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Abstract
This paper deals with a modified version of the Circular Restricted Three-Body Prob-
lem (CR3BP). In this version, the additional effect of a three-body interaction is taken
into account. In particular, we examine numerically the result of this interaction on
the evolution of the well-known family of Sitnikov motion of CR3BP as well as that
on the families of 3D periodic orbits bifurcating from this family.

Keywords Circular restricted three-body problem · Sitnikov motions ·
Body interaction · Three dimensional periodic orbits · Bifurcation points ·
Numerical continuation

Introduction

The Sitnikov problem [35] is a special case of the Restricted Three-Body Prob-
lem (R3BP). The considered dynamical system is formed by two point-like primary
bodies of equal masses, i.e. when the mass parameter μ equals to 0.5, moving in
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either circular (circular Sitnikov problem) or elliptic orbits (elliptic Sitnikov prob-
lem) around their common center of mass due to their mutual Newtonian attraction,
and a third body of negligible mass, oscillating, under the influence of the gravita-
tional forces of the primaries, along a line which is perpendicular to the orbital plane
of the primaries and contains their barycentre. This kind of rectilinear oscillations for
the third body constitutes a special family of periodic orbits emanating from L1 and
it is called Sitnikov family.

Many other publications deal with Sitnikov or Sitnikov-like motion. For exam-
ple: [23] derived a mapping which reflects the properties of the Sitnikov motion in
the CR3BP. Then, by studying this mapping instead of the differential equations of
the problem, they compared the resulting prediction with the conclusions coming
of the relative numerical results. They also studied the KS-entropy of the system.
Hagel [16] studied the Sitnikov case of the Elliptic R3BP. He introduced an analytic
approach to the solution of the Sitnikov Problem. He stated that this approach can
be used for bounded small amplitude solutions (i.e. orbits having an initial amplitude
zmax < 0.2 in dimensionless variables) and eccentricities of the primary bodies in
the interval (−0.4, 0.4) (according to Hagel, the meaning of negative eccentricities is
that the primaries start in their most distant position while in case of e > 0 they start
in their closest position). Alfaro and Chiralt [1] also explored the Sitnikov motion
in the Elliptic R3BP. They showed that there exist two complementary sequences of
intervals of values of the eccentricity parameter e that accumulate to the maximum
admissible value of this parameter. Dvorak [14] also worked on the same problem for
moderate values of e and examined the complexity of motion as well as the Poincaré
surfaces of section. Belbruno et al. [2] studied the period function of the Sitnikov
motion as well as the families of periodic orbits that bifurcate from the Sitnikov
ones in the case of the CRTBP. Kallrath et al. [21] presented a method to determine
the period and a parameterisation of periodic solutions for the Sitnikov configura-
tion in the Elliptic R3BP. Jalali and Pourtakdoust [19] examined the solutions at the
3/2 commensurability for the Sitnikov’s case of Elliptic R3BP. The phase portrait of
system was used to reveal the existence of such orbits. Ollé and Pacha [25] used cer-
tain isolated symmetric periodic orbits found for some limiting restricted three-body
problems, such as Sitnikov problem, to obtain by numerical continuation families of
symmetric periodic orbits of the Elliptic R3BP. Corbera and Llibre [10] proved, by
means of a Poincaré map, the existence of symmetric periodic orbits of the elliptic
Sitnikov problem. Furthermore, using the presence of the Bernoulli shift as a subsys-
tem of that Poincaré map, they proved that not all the periodic orbits of the Sitnikov
problem are symmetric ones. Faruque [15] found a new analytic expression for the
position of the infinitesimal body in the elliptic Sitnikov problem which is valid for
small bounded oscillations in cases of moderate primary eccentricities. Hagel and
Llotka [17], working on the elliptic Sitnikov problem, used a high order perturbation
approach to the problem in order to obtain precise analytical expressions for the sta-
bility of the system. Perdios [27] dealt with the Sitnikov family of the CR3BP. By
studying the stability of the family, he determined several new critical orbits at which
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families of three dimensional periodic orbits of the same or double period bifurcate.
Then, he computed a number of such families for equal as well as for nearly equal
masses of the primaries. Kovács and Érdi [22] worked on the Sitnikov motion in
CR3BP. They explored its extended phase space by using a stroboscopic map and
computing escape times in order to find the intrinsic connection between the geom-
etry of the phase space and the dynamical behaviour of the system. Properties of the
phase space are analysed both in the central regular region and far from it. A paper
of Sidorenko [34] was devoted to the stability of the Sitnikov orbits in the CR3BP.
Especially, he was interested in the alternation of stability and instability within the
family formed by these orbits, whenever their amplitude is varied in a continuous
monotone manner.

Meanwhile, several modifications of the CR3BP or the N-body problem have been
used in order to model more accurately real systems in solar or stellar dynamics.
For example, a version of the CR3BP which takes into account the oblateness of
the primaries, the photogravitational CR3BP that considers the radiation pressure
when the primaries are radiation sources, as well as combinations of them have been
proposed. A number of the relative publications deals with Sitnikov motions in these
variant models. See, for example, [12, 20, 29, 31]. Regarding studies of the Sitnikov
motion in systems with more than three primary bodies we may refer to the works of
[8, 37] and [38], among others.

Another modification of the CR3BP has been recently proposed by [3, 6] and [4,
5, 7]. As it was argued by those authors, this particular modification can be used
in modelling binary star systems with a small companion. For such systems, the
masses of the two stars are often approximated from observational data and may
vary over time due to mass exchange, producing an uncertainty in the mass ratio.
Due to such an uncertainty, the gravitational field may not be accurately modelled
by pairwise gravitational interactions only. So, an additional, coupled, three-body
interaction can be incorporated to the classical CR3BP. This interaction is expressed
by an additional force that depends on a parameter k and the resulting problem is
reduced to the CR3BP when k = 0.

The study of periodic orbits is of great importance for both mathematical and prac-
tical point of view. Besides of the particular meaning of these orbits, their stability
provides information about their evolution as well as reflects the behavior of nearby
trajectories. In order to underline the significance of periodic solutions, Poincaré [30]
called them “precious”. Due to the continuation property in Hamiltonian systems,
families consisting of such orbits can be formed in the space of initial conditions
depending on their special characteristics. Bifurcation theory, which describes how
small changes in an input parameter may result in dramatic modifications in the sys-
tem output, is also of considerable usefulness for understanding the behaviour of any
dynamical system. The consequence of this theory in the study of families of periodic
orbits is that a bifurcation point can cause a change in the stability of the periodic
orbits along a family, the formation of a new family, or the termination of the current
family [33]. This is a reason for investigating the possible bifurcations of families of
periodic orbits.
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The most common methods applied for the determination of families of peri-
odic orbits of the R3BP and its modifications, are the use of either the equilibrium
points or the bifurcation points of other families of periodic solutions. In the case
of families of three-dimensional periodic orbits, an alternative approach is to utilize
the Sitnikov family which can be easily computed since its members are solutions
of an one-degree of freedom problem. Then, its critical or resonant members may
serve as starting orbits for generating families of 3D periodic solutions, i.e. solu-
tions for a problem of three-degrees of freedom. In the sequel, these families can be
utilised in order to obtain families that continue to exist for primaries of not equal
masses. Therefore, the Sitnikov family can be used as a generator of families of
three-dimensional periodic orbits [26].

Based on the previous discussion, in this contribution we study the family of Sit-
nikov motion in the CR3BP with three-body interaction as well as the families of
three-dimensional periodic orbits bifurcating from this family. Our aim is to produce
a manifold of periodic solutions in the full phase space and investigate its evolution
with respect to the parameters of the problem in order to gain more insight about the
dynamics of this special model.

The paper is organized as follows : In “Equations of Motion”, the equa-
tions of motion are given. In “Stability and Bifurcation Points of the Sitnikov
Family”, the linear stability of the Sitnikov motion is explored in terms of the
Floquet theory and a number of critical as well as self-resonant orbits, up to
period quadrupling bifurcation points, of the Sitnikov family are determined for
k = 1. Also, certain critical orbits are numerically continued by varying the
parameter k, in order to determine for which values of this parameter they
exist. In “Families Emanating from Bifurcation Points of the Sitnikov Family
for k = 1”, we numerically compute, for μ = 0.5, the families of three-dimensional
periodic solutions bifurcating from these critical and self-resonant orbits. In “Fami-
lies of 3D Periodic Orbits Bifurcating from the Sitnikov Family: Numerical Contin-
uation with Respect to μ”, we numerically continue the families bifurcating from the
critical orbits of the Sitnikov family for all values of the mass parameter for which
they exist. Finally, in “Summary - Conclusions”, we summarise and conclude our
work.

Equations of Motion

We consider a sidereal frame and let P1, P2 be two primary bodies, with masses m1
and m2, moving in a circular orbit around their center of mass which is located at
the origin of the frame. Let a third body p of negligible mass m moving in the plane
of motion of the primaries under their gravitational field without affecting them. We
transform the aforementioned frame to a rotating system Oxyz by supposing that the
primaries always lie on the Ox−axis of this system. This system can be turned into
a dimensionless one by assuming that the distance between the primaries as well as
the sum of their masses are equal to one, while the unit of time is chosen so as to
make the gravitational constant unity. According to this system, the masses of the
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primaries are 1 − μ and μ, correspondingly, where μ = m2/(m1 + m2) � 0.5 is the
mass parameter [36]. Then, the equations of motion of the particle p are [3, 13]:

ẍ − 2ẏ = x − 1− μ

r31

(x + μ) − μ

r32

(x + μ − 1) − k

[
x + μ − 1

r1r
3
2

+ x + μ

r31 r2

]
= ∂Ω

∂x
,

ÿ + 2ẋ = y − (1 − μ)y

r31

− μy

r32

− k

[
y

r1r
3
2

+ y

r31 r2

]
= ∂Ω

∂y
,

z̈ = − (1 − μ)z

r31

− μz

r32

− k

[
z

r1r
3
2

+ z

r31 r2

]
= ∂Ω

∂z
, (1)

where r1 = √
(x + μ)2 + y2 + z2 and r2 = √

(x + μ − 1)2 + y2 + z2 are the
distances of p from the primaries P1 and P2 and

Ω =
(

x2 + y2

2
+ 1 − μ

r1
+ μ

r2

)
+

(
k

r1r2

)
is the corresponding pseudo-potential function. In this function, the terms enclosed
by the left pair of parentheses express the effect of the pairwise gravitational attrac-
tion applied to p by P1 and P2. The quantity in the right pair of parentheses, which
depends on the inverse of the product of r1 and r2, describes the interaction effect.
The values of the parameter k can be positive, negative or zero. In the case where
it is zero, the potential of the problem reduces to that of the classical CR3BP. If the
value of k is positive, the three-body interaction is attractive, while if it is negative,
the interaction is repulsive [3].

Equation 1 admit the following integral :

2Ω − (ẋ2 + ẏ2 + ż2) = C, (2)

where C is an energy-like integral constant [3].
Consider now the case μ = 0.5 and x(t) = y(t) = ẋ(t) = ẏ(t) = ẍ(t) = ÿ(t) =

0. Then,

r1 = r2 =
(
1

4
+ z2

)1/2

and the third equation of Eq. 1 becomes

z̈ = −z

⎡
⎢⎣ 1(

1
4 + z2

)3/2 + 2k(
1
4 + z2

)2
⎤
⎥⎦ , (3)

while the Jacobi integral becomes :

2(
1
4 + z2

)1/2 + 2k(
1
4 + z2

) − ż2 = C.

Equation 3 describes rectilinear oscillations along the Oz axis. We name these oscil-
lations Sitnikov motion since, in the case k = 0, they describe this kind of 3D orbits.
In Fig. 1a sample curves of the Sitnikov problem are presented in the phase space
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Fig. 1 The Sitnikov family for k = 1: (a) Variation in the phase space (z, ż), (b) Variation of the position
z (blue) and velocity ż (red) versus time

(z, ż) while in Fig. 1b the evolution of the position and velocity variables with respect
to time is shown. For both figures, the parameter value k = 1 has been used.

Stability and Bifurcation Points of the Sitnikov Family

We consider small perturbations x = ξ and y = η of the zero planar components
of the rectilinear motion. Then, the linearised equations of the perturbed motion are
obtained from Eq. 1:

ξ̈ − 2η̇ = [F1(z) + F2(z) + F ∗
6 (z)]ξ + F3(z) + F ∗

5 (z),

η̈ + 2ξ̇ = [F1(z) + F ∗
7 (z)]η,

z̈ = [F1(z) − 1 + F ∗
7 (z)]z + [F4(z) + F ∗

8 (z)]ξz,

(4)

where

F1(z) = 1 −
(
1 − μ

g
3/2
1

+ μ

g
3/2
2

)
, F2(z)=3μ(1 − μ)

(
μ

g
5/2
1

+ 1 − μ

g
5/2
2

)
,

F3(z) = −μ(1 − μ)

(
1

g
3/2
1

− 1

g
3/2
2

)
, F4(z)=3μ(1 − μ)

(
1

g
5/2
1

− 1

g
5/2
2

)
,

F ∗
5 (z) = −k

(
1

g5
+ μ − 1

g3

)
, F ∗

6 (z)=−k

(
(μ−1)g4

g3
+ 1

g3
+ μg6

g5
+ 1

g5

)
,

F ∗
7 (z) = −k

(
1

g3
+ 1

g5

)
, F ∗

8 (z)=−k

(
g4

g3
+ g6

g5

)
,

and g1 = μ2 + z2, g2 = (μ − 1)2 + z2, g3 = g
1/2
1 g

3/2
2 , g4 = − 3(μ−1)

g2
− μ

g1
,

g5 = g
3/2
1 g

1/2
2 , g6 = −μ−1

g2
− 3μ

g1
. We remark here that F ∗

i , i = 5, . . . , 8 denote the
terms which come from the three-body interaction and depend on k.
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For μ = 0.5 we have that g1 = g2 = 1/4+z2. Then, by setting g0 = 1/4+z2, we
obtain that g1 = g2 = g0, g3 = g5 = g2

0, g4 = −g6 = 1/g0, and the corresponding
values of F1, F2, F3, F4, F

∗
5 , F ∗

6 , F ∗
7 , F ∗

8 become :

F10(z) = 1 − 1

g
3/2
0

, F20(z) = 3

4g5/2
0

, F30(z) = 0, F40(z) = 0,

F ∗
50(z) = 0, F ∗

60(z) = − k

g3
0

− 2k

g2
0

, F ∗
70(z) = −2k

g2
0

, F ∗
80(z) = 0.

Now, the first two equations of Eq. 4 can be written in the form :

Ξ̇ = A(z(t))Ξ, (5)

where Ξ = (ξ, η, ξ̇ , η̇)� and

A(z(t)) =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

F10(z) + F20(z) + F ∗
60(z) 0 0 2

0 F10(z) + F ∗
70(z) −2 0

⎤
⎥⎥⎦ .

Equation 5 describe the evolution of the planar perturbations ξ and η of the Sitnikov
motion in the problem under consideration and can be called the variational equa-
tions of these rectilinear motions. The characteristic roots for these equations will
determine the stability of the Sitnikov motion and can be computed by a numerical
technique based on the classical Floquet theory. These roots are the solutions sn, n =
1, 2, 3, 4, of the characteristic equation det(B − Is) = 0. In this equation, I denotes
the four-dimensional identity matrix and B = X−1(t)X(t + T ), where X(t) is a fun-
damental solution of Eq. 5 and T is the period of a particular solution of Eq. 3. With-
out any loss of generality, we may set X(0) = I so that B = X(T ). In case of distinct
characteristic roots, there are four independent solutions xn satisfying the property:

xn(t + T ) = snxn(t), n = 1, 2, 3, 4. (6)

Thus, a solution is periodic if sn = 1, while for |sn| < 1 (|sn| > 1) the motion is
bounded (unbounded). The characteristic equation is quartic and it can be written as
the product of two quadratic factors :

(s2 + a1s + 1) (s2 + a2s + 1) = 0, (7)

with

a1 = 1

2
(p1 + √

Δ), a2 = 1

2
(p1 − √

Δ), Δ = p2
1 − 4(p2 − 2), (8)

where we have abbreviated :

p1 = −TrB, p2 =
4∑

j=i+1

4∑
i=1

(biibjj − bij bji), (9)

and bij , i, j = 1, 2, 3, 4 are the elements of B. In order to reduce computing time, B
can be determined by integrating numerically the fundamental solution matrix from
t = 0 to t = T/4, and applying the transformation :

X(T ) = [MX−1(T /4)MX(T/4)]2, (10)
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where M is the constant symmetry matrix M = diag{1, −1, −1, 1}.
The stability of a member of the Sitnikov family can be described in terms of ai ,

i = 1, 2. This member orbit is stable if it satisfies the conditions :

Δ > 0, |a1| < 2, |a2| < 2, (11)

but otherwise, it is unstable. The aforementioned method for the determination of the
stability has been proposed by [26] and successfully applied by [2, 27] and [28] in
the case of the classical Sitnikov problem.

To compute a member of the Sitnikov family for a certain value of the param-
eter k, we integrate the equations of motion (3) with initial conditions of the form
(z, ż) = (0, ż0), where ż0 is arbitrary. This integration is continued until the rectilin-
ear oscillation reaches its maximum height, i.e. (z, ż) = (zmax, 0). If T is the period
of this member, at this stage of motion, the elapsed time is equal to T/4. In order
to obtain the stability, it is also necessary to simultaneously integrate the variational
equations (4) and apply the technique discussed previously. Due to the symmetry
of this kind of orbits, the integration of the equations of motion together with the
variational ones for t = 0 up to T/4 is enough to determine the characteristics and
the stability of any particular orbit. In order to obtain the whole Sitnikov family, we
repeat the same procedure after modifying the value of ż0 in a systematic way (for
example, starting from ż0 = 0 and iteratively increasing its value by a step size).

Fig. 2 depicts the variation of the stability parameters of the Sitnikov families
versus ż0 for k = 1 and k = 2 together with the corresponding data for the classical
case k = 0. If a member fulfils any of the conditions ai = ±2, i = 1, 2, then it
is a critical orbit of this family. In case where ai = −2, a family of 3D periodic
solutions of the same period bifurcates from this orbit while at a critical orbit with
ai = 2 a period doubling bifurcation of a family of 3D periodic solutions occurs.
Following [28], we call these bifurcation points by the names one-to-one and one-to-

Fig. 2 The variation of the stability parameters (a) a1 and (b) a2 of the Sitnikov family for k = 0, 1, 2.
The insets correspond to specific magnifications of each figure
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two, respectively. A corrector scheme to compute a critical orbit of the above kinds
can be obtained as follows. Such an orbit has to fulfil one of the conditions :

ai(ż0) = ±2, i = 1, 2.

If this is false, a proper modification δż0 should be applied to ż0 so that :

ai(ż0 + δż0) = ±2, i = 1, 2.

By linearising this equation we obtain :

ai + ∂ai

∂ż0
δż0 = ±2 ⇔ δż0 = ±2 − ai

∂ai/∂ż0
i = 1, 2, (12)

where the partial derivatives involved in this equation can be computed by additional
integrations, i.e. by approximating these derivatives using numerical integration.

Also, a self-resonant member of the Sitnikov family, i.e. a periodic orbit that
satisfies the condition

ai = −2cos
(
2π

n

m

)
, (13)

for some relatively prime positive integers n and m �= 1, 2, where i either equals to 1
or 2, is a one-to-m bifurcation point (see, e.g., Douskos et al. [11]). The computation
of such points can be accomplished by a scheme similar to the one used for the critical
points by replacing ±2 with the value of the r.h.s. of Eq. 13. A number of one-to-one
critical orbits of the Sitnikov family for the case k = 0 have been given by [2, 26]
and [27]. In order to explore the influence of the three-body interaction, k �= 0 has to
be considered. In our present study, we choose the value k = 1 which corresponds to
an arbitrary case where this interaction is attractive.

Critical orbits of the Sitnikov family for k = 1

Figure 3 indicates that the critical orbits of the Sitnikov family which exist in this
case correspond only to ai = −2, with i = 1, 2. We deal with those critical orbits for
which z(T /4) ≤ 7, where T is the period of the member orbit. As shown in Fig. 3a,

Fig. 3 Critical points of the Sitnikov family for k = 1 coming from the parameter (a) a1 and (b) a2
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there are eight such orbits with a1 = −2. We name them B1, B2,. . ., B8. With regard
to a2 = −2, Fig. 3b shows that there are thirteen orbits of this kind, which are named
B9, B10,. . ., B21. In the aforementioned figures, for simplicity reasons, all these
orbits are labelled with their running number. The corresponding data are listed in
Table 1.

In the rest of this paper, we will call these critical points by the name of the B-
points. Their evolution along the variation of k can be examined by their numerical
continuation w.r.t. this parameter. This continuation may be accomplished as follows.
Consider such a point satisfying any of the relations :

ai(ż0, k) = ±2, i = 1, 2. (14)

If δż0, δk are small modifications of ż0, k, respectively, then, these relations are
linearised as follows :

∂ai

∂ż0
δż0 + ∂ai

∂k
δk = ±2 − ai, i = 1, 2. (15)

Table 1 One-to-one critical orbits of the Sitnikov familiy for k = 1. B1,B2..,B8 correspond to the case
a1 = −2 while B9,..,B21 correlate with a2 = −2

ż0 z(T /4) T /4 a2 C

B1 3.09430727 1.31800228 1.24843265 −22.72734 2.42526254

B2 3.21599603 1.78808237 1.97301505 −26.92131 1.65736952

B3 3.29536043 2.41360527 3.16833525 −6.96465 1.14059961

B4 3.30684003 2.55201489 3.46522205 −10.90643 1.06480902

B5 3.34300048 3.14788374 4.86577634 −3.88916 0.82434781

B6 3.34534011 3.19824757 4.99284030 −5.33998 0.80869958

B7 3.36666864 3.76351847 6.50587731 −2.42126 0.66554226

B8 3.36700146 3.77422513 6.53602722 −2.71290 0.66330113

ż0 z(T /4) T /4 a1 C

B9 3.38106143 4.30195868 8.08736468 −1.251754 0.56842361

B10 3.38131836 4.31321417 8.12181093 −1.538790 0.56668613

B11 3.39101157 4.79386327 9.64354835 −0.351593 0.50104054

B12 3.39145308 4.81872422 9.72490168 −0.945650 0.49804598

B13 3.39847282 5.25775044 11.20287615 0.242863 0.45038251

B14 3.39896016 5.29165695 11.32021853 −0.518809 0.44706984

B15 3.40430438 5.69891227 12.76437549 0.655587 0.41071169

B16 3.40478585 5.73912995 12.91041528 −0.196880 0.40743329

B17 3.40900615 6.12113168 14.32744655 0.953111 0.37867707

B18 3.40946250 6.16590742 14.49703294 0.054472 0.37556544

B19 3.41288980 6.52722538 15.89169732 1.173924 0.35218321

B20 3.41331486 6.57537765 16.08103529 0.256030 0.34928170

B21 3.41616032 6.91935902 17.45685959 1.341619 0.32984867
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The partial derivatives involved in this equation can be computed by additional inte-
grations. Let us suppose that, for some k, a Sitnikov periodic orbit satisfying one of
Eq. 14 is known. Then, a proper linear scheme for predicting a solution of the same
kind for k + δk can be expressed by solving (15) for δż0 :

δż0 = − ∂ai/∂k

∂ai/∂ż0
δk. (16)

Suppose now that, for a specific k, a Sitnikov orbit, close to a critical one but having
ai �= ±2, is known. Then, a corrector scheme for finding the latter can be obtained
by solving (15) for δż0 :

δż0 = ±2 − ai

∂ai/∂ż0
. (17)

Using the above mentioned procedure, we have studied the evolution of B1,
B2,. . ., B9 w.r.t. the variation of k. This evolution is shown in Fig. 4. It can be seen
there that any of these points continues to exist for a range of negative values of this
parameter. The lower bound of that range is not the same for all B-points. So, B1
seems to exist for k ≥ −0.1. The corresponding lower bound of k for the existence
for B2 and B3 is smaller than that for B1, while B2 and B3 points coincide at this
value of k. The pairs of points B4 and B5, B6 and B7, B8 and B9 behave like B2 and
B3. For example, the lower bound of the range of existence of B4 and B5 is smaller
than that of B2 and B3, while B4 and B5 coincide at this limiting value of k. In the
case of B8 and B9, we should note that B8 has a1 = −2 while B9 has a2 = −2.

Fig. 4 The evolution of the critical points B1,B2,. . .,B9 w.r.t. the variation of k
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Fig. 5 (a) One-to-three and (b) one-to-four bifurcation points of the Sitnikov family for k = 1

Self-resonant orbits of the Sitnikov family for k = 1

In this study we deal with self-resonant orbits of the Sitnikov family having a1 = 1
or a1 = 0. These orbits correspond to period-tripling or period-quadrupling bifur-
cation points, respectively, and here are called one-to-three or one-to-four points,
correspondingly, according to the definition based on Eq. 13. From Fig. 2, one may
roughly see that there are numerous such points. In order to better understand their
evolution and detect them, we have zoomed into appropriate regions of this figure
and the resulting magnifications are given in Fig. 5. Here, we deal with the first ten
leftmost self-resonant orbits, for each case, and we name them C1, C2,. . ., C10 and
D1, D2,. . ., D10, correspondingly. For simplicity reasons, these points are labelled
with their running number in this figure while their corresponding data are given in
Table 2. In the rest of this this paper, we will call these self-resonant orbits by the
names C-points and D-points, respectively.

Families Emanating from Bifurcation Points of the Sitnikov Family
for k = 1

In this section, we study the families of 3D periodic orbits emanating from the
bifurcation points mentioned in the previous part of this paper. Such investigation
necessitates the exploration of periodic solutions that evolve in the full three-
dimensional space. In the present contribution, we are interested in orbits that are of
the following types of symmetry :

S1 : double symmetry w.r.t. the Ox axis and the Oxz plane and
S2 : double symmetry w.r.t. the Ox axis and the Oyz plane.

For symmetry type S1, a three-dimensional periodic orbit of period T can be deter-
mined by using initial conditions of the form (x0, 0, 0, 0, ẏ0, ż0) and either seeking a
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Table 2 One-to-three and one-to-four bifurcation points of the Sitnikov familiy for k = 1

ż0 z(T /4) T /4 a2 C

C1 3.32322412 2.78608706 3.99224261 28.47393 0.95618147

C2 3.33768088 3.03999713 4.59801639 −11.33720 0.85988637

C3 3.35298940 3.37702165 5.45430796 −23.06500 0.75746209

C4 3.36408119 3.68262516 6.27983221 −7.45335 0.68295775

C5 3.37139907 3.92264609 6.95949600 −18.54331 0.63366831

C6 3.38390616 4.43047763 8.48396674 −15.09918 0.54917911

C7 3.39038748 4.75921721 9.53060109 −4.16581 0.50527270

C8 3.39299794 4.90807981 10.01940097 −12.45740 0.48756498

C9 3.39818410 5.23789407 11.13436764 −3.27042 0.45234486

C10 3.39993620 5.36107827 11.56187214 −10.38994 0.44043384

D1 3.24668814 1.97990377 2.31300008 −36.09752 1.45901612

D2 3.28789922 2.33272703 3.00007809 −12.41975 1.18971871

D3 3.31579742 2.67394284 3.73590017 −22.46376 1.00548745

D4 3.34049066 3.09587993 4.73595171 −6.84130 0.84112213

D5 3.34942556 3.29089211 5.22996556 −14.63571 0.78134845

D6 3.36535806 3.72203469 6.38956957 −4.55212 0.67436510

D7 3.36930041 3.85015842 6.75139674 −10.02341 0.64781473

D8 3.38049921 4.27756349 8.01289640 −3.23408 0.57222509

D9 3.38252367 4.36693311 8.28697455 −7.08507 0.55853363

D10 3.39088718 4.78691196 9.62084703 −2.36249 0.50188413

perpendicular intersection of the orbit with the Ox axis at t = T/2, i.e. a final state
vector (xT/2, 0, 0, 0, ẏT /2, żT /2), or a perpendicular intersection of the orbit with the
Oxz plane at t = T/4, i.e. a final state vector (xT/4, 0, zT /4, 0, ẏT /4, 0). The same
procedure can be followed for the detection of a three-dimensional periodic orbit
of symmetry type S2, but the Oxz plane has now to be changed to Oyz plane. The
aforementioned initial or final state vectors uniquely determine such a 3D periodic
orbit.

Families Bifurcating fromOne-to-One Critical Points of the Sitnikov Family

The families originating from the one-to-one critical points B2, B3, B6, B7, B10,
B11, B14, B15, B18 and B19 consist of orbits of symmetry type S1 while the mem-
bers of the families emanating from B1, B4, B5, B8, B9, B12, B13, B16, B17, B20
and B21 are solutions of symmetry type S2. We name these families as bN, where N
denotes the running number of the corresponding B-point.

The behaviour of these families is presented in Fig. 6. More specifically, the evo-
lution of the families of orbits of symmetry type S1 is given in Fig. 6a by using their
projection on the (x(T /4), z(T /4)) plane while Fig. 6b depicts the development of
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Fig. 6 One-to-one bifurcations consisting of orbits of symmetry type (a) S1 and (b) S2

Fig. 7 (a) and (b) Sample 3D orbits of symmetry type S1 (families b2 and b19). (c) and (d) Sample 3D
orbits of symmetry type S2 (families b1 and b21). For these orbits we also give their projections on the
planes Oxy, Oxz and Oyz

The Journal of the Astronautical Sciences (2020) 67: 28–58 41



Fig. 8 Terminations in the plane Oxy of the families emanating from the one-to-one bifurcations points
of the Sitnikov family: Families of 3D periodic orbits of symmetry type S1. All orbits are retrograde
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Fig. 9 Terminations in the plane Oxy of the families emanating from the one-to-one bifurcations points
of the Sitnikov family: Families of 3D periodic orbits of symmetry type S2. All orbits are retrograde
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those that consist of members of symmetry type S2 by utilizing their characteristic
curves in the plane (y0, z0). Sample three-dimensional periodic orbits are shown in
Fig. 7. In particular, the first two frames visualize the shape of two sample orbits of

Fig. 10 One-to-three bifurcations from the Sitnikov family for k = 1
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symmetry type S1 which correspond to families b2 and b19, respectively, while the
last two frames present sample orbits of symmetry type S2 which belong to families
b1 and b21, accordingly. As it can be seen from both frames of Fig. 6, all these fam-
ilies terminate at planar periodic orbits in the Oxy plane. These orbits are given in
Figs. 8 and 9 and we note that all of them are retrograde.

Families Bifurcating from Self-Resonant Points of the Sitnikov Family

Regarding the one-to-three bifurcation points, the families originating from C1, C2,
C9 and C10 consist of doubly symmetric 3D orbits while the members of the families
emanating from C3, C4, C5, C6, C7 and C8 are symmetric w.r.t. the Oxz plane. We
name these families as cN, where N denotes the running number of the corresponding
C-point. The behaviour of these one-two-three bifurcations is presented in Fig. 10.
Families c1 and c2, as it is depicted by their characteristic curves in the plane (x0, z0),

Fig. 11 One-to-four bifurcations from the Sitnikov family for k = 1: The non-solitary families
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they join each other. The same holds for the pairs of families c3 and c4, c5 and c6,
c7 and c8, c9 and c10.

Next, we study the evolution of the families bifurcating from the one-two-four
bifurcation points D1, D2,. . ., D10. We name these families with dN, where N
denotes the running number of the corresponding D-point. Families d1 and d2 consist
of 3D doubly symmetric orbits while the members of the rest of them are symmetric
w.r.t. the Oxz plane. Figures 11 and 12 present the evolution of these families. The
characteristic curves in the plane (x0, z0) show that the families composing the pairs
d1 and d2, d3 and d4, d5 and d6 join each other.

On the contrary, families d7, d8, d9 and d10 do not join to other families. In the
sequel, we name this kind of families as “solitary”. They terminate at planar periodic
orbits in the Oxy plane. The corresponding termination orbits are given in Fig. 13
and all of them are retrograde.

Fig. 12 One-to-four bifurcations from the Sitnikov family for k = 1: The solitary families
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Fig. 13 Terminations of the families of 3D periodic orbits d7, d8, d9 and d10. All orbits are retrograde

Families of 3D Periodic Orbits Bifurcating from the Sitnikov Family:
Numerical Continuation with Respect toμ

Although the Sitnikov family ceases to exist for μ �= 0.5, its bifurcations survive for
primaries of non-equal masses. In this section, we deal with the families bifurcating
from the critical points presented in “Critical orbits of the Sitnikov family for k = 1”
for k = 1, i.e. the families bN, N = 1, . . . , 21, and we examine their evolution w.r.t.
the variation of μ. This can be accomplished by the following procedure.

Consider (4) for μ = 0.5 + δμ, where δμ is a small modification of μ. By
linearising these equations with respect to δμ we obtain :

ξ̈ − 2η̇ =
[
1 − Φ3/2(z) + 3

4Φ
5/2(z) + F ∗

6 (z)
]
ξ + 3

4Φ
5/2(z)δμ + F ∗

5 (z),

η̈ + 2ξ̇ = [
1 − Φ3/2(z) + F ∗

7 (z)
]
η,

z̈ = − [
Φ3/2(z) + F ∗

7 (z)
]
z,

(18)
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where

Φ(z) =
(

z2 + 1

4

)−1

,

F ∗
5 (z) = k

[
1

z2
Φ2(z) − Φ2(z) + k

(
Φ3(z) + 1

2z2
Φ3(z) − 1

z2
Φ2(z)

)
δμ

]
,

F ∗
6 (z) = k

[
5

4
Φ3(z) − 1

z2
Φ2(z) + k

(
4Φ3(z) − 9

2
Φ4(z) − 1

z2
Φ3(z)

)
δμ

]
,

F ∗
7 (z) = k

[
− 1

z2
Φ2(z) − Φ2(z) + k

(
− 1

z2
Φ3(z) + Φ3(z)

)
δμ

]
.

These perturbed equations can be used to compute appropriate initial conditions for
periodic orbits of System (1). These conditions will arise from a bifurcation point
of the Sitnikov family but for a value of the mass parameter slightly different from
μ = 0.5. This will be cleared in the following discussion.

The equation for z does not change, therefore the period of a member of the basic
family remains the same in this linear consideration for μ = 0.5 + δμ. As stated
by Perdios and Markellos [26], it can be shown numerically that, if the first two of
Eq. 18 have a periodic solution (for δμ �= 0) with the period T of a critical orbit
of the Sitnikov family of rectilinear motions (for δμ = 0), then this solution is the
continuation of the critical Sitnikov orbit to the case μ = 0.5 + δμ. By applying the
substitutions y1 = ξ, y2 = η, y3 = z, y4 = ξ̇ , y5 = η̇ and y6 = ż, Eq. 18 become:
ẏ1 = y4 = f1,

ẏ2 = y5 = f2,

ẏ3 = y6 = f3,

ẏ4 = 2y5+
[
1−Φ3/2(y3)+ 3

4
Φ5/2(y3)+F ∗

6 (y3)

]
y1+ 3

4
Φ5/2(y3)δμ+F ∗

5 (y3) = f4,

ẏ5 = −2y4 +
[
1 − Φ3/2(y3) + F ∗

7 (y3)
]
y2 = f5,

ẏ6 = −
[
Φ3/2(y3) + F ∗

7 (y3)
]
y3 = f6. (19)

To compute a periodic solution of this system we consider a bifurcation point of the
Sitnikov family whose initial condition vector is :

y0 = (0, 0, 0, 0, 0, y06), (20)

where y06 = ż0. Then, this initialisation vector is used to integrate (19) until y6
becomes equal to 0 for the first time. The periodicity conditions that should be
satisfied are :

y2(y01, y05, y06) = 0,
y4(y01, y05, y06) = 0.

(21)

Linearising these conditions, we obtain that :

y2 + v21δy01 + v25δy05 + v26δy06 = 0,
y4 + v41δy01 + v45δy05 + v46δy06 = 0,

(22)
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where vij = ∂yi/∂y0j . By considering that some y0j remains constant, j = 1, 5, 6,
i.e. δy0j = 0, Eq. 22 can be solved to get corrections for the rest of the initial condi-
tions. The iterative use of the aforementioned process will finally lead to a periodic
solution of System (18). The computation of the involved variations vij , i = 2, 4,
j = 1, 5, 6, can be accomplished by integrating the first order planar variational
equations of this perturbed system :

d

dt

∂yi

∂y0j
=

2∑
k=1

∂fi

∂yk

∂yk

∂y0j
+

5∑
k=4

∂fi

∂yk

∂yk

∂y0j
, i, j = 1, 2, 4, 5,

together with Eq. 18 along with the orbit considered at each iteration. By setting

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1

∂y1

∂f1

∂y2

∂f1

∂y4

∂f1

∂y5

∂f2

∂y1

∂f2

∂y2

∂f2

∂y4

∂f2

∂y5

∂f4

∂y1

∂f4

∂y2

∂f4

∂y4

∂f4

∂y5

∂f5

∂y1

∂f5

∂y2

∂f5

∂y4

∂f5

∂y5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y1

∂y01

∂y1

∂y02

∂y1

∂y04

∂y1

∂y05

∂y2

∂y01

∂y2

∂y02

∂y2

∂y04

∂y2

∂y05

∂y4

∂y01

∂y4

∂y02

∂y4

∂y04

∂y4

∂y05

∂y5

∂y01

∂y5

∂y02

∂y5

∂y04

∂y5

∂y05

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

this system is written as follows :

dV

dt
= PV, (23)

where

∂f1

∂yj

= 0, j = 1, 2, 5,
∂f1

∂y4
= 1,

∂f2

∂yj

= 0, j = 1, 2, 4,
∂f2

∂y5
= 1,

∂f4

∂yj

= 0, j = 2, 4,
∂f4

∂y1
= 1 − Φ3/2(y3) + 3

4
Φ5/2(y3) + F ∗

6 (y3),
∂f4

∂y5
= 2,

∂f5

∂yj

= 0, j = 1, 5,
∂f5

∂y2
= 1 − Φ3/2(y3) + F ∗

7 (y3),
∂f5

∂y4
= −2.

Once a periodic solution of System (18) is obtained, the initial conditions of this
solution can serve as a prediction for the initial state of a 3D periodic orbit of Eq. 1
for μ = 0.5 + δμ.

Consider now that a 3D periodic orbit of Eq. 1 has been found for any value of
μ and that its initial conditions are (x0, y0, z0, ẋ0, ẏ0, ż0). We transform the initial
coordinate system so that x1 = x, x2 = y, x3 = z, x4 = ẋ, x5 = ẏ, x6 = ż. If
V̂ = (

∂xi/∂x0j
)
, where x0j = xj (0), i, j = 1, . . . , 6, is the variational matrix of the

transformed equations of motion (1), then the stability of this orbit can be examined
as follows [9]: Let P = (α + √

D)/2 and Q = (α − √
D)/2, where α = 2 − TrV̂ ,
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β = (α2 + 2 − TrV̂ 2)/2 and D = α2 − 4(β − 2) > 0. Then, an orbit is stable if
|P | < 2 and |Q| < 2, while when |P | = 2 or |Q| = 2 the orbit is considered to
be critical (for details on the stability and criticality of 3D orbits see also Markellos
[24]). For economy in the computations, according to the type of symmetry of the
orbit, the variational matrix can be determined by using the following formulae [32]
applicable for orbits of symmetry type S1 :

Case I : V̂ (T ) = LV̂ −1(T /2)LV̂ (T /2), (Oxz plane symmetry),
Case II : V̂ (T ) = MV̂ −1(T /2)MV̂ (T /2), (Ox axis symmetry),
Case III : V̂ (T ) = [MV̂ −1(T /4)LV̂ (T /4)]2, (Ox axis − Oxz plane symmetry),
Case IV : V̂ (T ) = [LV̂ −1(T /4)MV̂ (T /4)]2, (Ox axis − Oxz plane symmetry),

where L = diag{1, −1, 1, −1, 1, −1} and M = diag{1, −1, −1, −1, 1, 1}. The third
relation of the above formulae is used in the case of starting the integration from the
Ox axis while the fourth is used when the integration is started from the Oxz plane.
In the case of orbits of symmetry type S2, the matrix V̂ (T ) is computed using:

Case V : V̂ (T ) = NV −1(T /2)NV (T /2), (Oyz plane symmetry),

where N = diag{−1, 1, 1, 1, −1, −1}. Since for μ �= 0.5 the last symmetry (Case
V) does not exist, the stability of these orbits has to be computed using Case II.

Equation 18 are no longer helpful if μ deviates enough from the value 0.5. Then,
the original equations (1) and a numerical continuation procedure, based on con-
structing series of critical orbits of the bifurcations under consideration, can be used.
In this contribution, the determination of critical orbits of both types of symmetry,
S1 and S2, was accomplished by using their symmetry properties w.r.t. the Ox axis.
In particular, the initial state vector of such an orbit was considered to be of the form
(x0, 0, 0, 0, ẏ0, ż0). Then, this orbit should simultaneously satisfy the periodicity and
criticality conditions

ẋ(x0, ẏ0, ż0; μ) = 0,

ż(x0, ẏ0, ż0; μ) = 0,

ai(x0, ẏ0, ż0; μ) = ±2, i = 1 or 2, (24)

at the appropriate crossing with the Oxz plane, i.e. the n−th crossing if the
orbit crosses 2n times this plane along a whole period. This system was used to
obtain proper linear schemes for the procedure mentioned above as follows. The
linearisation of Eq. 24 results to

ẋ + ∂ẋ

∂x0
δx0 + ∂ẋ

∂ẏ0
δẏ0 + ∂ẋ

∂ż0
δż0 + ∂ẋ

∂μ
δμ = 0,

ż + ∂ż

∂x0
δx0 + ∂ż

∂ẏ0
δẏ0 + ∂ż

∂ż0
δż0 + ∂ż

∂μ
δμ = 0,

ai + ∂ai

∂x0
δx0 + ∂ai

∂ẏ0
δẏ0 + ∂ai

∂ż0
δż0 + ∂ai

∂μ
δμ = ±2, (25)

where δx0, δẏ0, δż0, δμ are small modifications of x0, ẏ0, ż0, μ. The partial
derivatives involved in this equation can be computed by additional integrations.
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Suppose that a critical orbit, satisfying (24), is known for a specific value of μ.
Then, a linear scheme for predicting the initial conditions of a solution of the same
kind for μ + δμ can be found by solving

∂ẋ

∂x0
δx0 + ∂ẋ

∂ẏ0
δẏ0 + ∂ẋ

∂ż0
δż0+ = − ∂ẋ

∂μ
δμ,

∂ż

∂x0
δx0 + ∂ż

∂ẏ0
δẏ0 + ∂ż

∂ż0
δż0+ = − ∂ż

∂μ
δμ,

∂ai

∂x0
δx0 + ∂ai

∂ẏ0
δẏ0 + ∂ai

∂ż0
δż0 = −∂ai

∂μ
δμ, (26)

for δx0, δẏ0, δż0.

Fig. 14 The evolution of the families of 3D periodic orbits of symmetry type S1 w.r.t. the variation of μ.
Different colors are used to show which pairs of families join each other
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Suppose now that, for some value ofμ, an orbit, which is close to a critical periodic
orbit, is known. Then, a scheme for correcting its initial conditions comes of by
solving the following system

∂ẋ

∂x0
δx0 + ∂ẋ

∂ẏ0
δẏ0 + ∂ẋ

∂ż0
δż0 = −ẋ,

∂ż

∂x0
δx0 + ∂ż

∂ẏ0
δẏ0 + ∂ż

∂ż0
δż0+ = −ż,

∂ai

∂x0
δx0 + ∂ai

∂ẏ0
δẏ0 + ∂ai

∂ż0
δż0+ = ±2 − ai, (27)

for δx0, δẏ0, δż0.
In the following, the results of the aforementioned procedure are described.
Initially, we consider the evolution of the families of 3D periodic orbits of

symmetry type S1.
A first view of the situation can be given by presenting this evolution for some spe-

cific values of the mass parameter. We have seen via Fig. 6a that, for μ = 0.5, these
families consist of a single branch each and terminate at planar periodic orbits in the
Oxy plane. We will describe their behaviour for μ < 0.5 by means of their charac-
teristic curves in the plane (x(T /4), z(T /4)) which are given in Fig. 14. Figure 14a
shows that, for μ = 0.4995, all the families are separated in two branches. For exam-
ple, the family b2 is divided into the branches b21 and b22. Branch b21 terminates
at coplanar orbits, as in the case μ = 0.5. Branch b22 joins the branch b32 of fam-
ily b3. Branch b31 of b3 merges the branch b62 of b6 and and so on. Finally, branch

Fig. 15 The evolution of the coplanar bifurcation points of the families of 3D periodic orbits of symmetry
type S1 w.r.t. the variation of μ.
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b191 of b19 joins the branch b222 of b22. According to the enumeration described
in Section “Critical orbits of the Sitnikov family for k = 1”, b22 is the family that
bifurcates from the 22th critical point of the Sitnikov family, which is not included
in this research. As it can be seen from Fig. 14a, all these families, formed by join-
ing branches of bN, N = 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, terminate at coplanar
periodic orbits in the Oxy plane. Figure 14b depicts that, for μ = 0.4, the families
composed by b22, b32 and b61, b71 do not exist any more.

Also, the families formed by the branches b141-b151, b102-b111 and b182-b191
have shrunk. In Fig. 14c, we see that the later are absent when μ = 0.3. Figure 14d
shows the families constituted by the the rest of the pairs of branches for μ = 0.1
and μ = 0.005.

Fig. 16 The evolution of the families of 3D periodic orbits of symmetry type S2 w.r.t. the variation of μ
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The description of this behaviour can be now completed by means of the results
of the numerical continuation of the plane vertically critical orbits at which these
branches terminate. For details about vertical stability of planar periodic orbits, we
may refer to Hénon [18]. We name these orbits by using the letter P, the running
number of the corresponding B-point and the number indicating the specific branch.
For example the termination orbit of the branch b21 is named P21. The vertical sta-
bility parameters of P21, P22, P31, P32, P61, P62, P71, P72, P101, P102, P112, P141,
P142, P151, P181, P182 and P192 are av = −1, bv = 0, cv �= 0 while those of P111,
P152 and P191 are av = −1, bv �= 0, cv = 0. Figure 15 presents how the half of
the period of these critical orbits depends on μ. It is seen there that, for each pair of
branches that disappears, the curve (μ, T /2) shows that their bifurcation points come
closer to each other, they coincide at a specific value μ and, then, they do not exist

Fig. 17 The evolution of the families of 3D periodic orbits of symmetry type S2 w.r.t. the variation of μ
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any more. On the contrary, the bifurcation points of the rest of the branches still exist
when the value of μ approaches 0. So, these branches survive for all values of the
mass parameter.

Now, we deal with the evolution of the families of 3D periodic orbits of symmetry
type S2. As before, we first present this evolution for some specific values of the
mass parameter. As it is depicted by Fig. 6b, for μ = 0.5, all the families consist of
a single branch each and terminate at planar periodic orbits in the Oxy plane. Their
behaviour for μ = 0.4995, μ = 0.4 and μ = 0.3 is described in Figs. 16 and 17 by
means of their characteristic curves in the plane (x0, ż0). As it is shown in Fig. 16d,
b1 continues to exist when μ approaches 0. On the contrary, it seems that, for some
value of μ less than 0.3, the rest of them disappear.

We examine this disappearance through the numerical continuation of the plane
vertically critical orbits at which these families terminate in the case μ = 0.5. We
name these orbits in the same way we used previously. For example, the termination
orbit of the family b11 is named P1. The vertical stability parameters of P1, P8, P9,
P12, P13, P16, P17, P20 and P21 are av = 1, bv = 0, cv �= 0 while those of P4 and
P5 are av = −1, bv = 0, cv �= 0. Figure 18 presents the evolution of the half of the
period of these critical orbits w.r.t. μ. It is seen there that, as the μ decreases, P4 and
P5 tend to coincide, and, after a specific value of this parameter, they do not exist any
more. In the same way, the members of the pairs P8−P9, P12−P13, P16−P17 and
P20 − P21 tend to coincide, finally join each other and, then, they disappear. So, we
conclude that the corresponding families behave similarly.

Fig. 18 The evolution of the coplanar bifurcation points of the families of 3D periodic orbits of symmetry
type S2 w.r.t. the variation of μ
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Summary - Conclusions

This contribution is based on a modified version of the circular Sitnikov problem
μ = 0.5, which also takes into account an additional, coupled, three-body interaction
force. The aforementioned interaction is expressed by an additional force that
depends on a parameter k, which equals to 0 in the classical case. First, the equations
determining the motion and the linear stability of the third body are given. Then, the
variation of the stability parameters of the Sitnikov family is presented for k = 1, 2.
Afterwards, 21 critical and 20 self-resonant orbits are chosen in order to study the
behaviour of some families of 3D periodic orbits bifurcating from this family when
k = 1.

The families emanating from the critical points are one-to-one bifurcations. Ten of
them consist of solutions of symmetry type S1 while the rest eleven are composed of
members of symmetry type S2. All of them terminate on coplanar orbits. The families
emanating from the self-resonant orbits are one-to-three or one-to-four bifurcations.
Regarding the families of the first kind, four of them contain double symmetric orbits
while the solutions that belong to the rest of them are symmetric w.r.t the Oxz plane.
These families form five pairs. The members of every pair join each other. Concern-
ing the families of the second kind, two of them consist of double symmetric orbits
while the rest of them contain solutions which are symmetric w.r.t the Oxz plane. Six
of these families form three pairs. The members of every pair join each other. The
rest of the families remain solitary and terminate on coplanar orbits.

Next, the families bifurcating from the critical orbits are transferred along the vari-
ation of the parameterμ. Regarding the families that consist of solutions of symmetry
type S1, it is found that, for μ < 0.5, each of them is divided into two branches. All
these branches, except one pair of them, were found to compose new families. As μ

approaches 0, only six of the resulting families survive. In the case of the families
that contain orbits of symmetry type S2, as μ approaches 0, only one of them persists
to exist. The rest of them disappear.

In our present study we have chosen to examine a case where the three-body
interaction is attractive by selecting a positive value of the parameter k. It would be
interesting to also explore the influence of this interaction in a repulsive case, i.e.
by considering a negative value of this parameter. We intend to accomplish this in a
future work.
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