurements constructed using
instantaneous geometry are corrupted by zero-mean Gaussian white noise with stan-
dard deviations of 0.1 for the brightness magnitude [37]. Observations are available
every 5 seconds for about 1/4 hour (Fig. 2). All training samples are generated using
the same orbit during the sample simulation time interval. Each sample has a different
shape model, rotational initial condition, and a control profile.

The Keras (Python) library with Tensorflow [38] as the backend is employed to
design and train the network. The proposed CNN architecture is shown in Fig. 4.
The CNN is comprised of a seven (7) layer structure, including the input layer, three
convolutional layers, two fully connected layers, and one softmax layer. The input
layer is made up of a light curve input vector comprising of 182 data points. The
convolutional layers have 64, 32, and 64 filters, respectively. Both max-pooling (1×2
pooling kernel) and dropout are applied after each convolutional layer. For this work,
the dropout regularization rates are set to be 0.2 for the convolutional layers and 0.5
for fully connected layers. Training occurs for 2000 epochs using stochastic gradient
descent and a mini-batch of 128 samples. Figure 5 shows the results of the training
process and the relative performance of the network (Fig. 6).

Both max-pooling (1×2 pooling kernel) and dropout are applied after each con-
volutional layer. The dropout rates used for this work are 0.7 and 0.5 for the
convolutional and fully connected layers, respectively. Then the training data con-
sists of simulated light curve measurements as inputs and class states as outputs. For
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Fig. 5 CNN classifications results simulated data case
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Fig. 6 CNN classifications results real-data case

this study, we only consider shape classes with one control class, but other classes
can be added in the same CNN or with independent CNNs for each class. The classes
considered are rocket bodies, controlled payload, uncontrolled payload, and debris.

The 1D-CNN has been trained using a single GPU with 1500 processors. Figure 5
shows the results of the training process. The CNN has been trained on 8000 samples
comprising the training set and tested on 2000 samples during the training process.
Figure 5a shows the behavior of the cross-entropy loss as a function of the epoch.
Figure 5b shows the model accuracy as a function of the epoch. Both test and training
sets have a similar accuracy result. We report that the CNN exhibits an accuracy of
97.83% on the test set. Training time is reported to be 2000 sec.

Importantly, we compared the CNN with two machine learning techniques that
represent somewhat the state of the art of automatic classification techniques. The
first method is called Bagged Trees, and it is an ensemble method. The second set
of techniques are the well-known Support Vector Machines (SVM, [23]) adapted for
the multi-class case

For the bagged decision trees, 100 weak learners (trees) have been selected. For
each of the trees, we considered 140,000 as the maximum number of possible splits.
The training set has been loaded in the MATLAB classification learner app. Data
are pre-processed using Principal Component Analysis (PCA, [39]) for dimension-
ality reduction. To explain 98% of the variance, ten (10) principal components have
been kept. A 5-fold validation approach has been implemented to protect against
overfitting. The bagged model was trained in parallel fashion over an 8-core intel i7
operating @2.9Hz. The model achieved an accuracy of 99.5% over the training set.
The training time was recorded to be 1858 sec. Figure 7a shows the resulting confu-
sion matrix reported in terms of correct classification for the 250, 000 training cases.
Figure 7b shows, per each individual class, the percentage of true positives rate and
false-negative rate. Additionally, Fig. 7c shows the percentage of positive predicted
values and the false discovery rate.

Similarly, an SVM with a cubic kernel has been selected for training. PCA and
5-fold validation has been applied, and the algorithm was run on the same machine.
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(a) Shows the resulting confusion matrix
reported in terms of correct classification
for the 250,000 training cases

(c) Shows the percentage of positive
predicted values and the false discovery rate

(b) Shows, per each individual class,
the percentage of true positives rate
and false-negative

Fig. 7 Bag of tree simulation cases

The SVM model achieved an accuracy of 90.1% over the training set. The training
time was recorded to be 25774 sec. Figure 8a shows the resulting confusion matrix
reported in terms of correct classification for the 250, 000 training cases. Figure 8b
shows, per each individual class, the percentage of true positives rate and false-
negative rate. Additionally, Fig. 8c shows the percentage of positive predicted values
and the false discovery rate. Overall, for the simulated data, the accuracy between
deep and non-deep methods is generally comparable.
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(a) Shows the resulting confusion matrix
reported in terms of correct classification
for the 250,000 training cases

(c) Shows the percentage of positive
predicted values and the false discovery rate

(b) Shows, per each individual class,
the percentage of true positives rate
and false negative rate

Fig. 8 Support vector machine simulation cases

CNN Design, Training and Classification Results: Real Data

The same 1D-CNN architecture described above (see Fig. 4) has been employed to
train the deep network on the real data. In this case, the training set comprised 10, 000
samples and is subdivided into three possible classes, i.e., rocket bodies, debris, and
other. In the class other, it is included anything that is not either a rocket body or
debris. A set of 2261 samples is employed as a test set during the training. The input
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light curve vector comprises 500 points. The number of epochs is set to be 2000.
Figure 6 shows the results of the training process. Figure 6a shows the behavior of the
cross-entropy loss as a function of the epoch. Figure 6b shows the model accuracy as
a function of the epoch. The real data set is more comprehensive as it accounts for
classes of objects with different observing conditions and different orbits (i.e., GEO,
LEO, and MEO). Thus, it is expected that the separation boundaries between classes
are highly non-linear. Here, we show that accuracy over the training set and test set
is markedly different. At the end of the training, accuracy on the sequence of mini-
batches is as large as 87.5%. Conversely, the final accuracy on the test set is 75.4%.
Training time is about 4000 sec and a single GPU with 1500 processors.

For comparison and similarly to the simulated light curve case, bagged trees
(ensemble of 100 weak learners) and SVM with the cubic kernel are developed
and trained on the same training set comprising real data. PCA has been consid-
ered to retain the principal components that can explain 98% of the covariance in
the data, resulting in 21 components out of 500. For both cases, we considered
a 5-fold method as protection against overfitting. Performance for both cases is
reported to be rather poor. Indeed, bagged trees achieve accuracy on the training
set of 62.6% (training time: 143 sec), whereas SVM achieves an accuracy of 44.4%
(training time: 1894 sec). Figure 9a shows the resulting confusion matrix reported
in terms of correct classification for the 147,737 training cases. Figure 9b shows,
per each individual class, the percentage of true positives rate and false-negative
rate. Additionally, Fig. 9c shows the percentage of positive predicted values and
the false discovery rate. Similarly, Fig. 10a shows the resulting confusion matrix
reported in terms of correct classification for the 147, 737 training cases. Figure 10b
shows, per each individual class, the percentage of true positives rate and false-
negative rate. Additionally, Fig. 10c shows the percentage of positive predicted values
and the false discovery rate. 1D-CNN performs better due to the superior ability
to automatically extract a hierarchical set of features comprising the light curve
signal.

Training Set Visualization and Clustering

Understanding the training data structure may provide insight into the ability of the
deep classifier to recognize the right SO after training. However, the visualization
of high dimensional data sets is generally a difficult problem. Indeed, the measured
light-curves employed in the training set are represented as one-dimensional vectors
comprising 500 components. Likewise, the simulated data include 182 components.
A conventional approach to data reduction and visualization considers processing
the data using PCA, where the most significant two or three components can be
visualized in two-dimensional and three-dimensional spaces. However, as a linear
technique, PCA captures only the linear structures in the data and generally linearly
maps high dimensional spaces into low dimensional subspaces. Recently, new prob-
abilistic approaches that preserve the local distance between data while mapping the
high-dimensional data into a low-dimensional subspace have been introduced. One
of the most popular approaches to such non-linear data dimensionality reduction is
the t-Distributed Stochastic Neighbor Embedding (t-SNE, [35]). We have considered
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Fig. 9 Bag of tree measured data cases

such a technique for the visualization of the training data in two and three-dimensions
to understanding the structure and clustering of the different RSO classes employed
during the learning processes by our deep networks.

t -SNE Visualization of theMeasured and Simulated Training Data

We considered 2-D and 3-D visualization of the simulated and measured light-curves
employed in the training of the deep networks. First, the 2-D embedding of sampled
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Fig. 10 Support vector machine measured data cases

simulated training points is considered for visualization. In this case, the training set
comprises 250,000 simulated light-curves distributed among 9 possible classes. A
vector of dimension D = 182 represents each light curve. We sampled 3600 vec-
tors (i.e., 400 per class) and processed the sample via the t-SNE algorithm for four
selected distances, i.e., Mahalanobis, cosine, Chebyshev, and Euclidean. The result-
ing 2-D embedding is visualized in Fig. 11a, b, c and d. Structure of the data and
clustering is readily apparent in all cases but the one employing the Mahalanobis dis-
tance. All classes seem to be fairly separated in the 2-D embedding, which reflects
the clustering of the 182-dimensional space of the original light-curves. The sepa-
ration between the different classes may be responsible for the high performances
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Fig. 11 The two-dimensional embedding of simulated case

achieved with a non-deep machine learning technique (e.g., bagged decision trees),
which is able to find the decision boundaries between the different classes easily.
Although the deep CNN achieves similar performances, the deep architecture does
not yield any significant advantage for the case generated by the simulated data. The
situation is completely different for the training set generated from measured light
curves. Here, the 3-D embedding of sampled measured training points is considered
for visualization. In this case, the training set comprises 150, 000 measured light
curves distributed among 3 possible classes. A vector of dimension D = 500 repre-
sents each light curve. We sampled 1200 vectors (i.e., 400 per class) and processed
the sample via the t-SNE algorithm for four selected distances, i.e., Mahalanobis,
Cosine, Chebyshev, and Euclidean. The resulting 3-D embedding is visualized in
Fig. 12a, b, c and d. As in the previous case, the structure of the data and the corre-
sponding clustering in 3-D is readily apparent in all cases but the one employing the
Mahalanobis distance. Here the clustering of data in the 3D embedding is much more
complex, and decision boundaries are not well defined as in the previous case. As
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seen in the previous sections, the non-deep machine learning techniques (i.e., bagged
decision trees and SVM) dramatically underperform the deep CNN architecture. Due
to many-layer configuration, the CNN can learn complex decision boundaries and
discriminate between the three classes in a much more efficient fashion.

Limitation of Deep Learning and Future work

The current work shows promise of using the CNN approach for classifying light
curve measurements, but the approach does have some limitations that need to be
investigated for future studies. The main limitation of the current work is ensuring
that training data for the class is sampled over a wide enough distribution. Since the
light-curves are dependent on orientation, lighting conditions, surface materials, and
shape, among other parameters, methods for ensuring that the training data is sampled
over a wide enough distribution are needed. Future work may investigate how real-
data examples could aid in defining such a distribution. Additionally, the choice of
the BRDF model affects the performance of the simulation-based CNN approach.

Fig. 12 The three-dimensional embedding of the real-data case
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This limitation can be overcome by using other BRDF models [14] to generate the
training set in addition to the AS BRDF model. Finally, the hyper-parameters (such
as number of layers, number of neurons per layer, and type of activation function
used) have a significant effect on the performance of the CNN-based approach. This
work did not explore optimizing these hyper-parameters in any systematic way.

A critical future work item is understanding how the results on the simulated
data case can be transferred to the real-data case. The 1D-CNNs have been designed
and trained separately on different data sets. The first dataset is comprised of simu-
lated data generated using a physically-based reflectance model. The second dataset
has been extracted from real light curve data. Although a set of 10,000 light-curves
have been simulated, one can potentially generate much larger datasets comprising
millions of light curves with automatic labeling. Indeed, the physical model can be
employed to produce a large number of classes of SOs, each with light-curves simu-
lated under different conditions (e.g., observing conditions, orbital regimes, material
reflectance models, etc.). The physical model enables controlled data generation
and ensures sufficient training points necessary to model the complex relationship
between light-curves and classes. However, physically-based models are affected
by modeling error, which may be a limitation, especially when applied to classify
SO based on observed light-curves. It is expected that although a CNN performs
well on simulated light-curves, it may not perform well when, after training, it is
applied to predict the SO class. Conversely, collected data are generally scarce. Since
CNNs are comprised of millions of trainable parameters, they tend to overfit the
data. Importantly, since deep architectures autonomously learn the relevant features
in a data-driven hierarchical fashion, a CNN trained on the physically-based model
may have learned the basic features. This approach is conducive to the Deep Trans-
fer Learning [40], where deep networks are pre-trained on a significant source of
data and then applied to a new but limited target set [40]. In transfer learning, one
first trains a base network on a base dataset and task; subsequently, one transfers the
learned features on a smaller target set trained on a much smaller dataset. Generally,
this process works well if the learned features are general, i.e., capture the funda-
mental behavior of the system. It is conjectured that if one employs the simulated
light-curves as base training set to train a physically-based CNN, the learned features
may capture the basic physics and may be general enough to be successfully trans-
ferred to a target network trained on a much smaller dataset, yet yielding superior
accuracy. In general, training the target network may be much faster and efficient.
This conjecture is currently investigated and may be reported in future works.

Conclusion

In this paper, a data-driven classification approach based on the Convolutional Neural
Network (CNN) scheme is used for Space Object (SO) classification using light curve
data. The classification approach determines the class from light curve observations
of a SO. These classes are rocket bodies, payloads, and debris. A set of 1D-CNNs
capable of ingesting light-curves is separately trained on both simulated data (gener-
ated by a physics-based model) and real observed light-curves and the performances
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are reported. It is shown that CNNs are highly accurate classifiers whenever trained
on simulated data, yielding 98% accuracy for the selected test set. However, when-
ever trained on simulated light-curves, the CNN tends to lose the advantage over more
conventional state-of-the-art machine learning methods (e.g., bagged trees, SVM).
Nevertheless, the CNN’s significantly outperforms the other techniques whenever
real data are considered. Indeed, on real light curve test sets, CNNs achieve 75%
accuracy, whereas bagged trees report an accuracy of 62% and SVM an accuracy
of 44%. These results are promising for the application of CNN-based methods to
Space Situational Awareness (SSA) applications.
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Appendix A: Angular Velocity DeterminationMethod

This appendix provides a summary of the angular velocity determination method
discussed in Ref. [28]. This work uses three possible control profiles, Sun pointing,
Nadir pointing, and spin-stabilized. For each of these profiles the SO is control led
to point to the Sun direction, the Nadir, or in a spin-stabilized configuration. For the
spin-stabilized configuration, the desired angular velocity is chosen to be perpendic-
ular to the orbital plane. When pointing in Sun direction or the Nadir direction we
must compute the desired angular velocity to track these directions. If we assumed
that b̃jk

and b̃jk+1 represent the j th pointing directions at time step k and k + 1, then
the goal is to estimate the angular velocity, ωk , from these directions. Both the Sun
pointing and Nadir directions pointing are determined from the SO trajectories. The
ωk is then estimated using a finite difference method which is outline below [28].
Ċonsider the following unit-vector measurement model at time tk:

b̃jk
= Ak rj + vjk

(36)

where b̃jk
is the j th pointing vector in the inertia frame and is rj the same pointing

vector in the body frame. The attitude matrix mapping from inertial to the body frame
is denoted by Ak . The goal is to determine the rate of change of this attitude matrix
or the angular velocity. Taking the difference between successive measurements of
Eq. 36 gives

b̃jk+1 − b̃jk
= [Ak+1 − Ak] rj + vjk+1 − vjk

(37)
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We assume that the body angular velocity ω is constant between tk and tk+1, and
ignore terms higher than first order in ω �t . With these assumptions the following
first-order approximation can be used [26]:

Ak+1 ≈ [
I3×3 − �t [ωk×]] Ak (38)

In this case ωk is the average velocity, but this becomes less of a problem as the
sampling interval decreases. Substituting Eq. 38 into Eq. 37 gives

b̃jk+1 − b̃jk
= −�t [ωk×]Ak rj + vjk+1 − vjk

(39)

Our goal is to determine an angular velocity just using b̃jk
and b̃jk+1 . This is accom-

plished by solving Eq. 36 in terms of Ak ri and substituting the resultant into Eq. 39,
which yields

1

�t
[b̃jk+1 − b̃jk

] = [b̃jk
×]ωk + wjk

(40)

where wjk
is the new effective measurement noise vector but for this work we assume

this is zero. Note that �t will have finite values, since discrete-time measurements
are assumed. Equation 40 can now be cast into a linear least-squares form for all
measurement vectors, which leads to

ω̂k = 1
�t

[∑nk

j=1[b̃jk
×]T R−1

jk
[b̃jk

×]
]−1

∑nk

j=1[b̃jk
×]T R−1

jk
(b̃jk+1 − b̃jk

) (41)

where ω̂k is the estimate of ωk . For this work we assume R−1
jk

= I3×3.
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