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Abstract
Hypersonic aircrafts are introduced as a platform for cost-efficient access to space.
However, challenging problems of control hypersonic aircrafts exist due to aerody-
namic parametric uncertainties, external disturbances and unstable internal dynamics.
This paper explores how to design and tune a controller with quantitative feedback
theory (QFT). Furthermore, robust controllers based on QFT for longitudinal model
are designed to solve the non-minimum phase problem and the large aerodynamic
parameters uncertainty problem due to complex flight environment. According to the
summary of the plant dynamics and control method, different performance specifi-
cations are presented and transformed into a set of design criteria in transfer function
form as constrains for the controller design. Simulation results obtained with the
designed controller and prefilter demonstrate that the designed robust controller can
guarantee the stability of hypersonic aircraft model and satisfy the given performance
specifications. Simulation comparisons to LQR control approach are performed to
demonstrate the advantages of the proposed QFT robust controller.

Keywords Hypersonic aircrafts · Quantitative feedback theory · Non-minimize
phase · Robust control

Introduction

Hypersonic vehicles are introduced as a possible platform for cost-efficient access to
near space, as shown in [1]. After the failed test in 2001, NASA tested the scramjet
powered X-43A successfully in 2004 and created a world speed record at Mach 9.6
for a jet-powered aircraft, as illustrated in [2]. The feasibility of hypersonic aircrafts
was verified in [3] by the scramjet X-43A. Although great substantial progress has
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been made recently, the unique dynamics of hypersonic aircrafts poses a challenging
problem of control system design that has not been fully studied.

Many challenging problems associate with hypersonic aircrafts, including nonlin-
ear dynamics, uncertainties and strong coupling between aerodynamic and propulsive
effects, as described in [4]. Among these difficulties appeared when designing
flight control systems for hypersonic aircrafts, one of the largest challenges of the
given system for designing robust controllers is the existed unstable zero-dynamics
of the non-minimum phase plant system that may appear when ignoring the cou-
pling assumed insignificant to generate the simple model adopted in [5]. In [6–8],
robust controllers based on the robust compensating techniques were proposed to
restrain the effects of multiple uncertainties for minimum phase systems, but fur-
ther researches on non-minimum phase systems were ignored. The applications of
standard robust control techniques, such as the standard state feedback linearization
control strategy and the standard sliding mode control method, on the hypersonic
aircrafts involving non-minimum phase behaviors remain challenging.

Several strategies of control system design for hypersonic aircrafts have been
adopted to solve the challenging problems. Among these controller design strate-
gies, both linear control and nonlinear control methods are studied. An adaptive
mode nonlinear controller was adopted for a generic hypersonic aircraft [9, 10]. A
Lyapunov-based exponential tracking control system of a hypersonic aircraft was
synthesized in [11]. Fuzzy control strategy was proposed for the hypersonic vehi-
cles in [12] to obtain the robustness properties of the closed-loop control systems. A
nonlinear robust controller based on the feedback linearization approach was studied
in [13]. In [14], control system based on quasi-continuous high-order sliding mode
control method was utilized. Nonlinear robust flight control system based upon dis-
turbance observer was explored in [15]. All of the above controller design methods
ignored the non-minimum phase effect existed in hypersonic aircrafts. An output
tracking control method was proposed for non-minimum phase flexible air-breathing
hypersonic vehicle in [16]. A combination method of the small-gain arguments and
the adaptive control techniques was adopted for a hypersonic vehicle model flight
control [17]. A neural network augmentation of a linear controller was explored in
[18]to deal with the non-minimum phase problem.

In this paper, a robust controller based on the quantitative feedback theory (QFT)
method is proposed to solve the non-minimum phase effect. QFT is one of the meth-
ods to design robust control systems, which was introduced in [19–21], and has
attracted considerable interest over the last three decades. The QFT is a frequency-
domain-based design technique and the controllers can be generated to satisfy a set
of performance specifications over a given range of plant parameter uncertainty and
external disturbance. The QFT technique is based on the classical idea of frequency-
domain shaping of the open-loop transfer function, and the QFT concept was
extended into nonlinear QFT in order to apply it to nonlinear and linear-time-varying
plants, as shown in [20]. Works showed strong underlying connections between the
MIMO QFT design methods and other classical multivariable design methods based
on dominance theory and sequential loop closure, as illustrated in [22–24]. Despite of
thse similarities, the MIMO QFT still stands apart from other classically formulated
multivariable design methodologies in its ability to quantitatively treat uncertainty
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and enforce frequency domain robust stability and performance specification. Design
of robust controllers for uncertain non-minimum phase and unstable plants with the
QFT were studied in [25], and the QFT method for solving non-minimum phase sys-
tem problem was improved in [26].The QFT robust control design technique was
adopted for designing of fighter aircrafts pitch rate robust control system, as illus-
trated in [27]. In [28], the QFT method to design robust longitudinal controllers for
unmanned hypersonic vehicles was used. But, the QFT robust controller was mainly
designed for minimum phase system, and the problem of robust controller design for
non-minimum phase system that may exist in hypersonic vehicles flight was not con-
sidered. The aim of this paper is to design robust controller that satisfies the given
performance specifications for longitudinal dynamics of hypersonic aircrafts with the
QFT technique.

This paper is organized as follows: the QFT robust control design method is
described in details in “Quantitative Feedback Theory”; in “Longitudinal Hypersonic
Aircraft Model Dynamics”, the dynamic model of the hypersonic aircrafts is intro-
duced briefly; the QFT robust control design method of the hypersonic dynamics
described by non-minimum phase systems is proposed in “QFT Robust Controller
Design”; in “Simulatiom Results”, the simulation results are shown and comparison
results are presented; conclusions of this paper are drawn in “Conclusions”.

Quantitative Feedback Theory

In this section, QFT robust control design philosophy and design procedure are
described in details.

Quantitative Feedback Theory

The QFT is an extension of classical frequency robust control design method devel-
oped by Horowitz. Generally, the QFT is two degrees of freedom (2-DOF) structure
which contains a controller and a prefilter as shown in Fig. 1, whose main objective
is to design and implement a 2-DOF robust system for a plant with uncertainty to
satisfy the desired performance specifications, while achieving reasonably low loop
gains. R(s), F (s), D(s), G(s), M(s), P (s), and Y (s) represent the reference input,
designed prefilter, output disturbances, designed robust controller, elevator actuator
term, uncertainty plant and output of the system, respectively.

Fig. 1 Canonical 2-DOF feedback structure
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Quantitative Feedback Theory Controller Design Procedure

The robust controller design with QFT method contains several specific steps:

1. Plant model and templates generation
The plant dynamic models are described by a set of linear invariant (LIT)

transfer function with uncertainty over the desired operating frequency range.
The plant uncertainties contain both structured uncertainty which implies varia-
tion in plant parameters and unstructured uncertainty. Taken the plant parameter
uncertainty into account, the process of every frequency of interest generalizes
the plant uncertainty templates which are sets of complex numbers representing
the frequency response of the group of uncertain plants at a fixed frequency. The
uncertainty of the plant is described by templates on Nichols chart, representing
the gain and phase variation at each chosen frequency of the system frequency
response over the operating range. Techniques adopted to compute the templates
were studied in [29].

2. Frequency array selection
Prior to design the QFT robust controller and prefilter, a frequency array at

which various performance specification function bounds and the templates are
computed must be taken into account. Since the selection of frequency array
needs some engineer experience, the experienced engineers can often tell the
frequencies of interest. Strict criterion adopted to choose the frequency array is
not stated. In order to guarantee the robustness of the designed QFT controller,
frequencies at which the templates have large uncertainties should be selected as
part of the frequency array. This can be obtained from the BODE chart of the set
of plants with uncertainties.

3. Performance specifications design
The selection of performance specifications contains the steady-state and the

dynamic performance of the closed-loop plant. The performance specifications
often contain robust specification, reference tracking specification, sensor noise
attenuation and disturbance rejection which can be given in terms of gain and
phase margin or equivalent transfer functions. The performance specifications
can be defined either in time domain or in frequency domain. In the time domain,
performance specifications are often represented by settling time ts , rise time
tr , maximum peak overshoot Mp. However, all of the performance specifica-
tions given in time domain should be transformed into the frequency domain so
that corresponding boundaries can be generalized in the Nichols chart. Suitable
frequency domain transfer function performance specifications can be normally
possible to find and should be equipped with the character of simplicity and
meet the specifications. Generally, a second-order transfer function with differ-
ent damp ratio and natural frequency can be chosen and synthesized. Then poles
and zeros can be added to the transfer function to meet the specifications more
closely.

4. Nominal plant selection
The uncertainty set of system plant cannot be used directly to design QFT

robust controller. One nominal transfer function should be selected from the
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uncertainty set as a standard used in the following QFT robust controller design
and prefilter synthesis.

5. QFT bounds generation
Performance specifications synthesized and templates generated above are

used to produce bounds at the selected frequencies in the frequency domain.
The robust stability specification, disturbance rejection specification and refer-
ence specification generate corresponding bounds on Nichols chart. Once these
bounds have been computed, the worst case bound or the restrictive bound can
be calculated at the selected frequency array and integrated together to generate
an intersection bound which is used for controller design in the following loop
shaping stage (see e.g., [30–33]).

6. Loop shaping and the QFT controller design
The QFT controller design is performed on the Nichols chart by adding gains,

poles and zeros. This is a loop-shaping process of open-loop nominal plant
transfer function

L0 (s) = G (s) M (s) P0 (s) , (1)

The result of the loop-shaping of nominal plant transfer function L0 (jω) must
guarantee that the transfer function with synthesized controller must lie on or
above the bounds at each of the selected frequencies.

One of the advantages of utilizing loop-shaping method to design the QFT
controller on the Nichols chart is that the process of controller design is transpar-
ent and compensation can be improved gradually so that the adjustment of the
controller are explicit at each step. This design method can make a proper trade-
off between the performance specifications and the complexity of the controller
transparently.

7. Prefilter design
The designed QFT controller by loop-shaping on the Nichols chart ensures the

robust stability and disturbance rejection specification of the closed loop transfer
function frequency response. However, in order to guarantee the plant satisfies
certain tracking specification, a prefilter must be designed to shape the output of
the system. This process is also performed on the frequency domain, and Bode
diagram is adopted. The reference tracking specifications are transformed into
the specification envelope on the Bode diagram and the prefilter is synthesized to
shift the frequency response of the closed-loop system into the formed tracking
specification envelope.

8. Analysis and design validation
The QFT controller is synthesized at the trail selected frequency array, but the

frequency response of the closed-loop system with designed controller should
necessarily be analyzed at all the frequencies instead of just the selected ones to
guarantee that the designed controller satisfies all the specifications at all the fre-
quencies. In this part, both frequency domain response and time domain response
of the plant with the designed QFT controller and prefilter are available to check
the final performance . The analysis of the finished QFT controller and prefilter
may demonstrate that performance specifications at some frequencies are not
completely met due to the omitting of some frequencies at the frequency array
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selection step. Once these cases appear, iterations could be carried out to select
new frequency array to guarantee the ignored frequencies taken into account and
all the bounds computed.

Longitudinal Hypersonic Aircraft Model Dynamics

The hypersonic aircraft model considered in this paper is presented in [34]. And this
model was also used in [28] where a QFT robust controller has been designed for
minimum phase. Assuming the coupling terms sideslip angle β , yaw angle rate r ,
roll angle μ and roll angle rate p are zeros, then the longitudinal hypersonic aircraft
dynamic model can be described by Lagrange’s equations as follows:

α̇ = 1

mV
(−L + mg cos γ ) + q,

q̇ = M

Iyy

, (2)

where V , γ , α, q, m, g, and Iyy are the velocity, flight path angle, attack angle, the
pitch rate, mass, gravitational constant, and moment of inertia, respectively. L and M

represent the lift force and pitching moment, and satisfy that

L = 1

2
ρV 2SCα,

M = 1

2
ρV 2ScACMα, (3)

where ρ, cA, S, Cα , and CMα represent the air density, mean aerodynamic chord,
reference area, lift force aerodynamic coefficient and pitching moment aerodynamic
coefficient, respectively.

Cα = C̄α + �Cα,

CMα = C̄Mα + �CMα, (4)

where C̄α and C̄Mα indicate the nominal part of the aerodynamic coeffi-
cient while �C̄α and �C̄Mα represent the uncertainty part of the aerody-
namic coefficient. In this paper, 20% uncertainty of nominal aerodynamic coeffi-
cients is considered. The decoupled longitudinal hypersonic aircraft plant is lin-
earized with the small perturbation linearization method. The linearized dynamic
model is presented in next section and the transformation of the longitudinal
hypersonic aircraft model from state space form to transfer function form is
described.

Longitudinal Hypersonic Aircraft Model Dynamics

Linearized uncertainty dynamic model of hypersonic aircraft is required to design
QFT robust controller for guaranteeing longitudinal stability. The elevator actuator
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Table 1 Longitudinal system coefficients

Parameter Values Parameter Values

a11 −0.183 a22 0

a12 1 b1 −0.0042

a21 0.0786 b2 −0.0041

dynamics must be considered and the elevator actuator for hypersonic aircrafts can
be described by the following first-order transfer function:

δe (s)

δec (s)
= 100

s + 100
, (5)

where δec indicates the elevator deflection command and δe represents the real the
elevator deflection. The small perturbation linearization method is adopted in this
paper to linearize the longitudinal model of the hypersonic aircraft. After lineariza-
tion, the linearized longitudinal hypersonic aircraft model can be presented by the
following canonical linear time-invariant state space equation:

ẋ = Ax + Bu,

y = Cx. (6)

The state vector and outputs of the longitudinal system are chosen as x = [
α q

]
T ,

y = [
α q

]
T .

The input of the longitudinal system is given by:

u = δe. (7)

The longitudinal system matrices are shown below:

A =
[

a11 a12
a21 a22

]
, B =

[
b1
b2

]
, C =

[
1 0
0 1

]
, (8)

where the variables aij , bi (i, j = 1, 2) represent the linearized system dynamic
coefficients and can be obtained from Table 1.

Remark 1 The hypersonic aircraft system was originally modeled as a state space
form as shown in Eq. 8, however, the QFT robust control design is based on transfer
function. Then the state space form of the hypersonic aircraft model must be trans-
formed to transfer function form. Thus, before design the QFT robust controller, the
transfer function form of the hypersonic aircraft system should be obtained.

Pitch Attitude Control SystemModel

The transformed transfer function form is shown as follow:

q

δe

= k0 (s + z0)

(s + p01) (s + p02)
, (9)
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Table 2 Longitudinal open-loop transfter function coefficients

State number 1 2 3 4 5

Mach number 4.38 4.00 3.39 2.99 2.37

k0 0.00116 0.00079 0.00199 0.00266 0.00406

z0 0.04754 0.03266 0.09007 0.13080 0.26360

p01 0.16210 0.12960 0.21770 0.26070 0.38640

p02 -0.1266 -0.1057 -0.1537 -0.1694 -0.2034

where the parameters ko, zo, po1, and po2 represent the gain, zero and poles of the
open-loop transfer function from pitch rudder defection to pitch angle rate and the
parameters can be obtained from Table 2. Five states of different Mach number are
shown in Table 2.

The longitudinal control system is shown in Fig. 2. In the system, F (s), D (s),
G1 (s), G2 (s), M (s), and P (s) represent the designed prefilter, external dis-
turbances, synthesized outer-loop robust controller, inner-loop robust controller,
elevator actuator term and uncertainty plant of pitch angle system, respectively. θc is
the given pitch angle command, q and θ are real pitch angle rate and real pitch angle.

A two-loop QFT robust control strategy is adopted to design QFT robust controller
and prefilter and the control law below is utilized:

δe = G2 (s) (G1 (s) (F (s) θc − θ) − q) . (10)

QFT Robust Controller Design

The QFT robust controller design method and procedure have been presented previ-
ously, then controller design will be performed following the previous procedure in
this section step by step. First, the method of performance specification selection is
introduced. Then, criterions for choosing frequency array are described and the com-
pleted QFT robust controller design process of inner-loop and outer-loop is presented
in this section.

Fig. 2 Longitudinal pitch attitude control system

The Journal of the Astronautical Sciences (2020) 67: 137–163144



Table 3 Design inner-loop controller coefficients

Parameter Values

Overshoot Mp ≤ 10%

Rise time tr ≤ 0.25s

Settling time ts ≤ 0.25s

Performance Specifications Selection

The hypersonic aircraft control system should be with the ability of guaranteeing sta-
bility, disturbance rejection and reference signal tracking specifications to deal with
the wide dynamic range uncertainty of aerodynamic coefficients which caused by
large Mach-Altitude flight environment and aerodynamic coefficients uncertainties.

Tracking Performance Specification

The tracking performance specification is provided for guaranteeing that the uncer-
tainty hypersonic vehicle system which is caused by aerodynamic uncertainties
and external disturbance has the acceptable range of closed-loop tracking response.
Tracking specifications are generally given in the time domain as settling time ts , rise
time tr , and maximum peak overshoot Mp, which can then be transformed into the
frequency domain as:

TT L (jω) ≤ TT (jω) ≤ TT U (jω) , (11)

where TT L (jω), TT (jω), and TT U (jω) describe the transfer function of lower
bound, closed-loop transfer function and upper bound transfer function, respectively.

For the longitudinal hypersonic vehicle system, the time domain pitch angle
tracking specifications are given in Table 3.

The upper tracking bound transfer function model is determined by the time
domain specifications settling time ts , rise time tr , and maximum peak overshootMp,
and the lower bound transfer function which is always without overshoot is deter-
mined by settling time ts and rise time tr . The upper bound tracking function is first
defined by a second-order model:

TT U (s) = ω2
n

s2 + 2ζωn + ω2
n

, (12)

where ωn indicates the natural frequency and ζ represents the damp ratio.
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For second-order system TT U (s), one can obtain that :

Mp = e
− πζ√

1−ζ 2 ,

tr = 1

ωn

√
1 − ζ 2

[

π − tan−1

√
1 − ζ 2

ζ

]

,

ts[5%] ≈ 3

ζωn

. (13)

According to the given time-domain performance specification settling time ts , rise
time tr , and overshoot Mp, natural frequency ωn and damp ratio ζ can be approxi-
mately computed as 0.65 and 15. In order to adjust the upper tracking bound transfer
function in the high frequency range, one zero is considered and the selected upper
tracking bound transfer function is shown below:

TT U = 225 (0.02s + 1)

s2 + 19.5s + 225
. (14)

The method of choosing lower tracking bound transfer function is the same as the
upper tracking bound. However the lower tracking bound has no overshoot and is
represented by the following expression:

TT L = 1629

s3 + 29s2 + 361s + 1629
. (15)

Robust Stability Performance Specification

The required performance specifications are phase margin of 45o and magnitude mar-
gin of 5 dB and the stability performance specification can be represented by the
following expression:

∣∣∣∣
L (jω)

1 + L (jω)

∣∣∣∣ ≤ μ = 1.25dB, (16)

where L (jω) defines the open-loop transfer function of the longitudinal hypersonic
vehicle model. This specification can be transformed into frequency domain and
described by phase margin and magnitude margin as follows:

hp = 20 lg

(
1 + 1

μ

)
= 20 lg (1.9) = 5.1055 > 5dB,

γ = 180◦ − cos−1
(

1

2μ2
− 1

)
180◦

π
= 47.089◦ > 45◦, (17)

which describes that the selected robust stability performance specification satisfies
the desired specification.
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Fig. 3 Bode diagram of uncertainty plant set

Output Rejection Performance Specification

In order to ensure the designed QFT robust control system can provide longitudinal
hypersonic vehicle with the ability of rejecting external disturbance, corresponding
output disturbance specification is chosen as follow:

TRu = s2 + 60s

s3 + 120s2 + 2000s + 1629
, (18)

which can reject the step external output disturbance signal into 0.5% of the
disturbance signal at 0.5s.

Frequency Array Selected

A set of plants contain of uncertainty is obtained, from the Bode diagram
of the set of uncertainty plants, one can get that in the frequency of ωt =
{0.001, 0.05, 0.1, 0.5, 1, 5, 10, 50100} the magnitude and phase of the plants have
large uncertainty range as shown in Fig. 3. Therefore, the frequency is initially
selected as ωt = {0.001, 0.05, 0.1, 0.5, 1, 5, 10, 50100}.

QFT Robust Controller Design

The QFT controller and prefilter design are carried out on Nichols Chart and based
on classical loop-shaping theory. The objective is to trade-off between the desired
performance specifications and complexity of the synthesized QFT robust controller.
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Fig. 4 Step response of pitch attitude model without control

The QFT robust controller should be synthesized to guarantee that the low-frequency
bounds troughs should be passed through by the open-loop frequency response.

Inner-loop Controller Design

As can be seen from Table 1, right half plane poles are existed in longitudinal hyper-
sonic aircraft model. Therefore, traditional QFT method for designing minimum
phase system robust controller is not satisfied. Then approach for dealing with non-
minimum phase system robust controller design problem has been introduced in [25]
and improved in [26].

The SISO non-minimum phase uncertain plant can be written in the form as shown
in Eq. 19:

T (s) = z (s)
�
z (−s)

p (s)
, (19)

where p (s),
�
z (−s) , and z (s) represent the left half-plane zeros, right half-plane

zeros and left half-plane poles, respectively.
A nominal plant with the plant is chosen and shown by

T0 (s) = z0 (s)
�
z 0 (−s)

p0 (s)
. (20)

A new nominal plant can be defined as

T0
′ (s) = T0 (s) A−1 (s) = z0 (s)

�
z 0 (s)

p0 (s)
, (21)

if A (s) = �
z 0 (−s) /

�
z 0 (s). It can be noted that T0

′ (s) is a stable minimum phase
plant. Then the bounds of robust stability, tracking and disturbance rejection specifi-
cations computed on the Nichols chart for T0

′ (jωi) are the same as that for T0 (jωi)

with a horizontal shift of phase − arg (A (jωi)) at selected frequency ωi [29–31].
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Fig. 5 Plant frequency response templates of inner-loop

As can be seen in Fig. 4, it indicates the step response of pitch angle of uncertainty
longitudinal hypersonic aircraft, which demonstrates that the pitch angle system is
unstable.

The object of inner-loop QFT robust controller design is to guarantee that the lon-
gitudinal hypersonic aircraft plant can be stable with the synthesized the QFT robust
controller. Therefore, only robust stability specification is needed in inner-loop QFT
controller design. The given robust stability specification is shown in Eq. 16. The
templates of the plant which contains aerodynamic parameter uncertainty preformed
on the Nichols chart present the variation of open loop gain and phase at the selected
frequency points are computed in the Nichols chart as illustrated in Fig. 5. One of the
templates is chosen as the nominal plant and the state 4 in Table 1 is selected as nom-
inal plant used to design QFT controller. Figure 6 shows the stability specification
which contains magnitude and phase bounds in Nichols chart at each selected fre-
quency points. The robust stability specification bounds and open-loop plant transfer
function are plotted in Fig. 7.

Remark 2 As can be seen in Fig. 6, the bounds for the new nominal plant T0
′ (jωi)

at different frequencies are obtained by shifting the bounds for the nominal plant
T0 (jωi) by − arg (A (jωi)). It should be noted that the bounds shifting are not
significant, which demonstrates that − arg (A (jωi)) is not large. From A (s) =
�
z 0 (−s) /

�
z 0 (s), it can be obtained that the bounds shifting would be significant if

the unstable zero is large.

Two controllers are designed for the inner-loop and the different loop-shaping
results of the open-loop transfer function are plotted in Figs. 8 and 9, respectively.
As can be seen, frequency responses of open-loop plant after loop-shaping don’t
intersect with the robust stability bounds, which demonstrates that both designed
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Fig. 6 Robust stability margin bounds of inner-loop

controllers satisfy the desired design requirements. Further results are tested in time
domain and step responses of closed-loop transfer function with two different are
presented in Figs. 10 and 11.

The designed QFT robust controllers of the inner-loop system are shown as
follows:

K1 (s) = kin1 (s/z + 1)

(s/p + 1)
, (22)
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Fig. 7 Robust stability margin bounds without controller of inner-loop
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Fig. 8 Open-loop frequency response with controller K1 of inner-loop

K2 (s) = kin2. (23)

The coefficients of the designed inner-loop QFT robust controller can be obtained in
Table 4.

As can be seen from Figs. 10 and 11, both controllers can stabilize the non-
minimum phase plant and the control effects are basically the same. Thus due to
the design trade-offs between specifications satisfaction and controller complexity
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Fig. 9 Open-loop frequency response with controller K2 of inner-loop
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Fig. 10 Closed-loop step response with controller K1 of inner-loop

principle, then the simpler controller is chosen as the inner-loop controller and the
inner-loop controller is

G2 (s) = K2 (s) . (24)

The robust stability specification is illustrated in Fig. 12, in which the solid line
represents the closed-loop transfer function of longitudinal hypersonic aircraft sys-
tem with the designed controller and prefilter while the dashed line indicates the
desired robust stability specification. It significantly shown that the solid line is under

Fig. 11 Closed-loop step response with controller K2 of inner-loop
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Table 4 Designed inner-loop
controller coefficients Parameter Values Parameter Values

kin1 20000 p 9.4894

kin2 12000 z 2.9615

the dashed line, which demonstrates the designed controller and prefilter satisfy the
given robust stability specification.

The non-minimum problem exist in the longitudinal hypersonic aircraft plant can
be significantly settled with the designed inner-loop controller G2 (s), and the step
response of the pitch angle rate as shown in Fig. 11 demonstrates the synthesized QFT
robust controller of the inner-loop can stabilize the plant rapidly. Simultaneously,
the inner-loop QFT robust controller causes a considerable reduction in uncertainty,
which can reduce in outer-loop uncertainty and facilitate the design of outer-loop
QFT robust controller.

Outer-loop Controller Design

The templates of the plant which contains aerodynamic parameter uncertainty pre-
formed on the Nichols chart present the variation of open loop gain and phase at the
selected frequency points are computed in the Nichols chart as illustrated in Fig. 13.
One of the templates is chosen as the nominal plant and the state 4 in Table 1 is
selected as nominal plant used to design QFT controller and prefilter. Fig. 14 shows
the stability specification which contains magnitude and phase bounds in Nichols
chart at each selected frequency points. This also specifies the disturbance bound on
the Nichols chart as shown in Fig. 15.

10
−2

10
−1

10
0

10
1

10
2

10
3

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

Frequency (rad/sec)

Fig. 12 Analysis of robust stability margin in frequency domain
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Fig. 13 Plant frequency response templates of outer-loop

Similarly, Fig. 16 presents the tracking performance specification bounds on
Nichols chart.

The composite bounds of all the above performance specification and open loop
plant template plotted on Nichols chart described in Fig. 17 are adopted to synthesize
the desired loop transfer function. The objective is to ensure the magnitude of the
open-loop transfer function at each selected frequency above the composite bounds
at corresponding frequency points by loop-shaping the open-loop transfer function
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Fig. 14 Robust stability margin bounds of outer-loop
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Fig. 15 Robust output disturbance rejection bounds of outer-loop

with selected proper zeros, real and complex poles which synthesize the robust QFT
controller.

The result of loop-shaping is plotted in Fig. 18 which indicates that the ele-
ments of the controller that added to the nominal plant are satisfied to the composite
performance specification bounds.

Figure 19 demonstrates the result of the designed prefilter on the basis of designed
controller. The designed controller only guarantees the system closed loop trans-
fer function bound at each selected frequency points on Nichols chart is equal to
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Fig. 16 Robust tracking bounds of outer-loop
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Fig. 17 Open-loop frequency response without controller of outer-loop

or greater than the permissible bound. It could not guarantee the closed-loop trans-
fer function envelope in the performance specifications envelope. Hence a prefilter
should be designed to adjust the closed-loop transfer function envelope of the system
inside the specifications envelope.

The designed outer-loop QFT robust controller and prefiler are shown below and
the corresponding coefficients are indicated in Tables 5 and 6.

Outer-loop controller:

G1 (s) = kout (s/z1 + 1) (s/z2 + 1) (s/z3 + 1)

(s/p1 + 1)
(
s2/ω2 + 2ξs/ω + 1

) . (25)
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Fig. 18 Open-loop frequency response with controller of outer-loop
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Fig. 19 Closed-loop frequency response with prefilter

Prefilter:

F (s) =
(
s/zf 1 + 1

) (
s/zf 2 + 1

)

(
s/pf 1 + 1

) (
s2/ω2

f + 2ξf s/ωf + 1
) . (26)

Simulatiom Results

Since the synthesized QFT robust controller and prefilter are designed at limited
selected frequency array, validation of the controller and prefilter should be taken
into account at all frequencies. Therefore, the next step is to validate the performance
of the controller and prefilter. If the validation is failed, frequencies at which the
system plant has large uncertainty may not be considered, which demonstrates new
frequency array should be selected again and the QFT controller should be redesigned
with the same design process below.

The frequency domain robust stability specification is illustrated in Fig. 20, in
which the solid line represents the closed-loop transfer function of longitudinal
hypersonic aircraft system with the designed controller and prefilter while the dashed
line indicates the desired robust stability specification. It significantly shown that the

Table 5 Design outer-loop
controller coeffocients Parameter Values Parameter Values

kout 32842.1 z1 0.1872

p1 0.83928 z2 2.5276

ξ 0.40960 z3 1.2707

ω 0.02216
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Table 6 Designed prefilter
coefficients Parameter Values Parameter Values

pf 1 5.05728 zf 1 10.7666

ξf 0.58568 zf 2 9.4569

ωf 10.1303
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Fig. 20 Analysis of robust stability margin in frequency domain
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solid line is under the dashed line, which demonstrates the designed controller and
prefilter satisfy the given robust stability specification.

The output disturbance specification is plotted in Fig. 21. In time domain, step
signal is utilized as external disturbance to check output disturbance specification.
Step signal response decreases to zero at 0.7s, which can be observed in Fig. 21
and can manifest the designed controller is with the ability to reject the external
disturbance.

Figure 22 illustrates the desired reference tracking specifications in frequency
domain and demonstrates the closed-loop system transfer function meet all the track-
ing specifications. In order to intuitively understand the effect of the controller and
prefilter, time domain validation is shown in Fig. 22, which can directly indicates
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Fig. 23 Step response of nominal pitch system with QFT controller
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Fig. 24 Tracking response of nominal pitch system with QFT controller

that the step signal of the input can be responded rapidly at 0.3s and the tracking
specifications are satisfied.

The designed QFT robust controller and prefilter are added to the longitudinal
system. Step signal and given reference signal responses of five different states are
illustrated in Figs. 23 and 24. States information can be found in Table 1. Sig-
nificantly, satisfied tracking robust performance of the designed QFT controller is
manifested in Figs. 23 and 24.

In order to compare the attitude control performance of the designed robust QFT
controller, a LQR controller as illustrated in [35] is synthesized based on the lin-
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Fig. 25 Tracking response of nominal pitch system with QFT and LQR controller under no uncertainties
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Fig. 26 Tracking response of nominal pitch system with QFT and LQR controller under no uncertainties

earized model. The state space model of the plant is already shown in Eq. 9 and
the coefficients can be obtained from Table 1. The weighting matrices Q and R are

selected as follows: Q =
[
510 0
0 220

]
, R = [0.23] , and then the control vector K is

computed and shown as follows: K = [ −40.9402 −112.788
]
.

As can be seen from Fig. 25, both the QFT and LQR robust controllers can achieve
satisfying tracking performance. However, the control input amplitude by the QFT
robust controller is more similar to the reference signal baseline than that by the LQR
controller, especially the tracking error as depicted in Fig. 26 manifests that the QFT
controller can guarantee the plant has better tracking performance.

Conclusions

In this paper, the QFT robust controller and prefilter are designed for dealing with
the problem of uncertainty parameter uncertainty, external disturbance and non-
minimum phase problem existed in hypersonic aircrafts. The simulation results
are presented to demonstrate the effectiveness of the proposed QFT controller and
prefilter for hypersonic aircrafts system.

In future, the QFT robust controller design method would be adopted to design
the latitudinal model of hypersonic aircrafts which is featured with the characters of
multi-input multi-output and strong coupling.
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