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Abstract
This paper deals with the libration points in the elliptic restricted three-body problem.
The combined effects of the primary bodies’ orbital eccentricity and albedo on the
existence and stability of libration points is analyzed. It is found that there exist five
libration points, three collinear and two non-collinear. The non-collinear libration
points are stable for a critical value of mass parameter μc, the collinear libration points
are unstable for all values of μ.

Keywords Elliptic restricted three-body problem . Radiation pressure . Albedo effect .

Libration points . Linear stability

Introduction

Albedo effect is one of the most interesting non-gravitational force having significant
effects on the motion of an infinitesimal mass. Albedo is the fraction of solar energy
reflected diffusely from the planet back into space [13]; the measure of the reflectivity
of the planet’s surface. Therefore, the Albedo can be defined as the fraction of incident
solar radiation returned to the space from surface of the planet [31],

Albedo ¼ radiation reflected back to space
incident radiation

:
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Albedo is a dimensionless quantity measured on a scale from 0 to 1. A body or surface
that has zero albedo indicates the body is a ‘black-body’, which absorbs all the incident
radiations. An albedo value of unity represents a ‘white-body’, which is a perfect
reflector that reflects all incident radiations completely and uniformly in all directions.
A high-albedo surface has lower temperature because it reflects the majority of the
radiation that hits it. On the other hand, a low-albedo surface has higher temperature as
it absorbs more of the incoming radiation. For instance, fresh snow has a high albedo of
0.95 as it reflects 95% of incoming radiation, while water reflects about 10% of the
incoming radiation, resulting in a low albedo of 0.1. On average, the albedo of Earth is
0.3 as 30% of incident solar radiation is reflected by the entire Earth. Generally, dark
surfaces have a low albedo and light surfaces have a high albedo.

In previous studies, authors did not consider the effect of reflected radiations upon
the spacecraft. As this effect is much less than the direct radiation effect known as the
photogravitational effect, it was generally neglected by authors in recent decades. If this
effect is neglected, it means the primaries are considered as black-bodies, which is a
contradiction to the fact that there is no planet in our solar system whose albedo is zero.
No planet in our solar system is a black-body. The planets with their respective average
albedos are as follows:

In the light of all above facts, we have decided to develop a new model for the
elliptic restricted three-body problem in which one primary is a source of radiation and
the other a non-black-body. Albedo is studied by Anselmo et al. [3]; Nuss [28];
McInnes [24]; Bhanderi and Bak [5]; Pontus [29]; MacDonald and McInnes [21],
etc. Idrisi [14, 15] considered the albedo effect in the circular restricted three-body
problem considering the primaries as point masses, and found that the albedo not only
effects the location of libration points but also the stability. Idrisi and Shahbaz Ullah
(2017) studied the same problem with one more parameter, i.e. the oblateness of the
smaller primary. Again, Idrisi [14, 15] studied the albedo effect on libration points in
the circular restricted three-body problem taking into account the triaxiality of the
smaller primary.

In this paper we are interested in investigating the albedo effect on the libration
points in the elliptic restricted three-body problem (ER3BP) when the primaries are
point masses but not black-bodies. The elliptic restricted three-body problem is a
generalization of the circular restricted three-body problem in which two bodies with
finite masses called primaries move around their center of mass in elliptic orbits under
the influence of their mutual gravitational attraction, and an infinitesimal mass moving
in the plane formed by the primaries is attracted and influenced by their motion without
influencing them. There exist three collinear and two non-collinear libration points. The
collinear libration points L1, L2 and L3 are unstable for all values of mass parameter μ
(0 ≤ μ ≤½) while the non-collinear libration points L4,5 are stable for a critical value of
mass parameter μ < μc = 0.03852 …., Szehebely (1967). The ER3BP has been de-
scribed in detailed by Danby [8], Bennett [4], Szebehely [36] and Markeev [22]. The

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Albedo 0.12 0.75 0.30 0.16 0.34 0.34 0.30 0.29
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influence of the eccentricity of the orbits of the primaries with or without radiation
pressure on the existence and stability of the equilibrium points was studied by
Gyorgyey [12], Kumar and Choudhry [17], Markellos et al. [23], Zimovshchikov
and Tkhai [38], Ammar [2], Kumar and Ishwar [18], Narayan and Kumar [25], Singh
and Umar [35], Narayan and Usha [26], Abd-El-Salam [1], Narayan et al. [27].

Some of the notable researches in photogravitational restricted three-body problem
(PRTBP) are carried by Radzievskii [30]; Chernikov [7]; Schuerman D.W [32];
Simmons et. al. [34]; Kunitsyn and Tureshbaev [19]; Lukyanov [20]; Sharma [33];
Xuetang et.al. [37]; Grun et.al. [11]; Douskos [9]; Ershkov [10]; Katour et.al. [16] etc.
This paper is divided into six sections. In section 2, the equations of motion are derived.
The mean-motion of the primaries is obtained in section 3. The existence of non-
collinear and collinear libration points is shown in section 4. In section 5, the stability of
non-collinear and collinear libration points is discussed. Section 6 concludes the
document.

Equations of Motion

Let m1 and m2 be the masses of the primaries such that m1 is a source of radiation and
m1 >m2. The primaries move in elliptic orbits around their center of mass O. An
infinitesimal mass m3 < < 1, moves in the plane of motion of m1 and m2. The vectors
from m1, m2 and O to m3 are r1, r2 and r, respectively. F1 and F2 are the gravitational
forces acting on m3 due to m1 and m2, respectively. Fp is the force due to solar radiation
pressure by m1 on m3 and FA is the Albedo force due to solar radiation reflected by m2

on m3. Let the line joining m1 and m2 be taken as the X –axis and O, their center of
mass, as origin. Let the line passing through O and perpendicular toOX and lying in the
plane of motion of m1 and m2 be the Y –axis (Fig. 1). Let us consider a synodic system
of co-ordinates Oxyz initially coincident with the inertial system OXYZ, rotating with
angular velocity ḟ about the Z –axis (the z –axis is coincide with the Z –axis). We wish
to find the equations of motion of m3 using the terminology of Szebehely [36] in the
synodic co-ordinate system with dimensionless variables such that the distance between
the primaries is unity, the unit of time t is such that the gravitational constant G = 1 and
the sum of the masses of the primaries is unity (m1 +m2 = 1).

The forces acting onm3 due tom1 and m2 are F1 (1 – Fp / F1) = F1 (1 – α) and F2 (1 –
FA / F2) = F2 (1 – β) respectively, where α = Fp / F1 < <1 and β = FA / F2 < < 1. Also, α
and β can be expressed as:

α ¼ ℓ1
2πGm1cσ

;β ¼ ℓ2
2πGm2cσ

;

where ℓ1 is the luminosity of the larger primary m1, ℓ2is the luminosity of smaller
primary m2, G is the gravitational constant, c is the speed of light and σ is mass per unit
area of the infinitesimal mass m3.

Now,
β
α
¼ m1

m2

ℓ2
ℓ1
⇒β ¼ α

1−μ
μ

� �
k: ð1Þ

The Journal of the Astronautical Sciences (2020) 67:863–879 865



Let k ¼ ℓ2
ℓ1
¼ constant; 0 <α < 1, 0 < β <α and 0 < k < 1.

The equations of motion of infinitesimal mass m3 < < m1, m2 in terms of pulsating
coordinates (ξ, η) are given by

ξ00−2η0 ¼ Ω*
ξ ;

η00 þ 2ξ0 ¼ Ω*
η

)
ð2Þ

where

Ω* ¼ 1ffiffiffiffiffiffiffiffiffiffi
1−e2

p ξ2 þ η2

2
þ Ω

n2

� �
;

Ω ¼ 1−μð Þ 1−αð Þ
r1

þ μ 1−βð Þ
r2

;

n mean-motion of the primaries,
e common eccentricity of elliptic orbit described by the primaries (0 < e < 1),

r21 ¼ ξ−μð Þ2 þ η2; ð3Þ

Fig. 1 The configuration of the ER3BP under albedo effect
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r22 ¼ ξ þ 1−μð Þ2 þ η2;

0 < μ ¼ m2

m1 þ m2
<

1

2
⇒m1 ¼ 1−μ;m2 ¼ μ:

ð4Þ

Mean-Motion of the Primaries

In the elliptic case, the distance between the primaries is r ¼ a 1−e2ð Þ
1þecos f ; and the mean

distance between the primaries is given by 1
2π ∫2π0 r df ¼ a 1−e2ð Þffiffiffiffiffiffiffiffi

1þe2
p ; a is semi-major axis of

the elliptic orbit of one primary around the other.
Since, the orbits of the primaries with respect to the center of mass have semi-major

axes a1 = am2 and a2 = am1, and the same eccentricity [36], their equations of motion

are given by
n2am1 1−e2ð Þffiffiffiffiffiffiffiffi

1þe2
p ¼ Gm1m2

r2 and
n2am2 1−e2ð Þffiffiffiffiffiffiffiffi

1þe2
p ¼ Gm2m1

r2 .

Adding these equations yields n2 ¼
ffiffiffiffiffiffiffiffi
1þe2

p
a 1−e2ð Þ; since, m1 +m2 = 1 and we choose the

unit of time such that the gravitational constant G = 1. Considering only terms of e2 and
neglect their product, we have

n2 ¼ 1þ 3

2
e2; a ¼ 1ð Þ: ð5Þ

Libration Points

The libration points are the solutions of the Eqs. Ω*
ξ ¼ 0 and Ω*

η ¼ 0; i.e.,

1ffiffiffiffiffiffiffiffiffiffi
1−e2

p ξ−
1

n2
1−μð Þ ξ−μð Þ 1−αð Þ

r31
þ μ ξ þ 1−μð Þ 1−βð Þ

r32

� �� �
¼ 0; ð6Þ

and
ηffiffiffiffiffiffiffiffiffiffi
1−e2

p 1−
1

n2
1−μð Þ 1−αð Þ

r31
þ μ 1−βð Þ

r32

� �� �
¼ 0: ð7Þ

In general, the libration points are the intersection of the contours Ω*
ξ and Ω*

η. As

shown in the Fig. 2 (for μ = 0.1, α = 0.01, k = 0.001 and e = 0.01) there exist five
libration points, three collinear (L1, L2, L3) and two non-collinear (L4, L5).

Non-collinear Libration Points

The non-collinear libration points are the solution of the Eqs.Ω*
ξ ¼ 0 and Ω*

η ¼ 0; η ≠
0, i.e.,
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ξ−
1

n2
1−μð Þ ξ−μð Þ 1−αð Þ

r31
þ μ ξ þ 1−μð Þ 1−βð Þ

r32

� �
¼ 0; ð8Þ

1−
1

n2
1−μð Þ 1−αð Þ

r31
þ μ 1−βð Þ

r32

� �
¼ 0: ð9Þ

The solution of Eqs. (8) and (9) is r31 ¼ 1−α
n2 and r32 ¼ 1−β

n2 .
Substitute these values of r1 and r2 into Eqs. (3) and (4) and solving for ξ and η, we

have

ξ ¼ μ−
1

2
þ 1−e2ð Þ

3
α−βð Þ;

η ¼ �
ffiffiffi
3

p

2
1−

2

3
e2−

2

9
1−e2
	 


αþ βð Þ
� �

:

Fig. 2 Libration points; μ = 0.1, k = 0.001, α = 0.01, e = 0.01
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Using the relation (1), β=α (1− μ) k / μ, we have

ξ ¼ μ−
1

2
þ 1

3
α 1−e2
	 


1−
1−μð Þ
μ

k
� �

;

η ¼ �
ffiffiffi
3

p

2
1−

2

3
e2−

2

9
α 1−e2
	 


1þ 1−μð Þ
μ

k
� �� �

:

9>>=
>>; ð10Þ

Thus, there exist two non-collinear libration points L4,5 forming a scalene triangle with
the primaries as r1 ≠ r2 and affected by Albedo and eccentricity of elliptic orbits of the
primaries. From Eq. (8), the following results can be verified:

& For e = 0, the results are conform with Idrisi [14, 15].
& For e = 0 and k = 0, the results agree with Bhatnagar and Chawla [6].
& For e = 0 and α= 0, the results agree with Szebehely [36].

In the Figs. 3 and 4, it is shown that the coordinates of L4 (ξ, η) vary with respect to e
and α. From Fig. 3, it is observed that as e increases ξ changes little while η is displaced
downward; the point L4 moves toward the ξ-axis (Fig. 5). Hence, the shape of the
triangle formed by L4 with the primaries reduces. From Fig. 4, it has been observed that
as α increases, ξ rapidly move towards the center of mass while the value of η decreases
uniformly. Thus, the triangle formed by L4 with the primaries reduces, and L4 moves
toward the η-axis (Fig. 6). The location of libration points L4,5 for fixed values of k
(0.001) and μ(0.1), and different values of e and α are given in Table 1.

Collinear Libration Points

The collinear libration points are the solutions of Eqs. Ω*
ξ ¼ 0 and Ω*

η ¼ 0; η = 0, i.e.,

f ξð Þ ¼ n2ξ−
1−μð Þ ξ−μð Þ 1−αð Þ

r31
−
μ ξ þ 1−μð Þ 1−βð Þ

r32
¼ 0; ð11Þ

Fig. 3 e versus ξ and η; α = 0.01, k = 0.001, μ = 0.1.
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where ri = | ξ – ξi |, i = 1, 2. The solution is a fifth degree equation in ξ.
On plotting the function f(ξ) for μ = 0.1, α = 0.01, k = 0.001 and e = 0.01, three

collinear libration points, Li (ξi, 0), i = 1, 2, 3 are observed in the intervals (−∞, μ − 1),
(μ − 1, μ) and (μ, ∞), respectively. For other values of μ, α, k and e, the result is same
as there exist only three collinear libration points Li (ξi, 0), i = 1, 2, 3 in the intervals
(−∞, μ − 1), (μ − 1, μ) and (μ, ∞), respectively. Thus, there exist only three collinear
libration points (Fig. 7).

Eq. (11) determines the location of the collinear libration points L1(ξ 1, 0), L2 (ξ 2, 0)
and L3 (ξ 3, 0) to lie in the intervals (−∞, μ − 1), (μ − 1, μ) and (μ, ∞), respectively,
where

Fig. 5 L4 versus e; α = 0.01, k = 0.001, μ = 0.1

Fig. 4 α versus ξ and η; e = 0.01, k = 0.001, μ = 0.1.
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ξ1 ¼ μ−1−ε1;
ξ2 ¼ μ−1þ ε2;
ξ3 ¼ μþ ε3:

9=
; ð12Þ

Since the libration point L1 lies in the interval (−∞, μ − 1), i.e., left of the smaller
primary, we have r1 = μ − ξ 1 and r2 = μ − 1 − ξ 1, which when substituted in Eq. (11),
give

Fig. 6 L4 versus α; e = 0.01, k = 0.001, μ = 0.1

Table 1 Non-collinear libration points L4,5 (ξ, ± η)

e α = 0.01, k = 0.001, μ = 0.1 α e = 0.01, k = 0.001, μ = 0.1

ξ ± η ξ ± η

0.0 −0.39669666 0.864083582 0.0 −0.40000000 0.866006158

0.1 −0.39672971 0.862178499 0.1 −0.36696997 0.846589886

0.2 −0.39682881 0.856463251 0.2 −0.33393994 0.827173614

0.3 −0.39699396 0.846937838 0.3 −0.30090991 0.807757342

0.4 −0.39722521 0.833602259 0.4 −0.26787988 0.788341069

0.5 −0.39752251 0.816456515 0.5 −0.23484985 0.768924797

0.6 −0.39788586 0.795500605 0.6 −0.20181982 0.749508525

0.7 −0.39831531 0.770734531 0.7 −0.16878979 0.730092253

0.8 −0.39881081 0.742158290 0.8 −0.13575976 0.710675981

0.9 −0.39937236 0.709771885 0.9 −0.10272973 0.691259708
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n2ξ1 þ
1−μð Þ ξ1−μð Þ 1−αð Þ

r31
þ μ ξ1 þ 1−μð Þ 1−βð Þ

r32
¼ 0 ð13Þ

Similarly, for L2 (ξ 2, 0) and L3 (ξ 3, 0), Eq. (11) becomes.

n2ξ2 þ
1−μð Þ ξ2−μð Þ 1−αð Þ

r31
−
μ ξ2 þ 1−μð Þ 1−βð Þ

r32
¼ 0 ð14Þ

Fig. 7 Collinear libration points Li (ξi, 0), i = 1, 2, 3

Table 2 Collinear Libration Points Li (ξi, 0), i = 1, 2, 3

e α= 0.01, k = 0.001, μ = 0.1 α e = 0.01, k = 0.001, μ = 0.1

ξ1 ξ 2 ξ 3 ξ 1 ξ 2 ξ 3

0.0 −1.25888 −0.60777 1.03841 0.0 −1.25967 −0.60902 1.04156

0.1 −1.25579 −0.60712 1.03357 0.1 −1.25157 −0.59561 1.00855

0.2 −1.24695 −0.60517 1.01959 0.2 −1.24368 −0.58018 0.97301

0.3 −1.23351 −0.60191 0.99798 0.3 −1.23602 −0.56223 0.93439

0.4 −1.21696 −0.59734 0.93995 0.4 −1.22859 −0.54101 0.89193

0.5 −1.19878 −0.59145 0.90741 0.5 −1.22138 −0.51536 0.84448

0.6 −1.18018 −0.58427 0.87447 0.6 −1.21441 −0.48355 0.79026

0.7 −1.16201 −0.57584 0.84215 0.7 −1.20764 −0.44251 0.72614

0.8 −1.14478 −0.56623 0.81104 0.8 −1.20111 −0.38604 0.64576

0.9 −1.12879 −0.55555 0.78151 0.9 −1.19481 −0.29725 0.53155
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n2ξ3−
1−μð Þ ξ3−μð Þ 1−αð Þ

r31
−
μ ξ3 þ 1−μð Þ 1−βð Þ

r32
¼ 0 ð15Þ

The solutions of Eqs. (13), (14) and (15) are given in Table 2 for on specific values of
the parameters appearing in the first line.

In Fig. 8, the green curves are the collinear libration point values of ξi (i = 1, 2, 3) in
the interval 0 < e < 1; α = 0.01 and red curves show the collinear libration point values
of ξi (i = 1, 2, 3) in 0 <α < 1; e = 0.01; for k = 0.001; μ = 0.1. It is observed that the first
collinear libration point L1 always lies to the left of the primary m2, the second libration
point L2, lies between the center of mass of the primaries O and m1, and the third
libration point L3 lies to the right of the primary m1. It is also observed that the libration
point L1 moves toward m2, L2 moves toward center of mass and L3 moves toward m1 in
0 < e < 1 and 0 <α < 1.

Stability of Libration Points

The variational equations are obtained by substituting ξ= ξ0+ ε and η= η0+ δ in the
equations of motion (2), where (ξo, ηo) are the coordinates of a particular libration point
and ε, δ < <1, i.e.,

ε00−2δ0 ¼ εΩ*0
ξξ þ δΩ*0

ξη ;

δ00 þ 2ε0 ¼ εΩ*0
ξη þ δΩ*0

ηη:

)
ð16Þ

Here we have taken only linear terms in ε and δ. The subscript inΩ* indicates the second
partial derivative ofΩ* and superscript 0 indicates that the derivative is to be evaluated at

Fig. 8 Collinear libration points for k = 0.001 and μ = 0.1
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the libration point (ξ0, η0). The characteristic equation corresponding to Eq. (16) is

λ4 þ 4−Ω*0
ξξ−Ω

*0
ηη

� �
λ2 þΩ*0

ξξ Ω
*0
ηη− Ω*0

ξη

� �2
¼ 0: ð17Þ

Letting λ2 =Π, Eq. (17) becomes

Π2 þ q1Π þ q2 ¼ 0; ð18Þ

which is a quadratic equation in Π, and its roots are given by

Π1;2 ¼ 1

2
−q1 �

ffiffiffiffi
D

p� �
ð19Þ

where q1 ¼ 4−Ω*0
ξξ−Ω

*0
ηη; q2 ¼ Ω*0

ξξ Ω
*0
ηη− Ω*0

ξη

� �2
; D ¼ q21−4q2.

The r e fo r e , t h e roo t s o f cha r ac t e r i s t i c Eq . ( 17 ) a r e g iven by,
λ1;2 ¼ � ffiffiffiffiffiffiffi

Π1
p

and λ3;4 ¼ � ffiffiffiffiffiffiffi
Π2

p
.

The libration point (ξ0, η0) is said to be stable if Δ1 < 0 and Δ2 < 0 or D ≥ 0.

Stability of Non-collinear Libration Points

At the non-collinear libration point L4(ξ0, η0),

Ω*0
ξξ ¼ 3

4
1−

2

3
1−3μð Þαþ 2

3
2−3μð Þβ

� �
−
3

8
1−

2

3
5−11μð Þαþ 2

3
6−11μð Þβ

� �
e2;

Ω*0
ξη ¼ 3

ffiffiffi
3

p

2
μ−

1

2
þ 1

9
1þ μð Þα− 1

9
2−μð Þβ

� �
−

13

4
ffiffiffi
3

p μ−
1

2
þ 1

39
27−5μð Þα− 1

39
22þ 5μð Þβ

� �
e2;

Ω*0
ηη ¼

9

4
þ 1

2
1−3μð Þα− 1

2
2−3μð Þβ− 1

4

17

2
−
1

9
11þ 51μð Þα− 1

9
62−51μð Þβ

� �
e2:

Fig. 9 μ versus e
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The motion near the Libration point (ξ0, η0) is said to be bounded if D ≥ 0 i.e.

1−27μþ 27μ2 þ 6 1−μð Þkα−3 k 1−mð Þα
m

−6mαþ

5þ 39μ−39μ2−
28

9
α−12k 1−μð Þαþ 31

18

k 1−μð Þα
μ

þ 2μα

� �
e2≥0

ð20Þ

As shown in the Fig. 9, for α = 0, k = 0, e is defined in the interval μ= 0.03852 … ≤
e ≤ μ= 0.5 where μ= 0.03852 … is the value of critical mass parameter in classical
case and for α = 0.01, k = 0.001, e is defined in the interval μ= 0.03457 … ≤ e ≤
μ= 0.5. Thus, the domain of e expands as α increases.
For α = 0 and e = 0, μc = 0.03852 …. is the critical value of mass parameter in

classical case [36]. When α ≠ 0, e ≠ 0, we suppose that μc = μo + p1 α + p2 e2 as the root
of the Eq. (20), where, μo = 0.0385208965 … and p1, p2 are to be determined in a
manner such that D = 0. Therefore, we have

p1 ¼ −
k−3kμo þ 2μ2

o þ 2kμ2
o

9μo 1−2μoð Þ ;

p2 ¼
5þ 39μo−39μ2

o

27 1−2μoð Þ :

ð21Þ

∴ μc = 0.0385208965 … − (0.00891747 + 2.78224 k) α + 0.258607 e2.
As shown in the Fig. 10, Π 1,2 < 0 for μ ≤ μc. Thus the eigenvalues of the charac-

teristic Eq. (17) are given by λ1;2 ¼ �i
ffiffiffiffiffiffiffi
Π1

p
;λ3;4 ¼ �i

ffiffiffiffiffiffiffi
Π2

p
. Therefore, the non-

collinear libration points L4,5 are periodic and bounded and hence stable for the critical
mass parameter μ ≤ μc, where μc is defined in Eq. (21). It is also observed that as the
eccentricity e increases the value of the critical mass parameter μc increases exponen-
tially (Fig. 11) and as α increase, μc decreases uniformly (Fig. 12).

Fig. 10 μ versus Π; α = 0.01; e = 0.01; k = 0.0001
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Stability of Collinear Libration Points

First we consider the point lying in the interval (μ− 2,μ− 1). For this point, r2 < 1, r1 > 1 and

Ω*0
ξξ ¼ 1ffiffiffiffiffiffiffiffiffi

1−e2
p 1þ 1

n2
2 1−μð Þ 1−αð Þ

r31
þ 2μ 1−βð Þ

r32

� �� �
> 0;

Ω*0
ξη ¼ 0;

Ω*0
ηη ¼ 1ffiffiffiffiffiffiffiffiffi

1−e2
p 1−

1

n2
1−μð Þ 1−αð Þ

r31
þ μ 1−βð Þ

r32

� �� �
< 0:

9>>>>>=
>>>>>;

ð22Þ

Fig. 11 e versus μc; α = 0.01; k = 0.0001

Fig. 12 α versus μc; e = 0.01; k = 0.0001
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Similarly, for the points lying in the interval (μ − 1,0) and (μ, μ + 1),Ω*0
ξξ > 0;Ω*0

ξη ¼ 0

and Ω*0
ηη < 0: Since the discriminant of Eq. (20) is positive and the four roots of the

characteristic Eq. (17) can be written as λ1,2 = ±s and λ3,4 = ± it (s and t are real), the
motion around the collinear libration points is unbounded, and consequently, the
collinear libration points are unstable.

Conclusion

In the present paper, the existence and stability of libration points in the elliptic restricted
three-body problem has been studied under albedo effect. The equations of motion
including albedo effect are derived as Eq. (2). For β = 0, the problem reduces to the
photogravitational elliptic restricted three-body problem where only the more massive
primary is a source of radiation. For β = 0 and e = 0, the problem becomes the
photogravitational circular restricted three-body problemwhere the more massive primary
is a source of radiation. It is found that there exist five libration points, three collinear and
two non-collinear. It is observed that the first collinear libration point L1 always lies to the
left of the primarym2, the second libration point L2 lies between the center of mass of the
primaries O and m1, and the third libration point L3 lies to the right of the primary m1.It is
also observed that the libration point L1 moves toward m2, L2 moves toward the center of
mass and L3 moves toward m1 in 0 < e < 1 and 0 <α < 1 (Fig. 8). There exist two non-
collinear libration points L4,5, and From Fig. 3, it is observed that as e increases ξ varies
little while η is displaced downward. The point L4 moves toward the ξ-axis (Fig. 5) and
hence the shape of the triangle formed by L4 with the primaries reduces. From Fig. 4, it has
been observed that as α increases, ξ rapidly move towards the center of mass, while the
value of η decreases uniformly. Thus, the triangle formed by L4 with the primaries reduces
and L4 moves toward the η-axis (Fig. 6). The non-collinear libration points L4,5 are not
periodic and bounded and hence stable for the critical mass parameter μ ≤μc, where μc is
defined by μc = 0.0385208965… − (0.00891747 + 2.78224 k) α + 0.258607 e2 while the
collinear libration points are unstable.
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