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Abstract
A novel analytical formula is developed for the second order approximation of the
potential function of a pair of charged spacecraft assuming either particle-body or
body-body interactions. These approximations use the center of charge (CoCh) as
the center of expansions provided that the charge distribution is known. The gener-
ated formulas for the potential function are then used to analytically find Coulomb
force and corresponding moment about the center of mass (CoM) of the interact-
ing bodies. The resulting expressions are presented in terms of the entire charge and
the quadrupole charge tensor (QCT) of each individual body about the correspond-
ing CoCh, as well as the relative distance between the centers of charge of the two
charged spacecraft. Because of using expansions about the CoCh, dipole moments of
each individual spacecraft do not explicitly appear in the resulting equations. Closed-
form approximations of the force and moment are also obtained from the potential
function using the CoM expansions. As it is shown, the CoCh expansions are gener-
ally more accurate when the distance between the CoCh and the CoM is a significant
fraction of the separation distance.
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Introduction

Electrostatic actuation using Coulomb forces is necessary in various spacecraft appli-
cations including re-orbiting of GEO debris [7, 16, 22], de-spinning non-cooperative
space objects [1, 2], and Coulomb formation flying [4, 9]. In order to design control
laws and prescribe needed voltages for these applications, fast and accurate meth-
ods are required to calculate the forces and torques on the affected spacecraft using
knowledge of the charge distribution of each craft and their relative separations and
attitudes. The amount of relative separation between charged spacecraft, as well as
their sizes and charge distributions can determine the model needed to achieve sat-
isfactory accuracy within a reasonable time. For example, flat electric fields can be
used for large separation distances, the Multi-Sphere Method (MSM) [23] as well as
first or second order approximations of radial electric fields can be used for medium
separation distances (larger than 5-10 craft radii), while finite element analysis is
needed for high accuracy at small separation distances [5, 6]. In some situations the
electric field of a spacecraft can be modeled as a point charge so that point-body
(particle-body) models may be used to calculate the resulting forces and torques
on neighboring spacecraft, while in other situations a point charge model is not
appropriate and body-body models must be used.

“Appropriate Fidelity Measure (AFM)” force and torque models are developed
in [5] for locally flat and radial electric fields, and the results compared with the
MSM method. In particular, the radial electric fields for particle-body interactions
are developed to second order using the expansion about the center of mass (CoM)
of the spacecraft. This results in expressions in which a charge tensor about the
CoM appears in the approximations. Furthermore, the corresponding body-body
interaction is generated in [8] with the expansions about the mass centers of the inter-
acting spacecraft resulting in the application of the charge tensors about the CoM.
Therefore, in these formulations, the approximations of Coulomb interactions are
expressed in terms of the entire charge, dipole moment, and the charge tensor. As in
the case of gravity gradient torque approximated to second order using the inertia ten-
sor [11, 21], the particle-body and body-body interaction approximations using the
charge tensor about the CoM are more accurate at large separations and less accurate
at small separations.

While the separation between the CoM and center of charge (CoCh) is accounted
for, the expansions about CoM causes the second order approximation to signifi-
cantly lose accuracy when this separation is large. This is due to the fact that relying
on the charge distribution about the mass center and using the CoM as the center
of local expansions does not completely capture all the effects of the charge distri-
bution. Introducing the pseudo-inertia tensor or quadrupole charge tensor (QCT) of
a charged pseudo-atom about its CoCh, the approximate resultant force and corre-
sponding moment are generated for pairwise interactions expressed in the form of
1/rs (s > 1 is an integer), and used for Coulomb and Van der Waals interactions in
multiscale modeling and simulation of molecular systems [12, 13, 17–20].

Herein, a closed-form approximation of the force function is developed for a pair
of charged spacecraft assuming either particle-body or body-body interactions, from
which second order approximations for the forces and torques are obtained. In this
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scheme, the entire charge, the CoCh, as well as the QCT about the CoCh of each
spacecraft are first introduced. Then key operations are presented to obtain the second
order approximation of the force function in particle-body and body-body interac-
tions. The resulting formulations are then used to find the resultant Coulomb force as
well as the moment about the CoM of each spacecraft. Unlike the previous approx-
imation techniques of Coulomb interactions which use local expansions about the
CoM of the body, the method presented in this paper formulates the approximations
using expansions about the CoCh of each spacecraft. Therefore, all of the expressions
are presented in terms of the total charge of each body, the relative distance between
the centers of charge of the interacting spacecraft, as well as the QCT about the CoCh
of each one. Because of using expansions about the CoCh, the resulting equations do
not explicitly include dipole moments of each spacecraft although these quantities
are necessary to obtain the CoCh. Furthermore, we use the new mathematical pro-
cedure developed in this paper to find the approximation of the force function using
the CoM of each spacecraft as the origin of expansions for both particle-body and
body-body interactions, from which forces and moment are obtained. These deriva-
tions are independent of the procedure used in [5, 8] since in this paper we develop an
approximate force function (opposite of electrostatic potential energy), from which
we derive forces and torques, while the final expressions are the same as those in
[5, 8]. The results for the particle-body and body-body interactions using CoM and
CoCh are compared for a variety of scenarios. It is found that CoCh expansions
are generally more accurate when the distance between the CoCh and the CoM is
a significant fraction of the separation distance. Finally, it should be noted that the
analytical expansions in this article and other works such as [5, 8] are convenient
for analytical study of charged spacecraft motions, while various numerical methods
such as the Multi-Sphere-Method (MSM) approximations [23] can be used if accu-
racy and numerical efficiency are critical. Therefore, the contributions in this work
do not compete with (and are not compared with) any of these numerical methods,
but only with the previously-used CoM-based force and torque approximations.

Physical Properties of Charged Bodies

In the following, we present necessary definitions and properties associated with the
electrostatic characteristics of the charged bodies as they will be used in the rest of
the paper.

Definition 1 Consider body B (not necessarily a rigid body) shown in Fig. 1 with the
charge distribution density function ρq . The dipole moment of this body measured
from the center of mass (CoM) i.e. B∗ is defined as

PB/B∗ �=
∫

B

pρqdτ (1)

In this equation, p is the position vector of the charge element dq relative to the
CoM. Furthermore, depending on the shape of B, τ can represent the length, area, or
volume.
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Fig. 1 Charged body B with center of charge Cq and center of mass B∗

Definition 2 For charged body B, the center of charge (CoCh) denoted by Cq is
located by

RCq = PB/B∗

Q
(2)

where Q is the entire charge of the body and computed as

Q =
∫

B

ρqdτ (3)

It should be noted that Cq exists if the total charge of the body, i.e. Q, is not zero.

Definition 3 The Quadrupole Charge Tensor (QCT) of bodyB about the correspond-
ing center of charge Cq is defined as [18, 20]

qIB/Cq
�=

∫
B

(Ur2 − rr)ρqdτ (4)

where U denotes the identity tensor, and r is the magnitude of r. We use qIB/Cq

to represent the QCT since it is similar to the mass moment of inertia tensor nota-
tion; however, it is related to the charge distribution and computed about the center
of charge. For the Coulomb potential field, this dyadic represents the quadrupole
moment tensor [15]. Based on the definition presented in Eq. 4, the trace of this
tensor is computed as

tr(qIB/Cq ) = 2
∫

B

r2ρqdτ (5)

Furthermore, as shown in Lemma 2 and proven in [20], the parallel axis theorem
[10] can be applied to this tensor.
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Lemma 1 The dipole moment mesured from the center of charge is zero. In other
words, if r is the position vector of the charge element dq measured from Cq , then

∫
B

rρqdτ = 0 (6)

Proof This lemma is proven based on the following relations

∫
B

rρqdτ =
∫

B

(p − RCq )ρqdτ =
∫

B

pρqdτ −
∫

B

RCq ρqdτ

(2)= QRCq − QRCq = 0 (7)

Lemma 2 Given the QCT of the charged body B about Cq as qIB/Cq , one can use
the parallel axis theorem to find the QCT of body about an arbitrary point O as

qIB/O = qIB/Cq + qICq/O (8)

The second term on the right hand side of the above equation is the QCT of the
lumped particle with total chargeQ located at CoCh of body aboutO. DefiningOCq

as the position vector of point Cq relative to O with three components r1, r2, and r3,
Eq. 8 can alternatively be expressed as [20]

qIB/O = qIB/Cq + Q[OCq×]T [OCq×] (9)

where

[OCq×] =
⎡
⎣ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤
⎦ (10)

It should be noted that for two interacting spacecraft, the voltage is a known quan-
tity. Furthermore, unlike the gravity gradient problems in which the inertia properties
of the bodies do not change, the charge in interacting craft is dynamic [14]. In other
words, as two spacecraft move or rotate relative to one another the charge distribution
changes, resulting in the change of the dipole moment, the location of the CoCh, and
the value of the QCT. In this study, it is assumed that the charge distribution is known
through one of the well established methods such as finite element analysis, Methods
of Moments [3], or Multi-Sphere Method [23]. Therefore, the location of the CoCh,
and the value of the dipole moment and charge tensor relative to the CoM are known
up to the accuracy of the method used to find the charge distribution. Finally, since in
the following sections the quadrupole charge tensor (QCT) is used, one can apply the
parallel axis theorem presented in Lemma 2 to compute QCT from the charge tensor
about the CoM.
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Particle-Particle Coulomb Force Function

Consider charge element dq on body B and an individual charge q̄ shown in Fig. 1.
The Coulomb force function Vq̄dq between these two points is expressed as

Vq̄dq = −kq̄dq

r ′ (11)

where k is Coulomb’s constant, and r ′ represents the length of the position vector
of dq relative to q̄. The Coulomb force function is the opposite of the electro-
static potential energy. Therefore, the particle-particle Coulomb force vector which
is applied to dq from q̄ is expressed as

Fq̄dq = ∇r′Vq̄dq (12)

where ∇r′(.) represents the gradient of a function with respect to r′. This force vector
can then be simplified as

Fq̄dq = kq̄dq

r ′3 r′ (13)

Particle-Body Coulomb Approximations Using Expansions About
CoCh

Force Function

Consider body B in Fig. 1 (not necessarily a rigid body) with known charge distribu-
tion density function ρq and center of charge Cq provided that the entire charge of the
body is not zero. The position vector r represents the location of an arbitrary charge
element dq in the body measured from Cq . The force function of charged body B

due to its interaction with q̄ is then expressed as

Vq̄B = −
∫

B

kρqq̄

r ′ dτ (14)

Based on the geometry shown in Fig. 1, we can rewrite (14) as

Vq̄B = −
∫

B

kρqq̄

|R + r|dτ = −
∫

B

kρqq̄[
(R + r)2

] 1
2

dτ

= −
∫

B

kρqq̄
[
R · R + 2R · r + r2

]− 1
2
dτ (15)

Defining R in terms of its magnitude and unit vector as

R = Ra1 (16)

we express (15) as

Vq̄B = −kq̄

R

∫
B

[
1 + 2a1 · r

R
+ (

r

R
)2

]− 1
2
ρqdτ (17)
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Recalling the binomial series expansion as

(1 + x)n = 1 + nx + n(n − 1)

2
x2 + n(n − 1)(n − 2)

3! x3 + ..., |x| < 1 (18)

we expand (17), resulting in

Vq̄B = −kq̄

R

∫
B

[
1 − a1 · r

R
− 1

2
(
r

R
)2 + 3

2
(a1 · r

R
)2 + ...

]
ρqdτ (19)

provided that |2a1 · r
R

+ ( r
R

)2| < 1. We now elaborate on the constituent terms of the
above expression based on different orders of r

R
.

– Zero order terms (ZOT) O( r
R

)0:

ZOT = −kq̄

R

∫
B

ρqdτ
(3)= −kq̄

R
Q (20)

– First order terms (FOT) O( r
R

):

FOT = −kq̄

R

∫
B

−a1 · r
R

ρqdτ = kq̄

R2
a1 ·

∫
B

rρqdτ
(6)= 0 (21)

– Second order terms (SOT) O( r
R

)2:

SOT = −kq̄

R

∫
B

[
−1

2
(
r

R
)2 + 3

2
(a1 · r

R
)2

]
ρqdτ

= kq̄

2R3

∫
B

[
r2 − 3(a1 · r)2

]
ρqdτ (22)

Based on the geometry shown in Fig. 1, we simplify (22) by using (a1 · r)2 =
r2 − h2 as

SOT = kq̄

2R3
(

∫
B

−2r2ρqdτ + 3
∫

B

h2ρqdτ) (23)

Referring to Eq. 5, the first integral is related to the trace of qIB/Cq , while the
second integral describes qIB/Cq in a1a1 direction. Therefore, the SOT can be
simplified as

SOT = kq̄

2R3

[
−tr(qIB/Cq ) + 3a1 · qIB/Cq · a1

]
(24)

In general, we can express the force function as

Vq̄B = −kq̄Q

R
(1 +

∞∑
i=1

v
(i)
q̄B) (25)
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where v
(i)
q̄B is the collection of the terms in O( r

R
)i . Using Eqs. 20, 21, and 24, the

approximate Coulomb force function up to the second order terms for particle-body
interaction can be expressed as

Ṽq̄B = −kq̄Q

R
(1 + v

(2)
q̄B) (26)

where

v
(2)
q̄B = 1

2QR2

[
tr(qIB/Cq ) − 3a1 · qIB/Cq · a1

]
(27)

It should be noted that Ṽ indicates a second order approximation of V . The above
expression and the associated force and torque which will be derived in the follow-
ing sections are valid provided that the distance between charge q̄ and the center of
charge Cq is much larger than the distance of the farthest charge element on the body
from Cq .

Resultant Force from Approximate Force Function

It is proven in the Appendix that the force applied to body B from charge q̄ can be
computed by finding the gradient of the force function with respect to R as

Fq̄B = ∇RVq̄B = −∇R

(
kq̄Q

R
(1 +

∞∑
i=1

v
(i)
q̄B)

)
(28)

The gradient of the approximate force function in Eq. 26 is then computed as

∇RṼq̄B = kq̄Q

R2
(1 + v

(2)
q̄B)∇RR − kq̄Q

R
∇Rv

(2)
q̄B (29)

Using the definition of R in terms of its magnitude and unit vector, ∇RR is evaluated
as

∇RR = a1 (30)

Now we compute ∇Rv
(2)
q̄B as

∇Rv
(2)
q̄B = ∇R

(
1

2QR2

(
tr(qIB/Cq ) − 3a1 · qIB/Cq · a1

))

= − 1

QR3

(
tr(qIB/Cq ) − 3a1 · qIB/Cq · a1

)
∇RR

− 3

QR2
∇Ra1 · qIB/Cq · a1 (31)

Using the following property

∇Ra1 = 1

R
(U − a1a1) (32)

we simplify (31) as

∇Rv
(2)
q̄B = − 1

QR3

[
tr(qIB/Cq )a1 − 6a1 · qIB/Cq · a1a1 + 3qIB/Cq · a1

]
(33)
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Using the results of Eqs. 30 and 33, we compute F̃q̄B as the second order approxima-
tion of the force vector in Eq. 29 as

F̃q̄B = kq̄Q

R2

{
a1 + 1

QR2

[
3

2

(
tr(qIB/Cq ) − 5a1 · qIB/Cq · a1

)
a1

+3qIB/Cq · a1
]}

(34)

This equation can alternatively be rewritten as

F̃q̄B = kq̄Q

R2
(a1 + F(2)

q̄B) (35)

where F(2)
q̄B is the collection of the terms in O( r

R
)2 expressed as

F(2)
q̄B = 1

QR2

[
3

2

(
tr(qIB/Cq ) − 5a1 · qIB/Cq · a1

)
a1 + 3qIB/Cq · a1

]
(36)

Approximation of theMoment about theMass Center

Since the Coulomb force applied from charge q̄ to B does not necessarily pass
through B∗, it creates the following moment about B∗

Mq̄/B∗ =
∫

B

p × Fq̄dq (37)

Based on the geometry shown in Fig. 1, we rewrite this equation as

Mq̄/B∗ =
∫

B

(RCq − R + r′) × Fq̄dq (38)

Since Fq̄dq and r′ are collinear, the moment about B∗ is simplified as

Mq̄/B∗ = (RCq − R) × Fq̄B (39)

This moment can alternatively be expressed as

Mq̄/B∗ = (RCq − R) × ∇RVq̄B (40)

ExpressingR in terms of its magnitude and unit vector (see Eq. 16), we rewrite Eq. 39
as

Mq̄/B∗ = RCq × Fq̄B − Ra1 × Fq̄B (41)

Finally, the second order approximation of moment vector about B∗ denoted as
M̃q̄/B∗ is computed as

M̃q̄/B∗ = RCq × F̃q̄B − Ra1 × F̃q̄B

(34)= RCq × F̃q̄B − Ra1 × kq̄Q

R2

{
a1 + 1

QR2

[
3

2

(
tr(qIB/Cq )

−5a1 · qIB/Cq · a1
)
a1 + 3qIB/Cq · a1

]}

= RCq × F̃q̄B − 3kq̄

R3
a1 × (qIB/Cq · a1) (42)
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It should be noted that RCq × F̃q̄B is the moment generated due to the deviation

of the CoCh from CoM. If these two points coincide (RCq = 0), then M̃q̄/B∗ is
simplified as

M̃q̄/B∗ = −3kq̄

R3
a1 × (qIB/Cq · a1) (43)

We observe that in the particle-body model of charged spacecraft, the approxima-
tions using the CoCh are expressed in terms of the charge of the particle, the relative
distance between the particle and CoCh of the interacting body, as well as the QCT of
the body about its CoCh. Because of using expansions about the CoCh, the resulting
equations do not explicitly include the dipole moment of body B, while the compu-
tations associated with the dipole moment have already been included in finding the
location of the CoCh as shown in Eq. 2.

Body-Body Coulomb Approximations Using Expansions About CoCh

Force Function

Consider bodies B and B̄ in Fig. 2 (not necessarily rigid bodies) with known charge
distribution density functions ρq and ρ̄q , respectively. Similar to body B, for body B̄,
one can find the entire charge, the dipole moment about the mass center, the location
of CoCh, and the QCT about the CoCh, respectively, as

Q̄ =
∫

B̄

ρ̄qdτ̄ (44)

P̄B̄/B̄∗ =
∫

B

p̄ρ̄qdτ̄ (45)

R̄C̄q
= P̄B̄/B̄∗

Q̄
(46)

q ĪB̄/C̄q =
∫

B̄

(U r̄2 − r̄r̄)ρ̄qdτ̄ (47)

As shown in Fig. 2, r̄ denotes the position vector of dq̄ from C̄q , while r̄ represents
the magnitude of r̄. Furthermore, depending on the shape of B̄, τ̄ can represent the
length, area, or volume. Finally, based on Eq. 46, C̄q exists if the entire charge of the
body, i.e. Q̄, is not zero.

Consider charge elements dq and dq̄ on B and B̄, respectively. Using Eq. 11, the
force function between these two bodies is expressed as

VB̄B = −
∫

B̄

∫
B

kρqρ̄q

r ′ dτdτ̄ (48)

Rewriting this equation as

VB̄B =
∫

B̄

(−
∫

B

k dqdq̄

r ′ ) (49)
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Fig. 2 Body-body interaction

and based on Eq. 14, the term − ∫
B

k dqdq̄
r ′ indicates the force function Vdq̄B due to

the interaction between charge element dq̄ and body B. Therefore, Eq. 48 is rewritten
as

VB̄B =
∫

B̄

Vdq̄B (50)

Replacing q̄ with dq̄ in Eq. 25, the above equation is expressed as

VB̄B = −
∫

B̄

kdq̄Q

R
(1 +

∞∑
i=1

v
(i)
dq̄B) (51)

Using the second order approximation for the particle-body Coulomb force function
in Eq. 26, the approximate body-body force function is written as

ṼB̄B = −
∫

B̄

kQ

R
(1 + v

(2)
dq̄B)ρ̄qdτ̄ (52)

Based on the geometry shown in Fig. 2, we rewrite Eq. 52 as

ṼB̄B = −
∫

B̄

kQ[
(S − r̄)2

] 1
2

(1 + v
(2)
dq̄B)ρ̄dτ̄

= −
∫

B̄

kQ (S · S − 2S · r̄ + r̄2)−
1
2 (1 + v

(2)
dq̄B)ρ̄qdτ̄ (53)

Defining S in terms of its magnitude and unit vector as

S = Se1 (54)

we express (53) as

ṼB̄B = −kQ

S

∫
B̄

[
1 − 2e1 · r̄

S
+ (

r̄

S
)2

]− 1
2

(1 + v
(2)
dq̄B)ρ̄qdτ̄ (55)

Recalling binomial series expansion, we expand (55) as

ṼB̄B = −kQ

S

∫
B̄

[
1 + e1 · r̄

S
− 1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2 + ...

]
(1 + v

(2)
dq̄B)ρ̄qdτ̄ (56)
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provided that | − 2e1 · r̄
S

+ ( r̄
S
)2| < 1. We now express the above equation using the

following auxiliary terms

ṼB̄B = Z1 + Z2 (57)

where

Z1 = −kQ

S

∫
B̄

[
1 + e1 · r̄

S
− 1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2 + ...

]
ρ̄qdτ̄ (58)

Z2 = −kQ

S

∫
B̄

[
1 + e1 · r̄

S
− 1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2 + ...

]
v

(2)
dq̄B ρ̄qdτ̄ (59)

We first elaborate on the constituent terms of Z1 based on different orders of r̄
S
.

– Zero order terms (ZOT) O( r̄
S
)0:

ZOT = −kQ

S

∫
B̄

ρ̄qdτ̄
(44)= −kQQ̄

S
(60)

– First order terms (FOT) O( r̄
S
):

FOT = −kQ

S

∫
B̄

e1 · r̄
S

ρ̄qdτ̄ = −kQ

S2
e1 ·

∫
B̄

r̄ρ̄qdτ̄
(6)= 0 (61)

– Second order terms (SOT) O( r̄
S
)2:

SOT = −kQ

S

∫
B̄

[
−1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2

]
ρ̄qdτ̄

= kQ

2S3

∫
B̄

[
r̄2 − 3(e1 · r̄)2

]
ρ̄qdτ̄ (62)

Based on the geometry shown in Fig. 2, we can use (e1 · r̄)2 = r̄2− h̄2 to simplify
(62) as

SOT = kQ

2S3
(

∫
B̄

−2r̄2ρ̄qdτ̄ + 3
∫

B̄

h̄2ρ̄qdτ̄ ) (63)

Referring to Eq. 5, the first integral is related to the trace of q ĪB̄/C̄q , while the
second one describes q ĪB̄/C̄q in e1e1 direction, resulting in

SOT = − kQ

2S3

[
tr(q ĪB̄/C̄q ) − 3e1 · q ĪB̄/C̄q · e1

]
(64)

Therefore, using Eqs. 60, 61, and 64, we provide the approximation of Z1 in
Eq. 58 as

Z1 ≈ −kQQ̄

S

{
1 + 1

2Q̄S2

[
tr(q ĪB̄/C̄q ) − 3e1 · q ĪB̄/C̄q · e1

]}
(65)
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Now, we elaborate on Z2 in Eq. 59. Replacing q̄ with dq̄ in Eq. 27, we form the
expression for v

(2)
dq̄B , and rewrite Z2 as

Z2 = −kQ

S

∫
B̄

[
1 + e1 · r̄

S
− 1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2 + ...

]
1

2QR2

[
tr(qIB/Cq )

−3a1 · qIB/Cq · a1
]
ρ̄qdτ̄ (66)

The QCT and its trace produce only terms of second degree in r . Therefore replacing
a1 with e1, and R with S does not remove any terms of interest, resulting in

Z2 ≈ − k

2S3

[
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

]
∫

B̄

[
1 + e1 · r̄

S
− 1

2
(
r̄

S
)2 + 3

2
(e1 · r̄

S
)2 + ...

]
ρ̄qdτ̄ (67)

Since k

2S2

[
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

]
contains O( r

S
)2 terms, we only keep the

O( r
S
)0 term in the integral of the above equation, and simplify it as

Z2 ≈ − k

2S3

[
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

] ∫
B̄

ρ̄qdτ̄

= − kQ̄

2S3

[
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

]
(68)

Finally, using Eqs. 65, and 68, we analytically express ṼB̄B as the second order
approximation of the force function using local expansions about the CoCh in Eq. 57
as

ṼB̄B = −kQQ̄

S
(1 + v

(2)
B̄B

+ v̄
(2)
B̄B

) (69)

where

v
(2)
B̄B

= 1

2QS2

[
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

]
(70)

v̄
(2)
B̄B

= 1

2Q̄S2

[
tr(q ĪB̄/C̄q ) − 3e1 · q ĪB̄/C̄q · e1

]
(71)

It is noted that the exact force function between B and B̄, i.e. VB̄B , can be written
as

VB̄B = −kQQ̄

S
(1 +

∞∑
i=1

v
(i)

B̄B
+

∞∑
j=1

v̄
(j)

B̄B
+

∞∑
i=1

∞∑
j=1

v̄
(ij)

B̄B
) (72)

where v
(i)

B̄B
is the collection of the terms in O( r

S
)i , v(j)

B̄B
is the collection of the terms

in O( r̄
S
)j , and v

(ij)

B̄B
is the collection of the terms in O

(
( r
S
)i( r̄

S
)j

)
. Therefore, the

approximation in Eq. 69 and the corresponding force and torque (developed in the
following sections) are valid provided that the distance between Cq and C̄q is much
larger than the distance of the farthest charge element on B from Cq and the distance
of the farthest charge element on B̄ from C̄q .
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Resultant Force from Approximate Force Function

A similar proof provided in the Appendix can be used to show that the force applied
to B̄ from charged body B can be computed by finding the gradient of the associated
force function with respect to S as

FB̄B = ∇SVB̄B (73)

The gradient of the second order force function approximation in Eq. 69 is then
computed as

∇SṼB̄B = kQQ̄

S2
(1 + v

(2)
B̄B

+ v̄
(2)
B̄B

)∇SS − kQQ̄

S
∇S(v

(2)
B̄B

+ v̄
(2)
B̄B

) (74)

Using the definition of S based on the associated magnitude and unit vector, ∇SS in
the above equation is expressed as

∇SS = e1 (75)

Now we compute ∇Sv
(2)
B̄B

as

∇Sv
(2)
B̄B

(70)= ∇S

(
1

2QS2

(
tr(qIB/Cq ) − 3e1 · qIB/Cq · e1

))
(76)

Since (76) and (31) are analogous, we compute ∇Sv
(2)
B̄B

by replacing R and a1 with S

and e1, respectively, in Eq. 33, resulting in

∇Sv
(2)
B̄B

= − 1

QS3

[
tr(qIB/Cq )e1 − 6e1 · qIB/Cq · e1e1 + 3qIB/Cq · e1

]
(77)

Similar to the results shown in Eqs. 76 and 77, we can compute ∇Sv̄
(2)
B̄B

as

∇Sv̄
(2)
B̄B

(71)= − 1

Q̄S3

[
tr(q ĪB̄/C̄q )e1 − 6e1 · q ĪB̄/C̄q · e1e1 + 3q ĪB̄/C̄q · e1

]
(78)

Finally, based on the results of Eqs. 75, 77, and 78, we express the second order
approximation of the force applied to B from B̄ as

F̃B̄B = kQQ̄

S2
(e1 + F(2)

B̄B
+ F̄(2)

B̄B
) (79)

where F(2)
B̄B

, the collection of the terms inO( r
S
)2, and F̄(2)

B̄B
, the collection of the terms

in O( r̄
S
)2, are computed as

F(2)
B̄B

= 1

QS2

[
3

2

(
tr(qIB/Cq ) − 5e1 · qIB/Cq · e1

)
e1 + 3qIB/Cq · e1

]
(80)

F̄(2)
B̄B

= 1

Q̄S2

[
3

2

(
tr(q ĪB̄/C̄q ) − 5e1 · q ĪB̄/C̄q · e1

)
e1 + 3q ĪB̄/C̄q · e1

]
(81)
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Approximation of theMoment About theMass Center

Replacing q̄ with dq̄ in Eq. 42, we can express the approximate moment generated
about B∗ due to the application of Coulomb force from charge element dq̄ to B as

M̃dq̄/B∗ = RCq × F̃dq̄B − 3kdq̄

R3
a1 × (qIB/Cq · a1) (82)

Therefore, the approximate moment generated about B∗ due to the Coulomb force
applied from B̄ to B is expressed as

M̃B̄/B∗ =
∫

B̄

RCq × F̃dq̄B −
∫

B̄

3kdq̄

R3
a1 × (qIB/Cq · a1) (83)

The second integral can produce only terms of second degree in r/R since qIB/Cq

contains terms of second degree in r . Therefore replacing a1 with e1, and R with
S does not remove any terms of interest. Now, we can simplify the second order
approximation of the moment about the mass center of B̄ as

M̃B̄/B∗ = RCq ×
∫

B̄

F̃dq̄B − 3k

S3
e1 × (qIB/Cq · e1)

∫
B̄

dq̄

= RCq × F̃B̄B − 3kQ̄

S3
e1 × (qIB/Cq · e1) (84)

The resulting moment can alternatively be expressed in terms of the gradient of the
body-body force function as

M̃B̄/B∗ = RCq × ∇SṼB̄B − 3kQ̄

S3
e1 × (qIB/Cq · e1) (85)

It should be noted that RCq × F̃B̄B is a moment generated due to the deviation of Cq

from B∗. If these two points coincide, i.e. RCq = 0, the approximate moment about
B∗ is simplified as

M̃B̄/B∗ = −3kQ̄

S3
e1 × (qIB/Cq · e1) (86)

We observe that in the body-body model of charged spacecraft, local expan-
sions about the CoCh of each body result in expressions containing the relative
distance between the centers of charge of interacting bodies, the entire charge of each
spacecraft, as well as the QCT of each body about its CoCh.

Particle-Body Approximations Using Expansions About CoM

In this section, we derive the approximations using the mass center to compare the
results with those previously derived in Section “Particle-Body Coulomb Approxi-
mations Using Expansions About CoCh” using the center of charge. In this situation,
we denote r as the position vector of the charge element from B∗, while R is a vector
directed from q̄ to B∗ as shown in Fig. 3. Using this notation, since the measurements
are performed based on the origin of the expansion (CoM), some of the expressions in
the new derivations become analogous to those developed before. The only difference
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Fig. 3 Center of mass as the origin of particle-body expansions

is that these terms are now measured from the CoM. For instance, the charge tensor
is now computed about the CoM and denoted by qIB/B∗

. This tensor can be obtained
by applying the parallel axis theorem to qIB/Cq as presented in Lemma 2.

Force Function

In order to compute the force function and generate the approximation about the
mass center, we follow the procedure presented in Eqs. 14–24. Since r is measured
from B∗, the first order term in force function in Eq. 21 is not zero anymore, and
must be considered in the force function development. Therefore, the second order
approximation of the force function is modified as

Ṽq̄B = −kq̄Q

R
(1 + v

(1)
q̄B + v

(2)
q̄B) (87)

where

v
(1)
q̄B = − 1

QR
a1 ·

∫
B

rρqdτ = − 1

QR
a1 · PB/B∗

(88)

v
(2)
q̄B = 1

2QR2

[
tr(qIB/B∗

) − 3a1 · qIB/B∗ · a1
]

(89)

Since r is measured from the CoM, the integral in Eq. 88 has been replaced by the
dipole moment measured from the CoM. Using (1), PB/B∗

can also be expressed as

PB/B∗ = QRCq (90)

It should be noted that in the particle-body model of charged spacecraft, local expan-
sions about the CoM of the body result in expressions containing the charge of the
particle, the total charge of the interacting body, the relative distance between the
charge particle and the CoM of the interacting body, the dipole moment of the space-
craft, as well as the charge tensor about the CoM of the body. Furthermore, the
approximation in Eq. 87 and the corresponding force and torque (developed in the
following sections) are valid if the distance between B∗ and q̄ is much greater than
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the distance between the CoM of the body and the corresponding farthest charge
element.

Resultant Force from Approximate Force Function

In order to generate the approximate force vector, we compute the gradient of Eq. 87
with respect to R as

∇RṼq̄B = kq̄Q

R2
(1 + v

(1)
q̄B + v

(2)
q̄B)∇RR − kq̄Q

R
∇R(v

(1)
q̄B + v

(2)
q̄B)

(30)= kq̄Q

R2
(1 + v

(1)
q̄B + v

(2)
q̄B)a1 − kq̄Q

R
∇R(v

(1)
q̄B + v

(2)
q̄B) (91)

All terms in the above equation have already been calculated in Section “Resultant
Force from Approximate Force Function” except ∇Rv

(1)
q̄B . This new term is computed

as

∇Rv
(1)
q̄B = 1

QR2
∇RR (a1 · PB/B∗

) − 1

QR
∇R(a1 · PB/B∗

) (92)

Using (30) and (32), we simplify the above expression as

∇Rv
(1)
q̄B = 2

QR2
(a1 · PB/B∗

)a1 − 1

QR2
PB/B∗

(93)

As such, the contribution of the first order terms in the gradient of the force function
of Eq. 91 is expressed as

kq̄Q

R2
v

(1)
q̄Ba1 − kq̄Q

R
∇Rv

(1)
q̄B

(88,93)= −3kq̄

R3
(a1 · PB/B∗

)a1 + kq̄

R3
PB/B∗

(94)

Finally, using the CoM as the origin of local expansions, we can analytically express
the second order approximate force applied to body B as

F̃q̄B = kq̄Q

R2
(a1 + F(1)

q̄B + F(2)
q̄B) (95)

where

F(1)
q̄B = − 3

QR
(a1 · PB/B∗

)a1 + 1

QR
PB/B∗

(96)

F(2)
q̄B = 1

QR2

{
3

2

[
tr(qIB/B∗

) − 5a1 · qIB/B∗ · a1
]
a1 + 3qIB/B∗ · a1

}
(97)

Moment Vector

According to the geometry shown in Fig. 3, we compute the moment about B∗ as

Mq̄/B∗ =
∫

B

r × Fq̄dq =
∫

B

(r′ − R) × Fq̄dq = −R × Fq̄B (98)

The Journal of the Astronautical Sciences (2020) 67:829–862 845



Expressing R in terms of its unit vector and magnitude, and using the forcing terms
in Eq. 95, we modify the second order approximate moment as

Mq̄/B∗ = −Ra1 × kq̄Q

R2
(a1 + F(1)

q̄B + F(2)
q̄B)

= − kq̄

R2
a1 × (PB/B∗ + 3

R

qIB/B∗ · a1) (99)

We note that the results presented in Sections “Resultant Force from Approximate
Force Function” and “Moment Vector” are all in agreement with those in [5].

Body-Body Approximations Using Expansions About CoM

In this section, we derive the approximations using the mass center to compare the
results with those previously developed in Section “Body-Body Coulomb Approxi-
mations Using Expansions About CoCh” using the center of charge. In this situation,
r is measured from B∗, r̄ is measured from B̄∗, R is directed from dq̄ to B∗, and
S is directed from B̄∗ to B∗ as shown in Fig. 4. Using this notation, since the mea-
surements are performed based on the origin of the expansion (CoM), some of the
expressions in the new derivations become analogous to those generated before. The
only difference is that these terms are now measured from the CoM. For instance, the
charge tensors of B and B̄ are computed about the corresponding CoM and denoted
by qIB/B∗

, q ĪB̄/B̄∗
. They can be calculated by applying the parallel axis theorem

presented in Lemma 2 to qIB/Cq and q ĪB̄/C̄q , respectively.

Force Function

In order to compute the force function and generate the approximation about the mass
center, we follow the procedure presented in Eqs. 48–68. Since r is measured from
B∗, the first order term in force function of Eq. 52 is not zero anymore. Therefore,
using (87), we express (52) as

ṼB̄B = −
∫

B̄

kQ

R
(1 + v

(1)
dq̄B + v

(2)
dq̄B)ρ̄qdτ̄ (100)

where

v
(1)
dq̄B

(88)= − 1

QR
a1 · PB/B∗

(101)

v
(2)
dq̄B

(89)= 1

2QR2

[
tr(qIB/B∗

) − 3a1 · qIB/B∗ · a1
]

(102)

We first work on the integral of the first order term which is expressed as

−
∫

B̄

kQ

R
v

(1)
dq̄B ρ̄dτ̄ = (

∫
B̄

k

R2
a1ρ̄qdτ̄ ) · PB/B∗

(103)
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Fig. 4 Derivations of body-body interactions using expansions about CoM

Based on the geometry shown in Fig. 4, we replace a1
R2 with

a1
R2

= R1

R3
= (S − r̄)

|S − r̄|(−3)
= (S − r̄)

[
(S − r̄)2

](− 3
2 )

= (S − r̄)
[
S · S − 2S · r̄ + r̄2

](− 3
2 )

= (S − r̄)
S3

[
1 − 2

S
S

· r̄
S

+ (
r̄

S
)2

](− 3
2 )

(54)= (S − r̄)
S3

[
1 − 2e1 · r̄

S
+ (

r̄

S
)2

](− 3
2 )

(104)

Provided that | − 2e1 · r̄
S

+ ( r̄
S
)2| < 1, the binomial expansion of Eq. 104 results in

a1
R2

= (S − r̄)
S3

[
1 + 3e1 · r̄

S
− 3

2
(
r̄

S
)2 + 15

2
(e1 · r̄

S
)2 + ...

]
(105)

Now we can express (103) as

(

∫
B̄

k

R2
a1ρ̄qdτ̄ ) · PB/B∗ =

(∫
B̄

k(S − r̄)
S3

[
1 + 3e1 · r̄

S
− 3

2
(
r̄

S
)2 + ...

]
ρ̄qdτ̄

)
· PB/B∗

(106)

Sine PB/B∗
produces only terms of first degree in r , in the above integrals, we only

keep terms up to first degree in r̄ , resulting in

(

∫
B̄

k

R2
a1ρ̄qdτ̄ ) · PB/B∗ ≈ kS

S3

(∫
B̄

(1 + 3e1 · r̄
S

)ρ̄qdτ̄

)
· PB/B∗

− k

S3
(

∫
B̄

r̄ρ̄qdτ̄ ) · PB/B∗
(107)
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This equation can be rewritten as

(

∫
B̄

k

R2
a1ρ̄qdτ̄ ) · PB/B∗ ≈ k

S2
(e1 · PB/B∗

)

∫
B̄

ρ̄qdτ̄

+3k

S3
(e1 · PB/B∗

)(e1 ·
∫

B̄

r̄ρ̄qdτ̄ )

− k

S3
(

∫
B̄

r̄ρ̄qdτ̄ ) · PB/B∗
(108)

Since r̄ is measured from the CoM of B̄, according to Eq. 45, the integral
∫
B̄
r̄ρ̄qdτ̄

can be replaced by P̄B̄/B̄∗
. Now (108) and therefore (103) are simplified as

−
∫

B̄

kQ

R
v

(1)
dq̄B ρ̄dτ̄ = (

∫
B̄

k

R2
a1ρ̄qdτ̄ ) · PB/B∗

≈ kQ̄

S2
(e1 · PB/B∗

) + 3k

S3
(e1 · PB/B∗

)(e1 · P̄B̄/B̄∗
)

− k

S3
(P̄B̄/B̄∗ · PB/B∗

) (109)

In order to compute the remaining terms in Eq. 100, i.e. (− ∫
B̄

kQ
R

(1 +
v

(2)
dq̄B)ρ̄qdτ̄ ), we can use the result of the integral in Eq. 52 which has already been
presented in Eq. 69. However, since the origin of the expansions is not the CoCh, the
first order term in Eq. 61 does not vanish anymore, and is expressed as

FOT = −kQ

S2
e1 ·

∫
B̄

r̄ρ̄qdτ̄ = −kQ

S2
e1 · P̄B̄/B̄∗

(110)

Therefore, the remaining terms in Eq. 100 are computed as

−
∫

B̄

kQ

R
(1 + v

(2)
dq̄B)ρ̄qdτ̄ = −kQQ̄

S
(1 + 1

Q̄S
e1 · P̄B̄/B̄∗ + v

(2)
B̄B

+ v̄
(2)
B̄B

) (111)

Finally, using (109) and (111), we simplify the CoM-based second order approxima-
tion of force function presented in Eq. 100 as

ṼB̄B = −kQQ̄

S
(1 + v

(1)
B̄B

+ v̄
(1)
B̄B

+ v
(11)
B̄B

+ v
(2)
B̄B

+ v̄
(2)
B̄B

) (112)

where v
(1)
B̄B

is the collection of the terms in O( r
S
), v̄(1)

B̄B
is the collection of the terms

in O( r̄
S
), v(11)

B̄B
is the collection of the terms of in O

(
( r
S
)( r̄

S
)
)
, v(2)

B̄B
is the collection
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of the terms in O( r
S
)2, and v̄

(2)
B̄B

is the collection of the terms in O( r̄
S
)2. These terms

are computed as

v
(1)
B̄B

= − 1

QS
e1 · PB/B∗

(113)

v̄
(1)
B̄B

= 1

Q̄S
e1 · P̄B̄/B̄∗

(114)

v
(11)
B̄B

= − 3

QQ̄S2
(e1 · PB/B∗

)(e1 · P̄B̄/B̄∗
) + 1

QQ̄S2
(PB/B∗ · P̄B̄/B̄∗

) (115)

v
(2)
B̄B

(70)= 1

2QS2

[
tr(qIB/B∗

) − 3e1 · qIB/B∗ · e1
]

(116)

v̄
(2)
B̄B

(71)= 1

2Q̄S2

[
tr(q ĪB̄/B̄∗

) − 3e1 · q ĪB̄/B̄∗ · e1
]

(117)

It should be noted that in the body-body model of charged spacecraft, local expan-
sions about the CoM of each body result in expressions containing the total charge
of each body, the relative distance between the centers of mass of interacting bodies,
the dipole moments of the interacting spacecraft, as well as the charge tensor about
the mass center of each spacecraft. Furthermore, the approximation in Eq. 112 and
the corresponding force and torque (developed in the following sections) are valid if
the distance between B∗ and B̄∗ is much greater than the distance between the CoM
of each body and the corresponding farthest charge element.

Resultant Force from Approximate Force Function

In order to generate the approximate force vector using local expansions about CoM,
we compute the gradient of Eq. 112 with respect to S as

F̃B̄B = ∇SṼB̄B = kQQ̄

S2
(1 + v

(1)
B̄B

+ v̄
(1)
B̄B

+ v
(11)
B̄B

+ v
(2)
B̄B

+ v̄
(2)
B̄B

)∇SS

−kQQ̄

S
∇S(v

(1)
B̄B

+ v̄
(1)
B̄B

+ v
(11)
B̄B

+ v
(2)
B̄B

+ v̄
(2)
B̄B

)

(75)= kQQ̄

S2
(1 + v

(1)
B̄B

+ v̄
(1)
B̄B

+ v
(11)
B̄B

+ v
(2)
B̄B

+ v̄
(2)
B̄B

)e1

−kQQ̄

S
∇S(v

(1)
B̄B

+ v̄
(1)
B̄B

+ v
(11)
B̄B

+ v
(2)
B̄B

+ v̄
(2)
B̄B

) (118)

Since v
(1)
B̄B

in the above equation is analogous to v
(1)
dq̄B in Eq. 101, following the

procedure presented in Eqs. 92 and 93, we can compute the new term ∇Sv
(1)
B̄B

by
replacing R with S, and a1 with e1, resulting in

∇Sv
(1)
B̄B

= 2

QS2
(e1 · PB/B∗

)e1 − 1

QS2
PB/B∗

(119)
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Similarly, we express ∇Sv̄
(1)
B̄B

as

∇Sv̄
(1)
B̄B

= − 2

Q̄S2
(e1 · P̄B̄/B̄∗

)e1 + 1

Q̄S2
P̄B̄/B̄∗

(120)

Furthermore, ∇Sv
(11)
B̄B

is computed as

∇Sv
(11)
B̄B

(115)= 6

QQ̄S3
(e1 · PB/B∗

)(e1 · P̄B̄/B̄∗
)∇SS

− 3

QQ̄S2
(∇Se1 · PB/B∗

)(e1 · P̄B̄/B̄∗
)

− 3

QQ̄S2
(e1 · PB/B∗

)(∇Se1 · P̄B̄/B̄∗
)

− 2

QQ̄S3
(PB/B∗ · P̄B̄/B̄∗

)∇SS (121)

Using (75) and

∇Se1 = 1

S
(U − e1e1) (122)

we simplify ∇Sv
(11)
B̄B

as

∇Sv
(11)
B̄B

= 12

QQ̄S3
(e1 · PB/B∗

)(e1 · P̄B̄/B̄∗
)e1 − 3

QQ̄S3
(e1 · P̄B̄/B̄∗

)PB/B∗

− 3

QQ̄S3
(e1 · PB/B∗

)P̄B̄/B̄∗ − 2

QQ̄S3
(PB/B∗ · P̄B̄/B̄∗

)e1 (123)

Similar to the results presented in Eqs. 77 and 78, we compute ∇Sv
(2)
B̄B

and ∇Sv̄
(2)
B̄B

as

∇Sv
(2)
B̄B

= − 1

QS3

[
tr(qIB/B∗

)e1 − 6e1 · qIB/B∗ · e1e1 + 3qIB/B∗ · e1
]
(124)

∇Sv̄
(2)
B̄B

= − 1

Q̄S3

[
tr(q ĪB/B∗

)e1 − 6e1 · q ĪB/B∗ · e1e1 + 3q ĪB/B∗ · e1
]
(125)

Finally, the analytical expression of the second order approximation of the
resultant force applied to B from B̄ in Eq. 118 is presented as

F̃B̄B = kQQ̄

S2
(e1 + F(1)

B̄B
+ F̄(1)

B̄B
+ F(2)

B̄B
+ F̄(2)

B̄B
+ F(11)

B̄B
) (126)

where F(1)
B̄B

is the collection of the terms in O( r
S
), F̄(1)

B̄B
is the collection of the terms

in O( r̄
S
), F(11)

B̄B
is the collection of the terms in O

(
( r
S
)( r̄

S
)
)
, F(2)

B̄B
is the collection of
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the terms in O( r
S
)2, and F̄(2)

B̄B
is the collection of the terms in O( r̄

S
)2. These terms are

computed as

F(1)
B̄B

= 1

QS

[
−3(e1 · PB/B∗

)e1 + PB/B∗]
(127)

F̄(1)
B̄B

= 1

Q̄S

[
3(e1 · P̄B̄/B̄∗

)e1 − P̄B̄/B̄∗]
(128)

F(11)
B̄B

= − 15

QQ̄S2
(e1 · PB/B∗

)(e1 · P̄B̄/B̄∗
)e1 + 3

QQ̄S2
(e1 · P̄B̄/B̄∗

)PB/B∗

+ 3

QQ̄S2
(e1 · PB/B∗

)P̄B̄/B̄∗ + 3

QQ̄S2
(P̄B̄/B̄∗ · PB/B∗

)e1 (129)

F(2)
B̄B

= 1

QS2

{
3

2

[
tr(qIB/B∗

) − 5e1 · qIB/B∗ · e1
]
e1 + 3qIB/B∗ · e1

}
(130)

F̄(2)
B̄B

= 1

Q̄S2

{
3

2

[
tr(q ĪB̄/B̄∗

) − 5e1 · q ĪB̄/B̄∗ · e1
]
e1 + 3q ĪB̄/C̄q · e1

}
(131)

Moment Vector

Replacing q̄ with dq̄ in Eq. 99, the moment generated by dq̄ about B∗ is computed as

Mdq̄/B∗ = −kdq̄

R2
a1 × (PB/B∗ + 3

R

qIB/B∗ · a1) (132)

Integrating this equation over B̄ results in

MB̄/B∗ = −
[∫

B̄

kdq̄

R2
a1 × PB/B∗ +

∫
B̄

3kdq̄

R3
a1 × (qIB/B∗ · a1)

]
(133)

The first integral in the above equation is the similar to the right-hand-side of Eq. 103
in which the dot product is replaced by the cross product. Therefore, it is computed
by changing the dot product before PB/B∗

to the cross product in Eq. 109

∫
B̄

kdq̄

R2
a1 × PB/B∗ ≈ kQ̄

S2
(e1 × PB/B∗

) + 3k

S3
(e1 · P̄B̄/B̄∗

)(e1 × PB/B∗
)

− k

S3
(P̄B̄/B̄∗ × PB/B∗

) (134)

The second integral in Eq. 133 can produce only terms of second and higher degrees
in r/R since qIB/B∗

contains terms of second degree in r . Therefore, replacing a1
with e1, and R with S does not remove any terms of interest. This results in

∫
B̄

3kdq̄

R3
a1 × (qIB/B∗ · a1) ≈ 3kQ̄

S3
e1 × (qIB/B∗ · e1) (135)
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Using the results of Eqs. 134 and 135, the second order approximation of the moment
moment about B∗ in Eq. 133 is computed as

M̃B̄/B∗ = −kQQ̄

S2

[
1

Q
(e1 × PB/B∗

) + 3

QQ̄S
(e1 · P̄B̄/B̄∗

)(e1 × PB/B∗
)

− 1

QQ̄S
(P̄B̄/B̄∗ × PB/B∗

) + 3

QS
e1 × (qIB/B∗ · e1)

]
(136)

We note that the results presented in Sections “Resultant Force from Approximate
Force Function” and “Moment Vector” are all in agreement with those in [8].

Simulation Results

Particle-Body Interaction

Consider bar B with the length of 6 m, (L = 3 m). Mass center B∗ is always
located at the geometric center of the bar. This body contains two charged particles,
q1 = 4 × 10−5 C located at the distance L0 (−L ≤ L0 ≤ L) from B∗, while
q2 = 4× 10−5 C is at the right end of the bar. This represents a dumbbell model of a
spacecraft. Charged particle q̄ = 4× 10−5 C is located at the origin of the x − y ref-
erence frame. It is assumed that B∗ is always on the y axis. We denote the distance
between q̄ and B∗ as d . Therefore, the configuration of the bar relative to q̄ is deter-
mined by d and θ as shown in Fig. 5. Changing d and θ respectively in the range
2L ≤ d ≤ 5L and 0 ≤ θ ≤ π , we compute the force function, net force, and resul-
tant moment about B∗, for each configuration. We use exact calculations to compute
the desired quantities. Using the schematic shown in Fig. 5a and b, we then utilize the
CoM-based expansions developed in Section “Particle-Body Approximations Using
Expansions About CoM” and CoCh-based expansions developed in Section “Particle-
Body Coulomb Approximations Using Expansions About CoCh” to compute the

(a) Particle-body interaction using the expansion
about the mass center

(b) Particle-body interaction using the expansion
about the center of charge

Fig. 5 Schematic for the particle-body example
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desired quantities. The percentage error of the approximate force function, resultant
force, moment at each configuration (θi, dj ) is calculated as

eV
i,j = ‖V exact

i,j − V
approx.
i,j ‖

‖V exact
i,j ‖ × 100 (137)

eFi,j = ‖Fexact
i,j − Fapprox.

i,j ‖
‖Fexact

i,j ‖ × 100 (138)

eMi,j = ‖Mexact
i,j − Mapprox.

i,j ‖
‖Mexact

i,j ‖ + 1
× 100 (139)

It should be noted that for this planar system, the moment is a scalar. Also since
at some configurations, the moment becomes zero, to avoid any singularity in the
evaluation of the relative error in Eq. 139 the absolute value of the exact moment is
shifted by a value of one in the denominator.

Figures 6, 7 and 8 compare the percentage error in the force function, force, and
moment for three different systems with L0 = −L, L0 = 0, and L0 = L. As
shown in Fig. 6, when CoM and CoCh coincide, both methods result in the same
approximation errors. Figure 7 shows the error when L0 = 0, meaning that the CoCh
is deviated from the CoM by 1.5 m. It is observed that using CoCh-based expansion
generates a wider region in the configuration space with small errors than using the
CoM-based expansion. As shown in Fig. 8, this region increases even more when two
particles are located on the right end of the bar, L0 = L, meaning that the CoCh is

Fig. 6 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion for L0 = −L
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Fig. 7 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion for L0 = 0

deviated from the CoM by 3 m. It should be noted that the percentage error for the
force function, force, and moment using CoCh-based expansion is on the order of
%10−13. In conclusion, comparing these results indicate that as the CoCh is separated

Fig. 8 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion for L0 = L
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from the CoM, for most of the configurations, the approximations using the CoCh
provide more accurate results.

We also want to investigate the required minimum distance of the bar from the
particle in both methods to reach a desired accuracy as we sweep the location of
charge q1 on bar B. In order to do so, we define this problem mathematically as

For L0 from − L to L

Find (
d

L
)min, such that ∀ dj

L
≥ (

d

L
)min, ∀ θi ∈ [0, 2π ] : (140)

eV
i,j ≤ eV

desired , eFi,j ≤ eFdesired , eMi,j ≤ eMdesired

end

It should be noted that ( d
L
)min obtained from the above statement guarantees that

if we pick a distance d such that d/L ≥ (d/L)min, for all configurations of body
B, the error is less than edesired . We find (d/L)min using CoM-based expansion and
CoCh-based expansion, and then compare the results. In order to solve this problem
numerically, we fix the location of q1 at L0. Then we sweep d/L from 1.1L to 200L
with the spatial increments of L/30. For each value of d/Lwe change the orientation
of body by varying θ from 0 to 2π with the angular increments of π/10. Then for
the given d/L we calculate the percentage error at all orientations. If the percentage
error for each orientation is less than the desired one, we pick the value of d/L as
(d/L)min, otherwise we move to the next value of d/L. Therefore, for the given
value of L0 we can solve the stated problem. We then move q1 to another location by
changingL0, and repeat the procedure explained previously to find the corresponding
(d/L)min.

We solve the problem stated in Eq. 140 for the system described previously with
the particle-body interaction for the selected error eV

desired = eFdesired = eMdesired =
%1 and eV

desired = eFdesired = eMdesired = %0.01. Figure 9 shows (d/L)min versus the
distance between CoM and CoCh as we change L0 from −L to L. When q1 is located
at −L0, both CoM and CoCh coincide. Therefore, both methods result in the same
value for (d/L)min. As we move q1 to the right side of the bar, CoCh separates from
the CoM. As this deviation increases, it is observed that (d/L)min increases when we
use CoM-based expansion (See curves with and in Fig. 9) . However, (d/L)min

decreases when we use CoCh-based expansion (See curves with and in Fig. 9). It
is also observed that as we decrease the desired error, the deviation between (d/L)min

from the CoM- and CoCh-based expansions significantly increases. Therefore, as the
CoCh distances from the CoM, the expansion using the CoCh provides acceptable
accuracy when the particle is close to the body; however, this is not true for CoM-
based expansion. It should be noted that the above problem is a conservative case in
which we want to find (d/L)min to reach a desired accuracy for all orientations of the
body. However, if it is desired to reach a predefined accuracy for a given orientation,
the value of (d/L)min for either of these methods may drop or even become the same.
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Fig. 9 (d/L)min for different desired errors as a function of the distance between CoM and CoCh. :
CoCh-expansion with desired error %1, : CoM-expansion with desired error %1, : CoCh-expansion
with desired error %0.01, : CoM-expansion with desired error %0.01

Body-Body Interaction

Consider bars B and B̄ with the lengths of 6 m, (L = L̄ = 3 m). Mass centers
B∗ and B̄∗ are always located at the geometric centers of the bars. Charged parti-
cle q1 = 4 × 10−5 C is located at the distance L0 (−L ≤ L0 ≤ L) from B∗,
while q2 = 4 × 10−5 C is located at the right end of B. Furthermore, charged
particle q̄1 = q1 is located at the distance L̄0 (−L̄ ≤ L̄0 ≤ L̄) from B̄∗, while
q̄2 = q2 is at the right end of B̄. The CoM of B̄ is at the origin of the x − y

reference frame while this body always lies on the x axis. We denote the dis-
tance between B∗ and B̄∗ as d . The configuration of B is determined by θ̄ , d ,
and θ as shown in Fig. 10. Changing d and θ in the range 2L ≤ d ≤ 6L and
0 ≤ θ ≤ 2π , and considering θ̄ as a constant quantity, we compute the force
field, net force and moment about B∗ for each configuration. We use exact calcu-
lation to find these quantities. Then following the schematic shown in Fig. 10a and
b, we use the CoM-based expansion developed in Section “Body-Body Approxi-
mations Using Expansions About CoM”, and the CoCh-based expansions developed
Section “Body-Body Coulomb Approximations Using Expansions About CoCh” to
compute the desired quantities. The percentage errors are calculated using the same
way explained in the previous section. Figures 11, 12 and 13 compare the per-
centage errors for three systems described by (L0 = −L, L̄0 = −L̄, θ̄ = π/3),
(L0 = 0, L̄0 = 0, θ̄ = π/3), and (L0 = L, L̄0 = L̄/4, θ̄ = π/3), respectively. As
shown in Fig. 11, when CoM and CoCh coincide, both expansions result in the same
approximation errors. Figure 12 shows the error when L0 = 0 and L̄0 = 0, mean-
ing that the CoCh of each body is deviated from the corresponding CoM by 1.5 m.
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(a) Body-body interaction using the expansion
about the mass center

(b) Body-body interaction using the expansion
about the center of charge

Fig. 10 Schematic for the body-body example

It is observed that using CoCh-based expansion generates a wider region in the con-
figuration space with small errors than using the CoM-based expansion. As shown in
Fig. 13 this region increases even more when L0 = L and L̄ = L/4.

Fig. 11 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion L0 = −L, L̄0 = −L̄, and θ̄ = π/3
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Fig. 12 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion L0 = 0, L̄0 = 0, and θ̄ = π/3

Fig. 13 The percentage error of the force function, resulting force and moment about B∗ using CoM
expansion and CoCh expansion for L0 = L, L̄0 = L̄/4, and θ̄ = π/3
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We also want to investigate the required minimum distance of the bars in both
methods to reach a desired accuracy as we sweep the location of charge q1 on bar B.
In order to do so, we revise the problem stated in Eq. 140 as

Given θ̄ and L̄0

For L0 from − L to L

Find (
d

L
)min, such that ∀ dj

L
≥ (

d

L
)min, ∀ θi ∈ [0, 2π ] : (141)

eV
i,j ≤ eV

desired , eFi,j ≤ eFdesired , eMi,j ≤ eMdesired

end

We solve this problem for the system described previously with body-body inter-
action picking the desired percentage errors as eV

desired = eFdesired = eMdesired = %1,
and eV

desired = eFdesired = eMdesired = %0.01. Figures 14 and 15 show the values
of (d/L)min versus the distance between CoM and CoCh using both approxima-
tion methods for two cases: (θ̄ = π/3, L̄0 = −L̄) and (θ̄ = π/3, L̄0 = L̄/2),
respectively. As we move q1 to the right side of the bar, the distance between the
CoM and CoCh increases. As these two points separate more, it is observed that
(d/L)min increases when we use CoM-based expansion (See curves with and in
Figs. 14 and 15). However, (d/L)min decreases when we use CoCh-based expansion
(See curves with and in Figs. 14 and 15). These figures also indicate that as we
decrease the desired error, the deviation between (d/L)min using the CoM expansion
and CoCh expansion significantly increases. Therefore, as the CoCh distances from
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Fig. 14 (d/L)min for different desired percentage errors as a function of the distance between CoM and
CoCh for the system with L̄0 = −L̄ and θ̄ = π/3. : CoCh-expansion with desired error %1, : CoM-
expansion with desired error %1, : CoCh-expansion with desired error %0.01, : CoM-expansion with
desired error %0.01
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the CoM, the expansion using the CoCh provides acceptable accuracy when the bod-
ies are close to each other; however, this is not true for the CoM-based expansion.
Furthermore, as it is shown in Fig. 15 due to the deviation of the CoM and CoCh
of B̄, for a given percentage error, CoM and CoCh methods do not have the same
(d/L)min when the CoM and CoCh of B coincide. It should be noted that similar to
the particle-body system, the above problem is a conservative case in which we find
(d/L)min to reach a desired accuracy for all orientations of B. However, if we want
to reach a desired accuracy for a given orientation of B, the value of (d/L)min for
either of these methods may drop or even become the same.

Conclusion

In this paper, we have derived closed-form approximations to the force function (or
electrostatic potential) of a pair of charged spacecraft assuming either particle-body
or body-body interactions. This is followed by the derivation of the second order
approximation of the resultant force, and the corresponding moment about the cen-
ter of mass (CoM) of the interacting spacecraft. These formulations can eventually
be used in the simulation or analytical analysis of the behavior of two charged space-
craft. Unlike the previous approximations which use expansions about the CoM of
each body, the presented method in this paper uses the center of charge (CoCh)
to derive the approximations. We have first generated the particle-body and body-
body second order approximations for the force function. Then using the gradient,
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we developed approximate force and the corresponding moment about the CoM of
the body. Since CoCh has been used as the origin of the expansion, the resulting
approximations have been expressed in terms of the entire charge of each body, the
relative location of the centers of charge of the interacting bodies, and the quadrupole
charge tensor (QCT) of each body about the corresponding CoCh. Shifting the ori-
gin of the expansion from the CoCh to the CoM, we have recovered the CoM-based
approximations which have been presented in the literature. We have then used both
CoM- and CoCh-based methods to compute the force function, force, and moment in
particle-body and body-body examples. As it has been shown, the CoCh expansions
are generally more accurate when the distance between the CoCh and the CoM is a
significant fraction of the separation distance.

Appendix

In this appendix, we prove that for body B the following resultant force which is
computed based on Eq. 13,

Fq̄B = kq̄

∫
B

r′

r ′3 ρqdτ (142)

can be evaluated by using the gradient of the force function with respect to R.
Using (14), the gradient of the force function of the entire body with respect to R

is computed as

∇RVq̄B = kq̄

∫
B

1

r ′2∇Rr′ρqdτ (143)

Based on the geometry shown in Fig. 1, one can compute ∇Rr′ as

∇Rr′ = ∇R

[
(R + r)2

] 1
2

=
[
(R + r)2

]− 1
2
(R + r) · ∇R(R + r)

= r′

r ′ · [(∇RR) + 0] (144)

Knowing that ∇RR = U , Eq. 144 results in

∇Rr′ = r′

r ′ (145)

Using the result of Eq. 145, one can simplify (146) as

∇RVq̄B = kq̄

∫
B

r′

r ′3 ρqdτ (146)

which is exactly the same as Eq. 142.
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