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Abstract

Accurate models for spacecraft relative dynamics are essential to the design of high-
precision control and long-term estimation. In the literature, numerous analytical
models have been proposed that describe, with different degrees of accuracy, the rel-
ative dynamics in presence of specific perturbations. These models however may be
limited for future missions, like long-baseline formation flying, that will require ana-
lytical formulations capable of considering the influence of different perturbations
at the same time, in order to meet the high-demanding mission requirements. The
aim of this Note is to provide a general and flexible framework for the inclusion of
arbitrary perturbations into the equations of relative motion. The framework decou-
ples the perturbations influence from the Keplerian component of the motion, so that
designers can include the perturbations of interest according to the mission scenario.
In the future, the proposed framework might be used by autonomous spacecraft for
real-time reconfiguration of the guidance system in response to a changed operating
scenario. The inclusion of arbitrary zonal harmonics perturbations and atmospheric
drag into our framework is discussed.
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Introduction

Relative motion dynamic models are fundamental for the study of space operations
involving coordination of two or more spacecraft, such as formation flying, ren-
dezvous and in-orbit assembly of orbital structures. Accurate prediction and analysis
of the evolution of relative position and velocity, especially in the long term, require
accurate models that include several orbital perturbations that may influence the
spacecraft dynamics.

Many models describing the relative motion in the local-vertical local-horizon
(LVLH) frame under the influence of different perturbations have been proposed in
the literature. Kechichian [7] presented an exact relative dynamics model under J>
and atmospheric drag perturbations, applying Newtonian mechanics techniques. A
set of equations including a linear model for atmospheric drag was proposed in [5].
A linearized high-fidelity model with J, perturbation was presented in [9]. Pluym
and Damaren [8] proposed a relative motion model which includes a second order
approximation of the J, perturbation together with a third order approximation of
the differential gravity (i.e. the difference between the two spacecraft gravity accel-
eration). Xu and Wang [11] used Lagrangian mechanic techniques to develop an
exact model of relative motion subject to J, perturbation. In [12] arbitrary zonal har-
monics perturbation was considered. Xu et al. [13] introduced lunar perturbation in
the relative motion dynamics description. A set of relative motion equations taking
into account third-body perturbation is also presented in [2], developed by means of
Lagrangian mechanics. A recent comprehensive survey on relative motion models,
which includes also equation sets developed in frames different from the LVLH, is
presented in [10].

Even if some of the previously cited works provide exact models, the authors only
considered a specific subset of perturbations. Extension of their results to include
other perturbations that may act on the spacecraft and influence the relative motion
is not straightforward. To this end a general framework for relative motion analysis
in the LVLH frame that can include different perturbations is needed. Casotto [3]
recently proposed a general set of equations for describing the relative dynamics in
presence of arbitrary perturbations. However, the influence of the orbital perturbation
on the dynamics, and in particular on the precession of the LVLH frame, is not evident
in the equations developed, since their contribution is not decoupled from the Kep-
lerian component of the motion. As a consequence, perturbations influence cannot
be properly analyzed. Moreover, since the author considers perturbations character-
ized by time-invariant parameters, orbital perturbations with parameters varying with
time, as in the case of time-varying atmosphere density or lunar perturbation in lower
Earth orbits, cannot be included.

The aim of this Note is to provide a general set of differential equations for the
exact description of relative motion dynamics in presence of arbitrary orbital per-
turbations. Unlike past models, the proposed model offers a structured approach for
perturbations inclusion, so that perturbations of interest can be readily introduced
according to the mission scenario. Such a capability is possible since the pertur-
bations effect on the relative dynamics is separated from the Keplerian component
of the motion, as opposed to [3]. This reconfigurability feature makes the model
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appealing for motion prediction and design of model-based nonlinear controllers and
observers. In particular, different controllers and observers can be designed using the
same set of equations but with different sets of perturbations included. In this way,
the controllers and observers obtained can address different mission scenario and can
be activated depending on the required accuracy, available computational resources,
perturbations to be considered in the current mission phase and so on. In addition,
in the proposed model perturbations effects can be analyzed separately. Differently
to previous works [11-13], the equation set proposed was developed using only vec-
tor calculus and simple geometric relations. As examples, we show how arbitrary
zonal harmonics perturbation and atmospheric drag can be included in the proposed
model. The equation set proposed in this Note can potentially accommodate many
other perturbations, like solar radiation pressure, third-body gravitational effects, etc.
Inclusion of these perturbations in the equation set developed is not discussed in the
following. Nevertheless, general guidelines for inclusion of their expression in the
inertial frame are provided.

General Equations of Relative Motion
Consider a passive spacecraft, in the following referred to as chief, orbiting a primary

body, and a spacecraft which is able to maneuver, denoted as deputy. The dynamics
of the two spacecraft is respectively given by

d?r %
dt2 - _r3r+dc (1)
d’rq Iz
— = By tdi+u )
2 3
dr r;

where pu is the primary body gravitational parameter, r is the spacecraft position
with respect to the primary body center of mass, d quantifies in terms of accelera-
tion the perturbations acting on the spacecraft, u is the deputy control vector [6]. The
subscript d denotes deputy’s parameters. When the subscript is dropped, the parame-
ter is referred to the chief, except for the perturbations. Vectors are denoted using the
bold font, e.g. v, and their Euclidean norm is denoted using the normal font, e.g. v.
Unit vectors are indicated using an hat, e.g. .

We define the local-vertical local-horizon frame F;, centered in the chief center of

mass, as follows:
2 a7 r ~ ~h
Fz={t,1,k}={—,k><l,—} 3)
r h

where b = hk = r x v is the chief massless angular momentum and v its velocity.
We also introduce an inertial frame as

Fi= [IJK} @

centered on the primary body center of mass. The unit vector K is aligned with the
primary body angular velocity vector.
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In the following, two different operators will be used for distinguishing between
the reference frame in which the time-derivatives are taken. Time-derivative in the
inertial frame will be denoted using Leibniz’s notation, i.e. with the operator d/d¢,
whereas the time-derivative in the LVLH frame will be denoted using Newton’s
notation, that is using an upper dot.

The coordinate change matrix from the inertial frame to the LVLH frame, Cf. :
Fi — JFi, is a function of the chief orbital elements (i, §2, 6), respectively the chief
orbit inclination, right ascension of the ascending node and true latitude [7],

. CCo — SRSPCi  SCo +CRSeCi  Sps;
C;(i,$2,0) = | —CcpSp —SpCeC;i —S0S9 +CCHC;i Cos; )

S0Si —CRS; Ci

The operator c,, and s, denote cos « and sin «, respectively. The LVLH frame angular
velocity and acceleration vectors, with respect to the inertial frame, are:

0= +o,]+ok &=dd+oy]+ok (6)

The angular velocity components in the LVLH frame are given by [7]:

0 di
Wy = Eblnxbln@—&— ECO&G (7a)
= —sini ‘H—ﬁ" 0 (7b)
wy = 7 sinicos 3 oo
e
Wy = - cost + T (7¢)

Let us express the disturbance on the chief in the LVLH frame as d. = d,, Xf +d., y} +

dc,zl},. Orbital parameters time-derivatives are provided by the Gauss variational
equations [6]:

di rcoso
a = Tdc,z (8a)
ds2 rsinf
e 8b
dt hsini ©° (80)
do h rsin@cosid (80)
iy c
dr — r2? hsini  °
Substitution of Eqs. 8 into 7 gives:
r h
wy = Edc’z’ wy =0, w;,= p) )

The terms w, and w, are also called steering rate of the orbital plane and orbital
rate [11].
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In order to compute the LVLH components of the angular acceleration @, we need
the analytical expression of i. Using Eqs. 1 and 9, the angular momentum time-
derivative in the LVLH frame is given by:

. dh
h=——wxh
dr
d2
=rx—r—w><h
dr?

=rxd.—owxh
= rix (dc,xi Vdeyj+ dc,zic) - (a)xi n a)zic) x hk
= rd, ,k (10)

Since h = leAc, we have that

h=rd., (1D

The LVLH components of @ are then given by:

1 .

e =5 (f«dw +rde, — wxrdw) (12a)
1

Dy = = (doy — 2w,7) (12b)
T

To describe the relative motion, we introduce the vectors p and p, respectively the
deputy relative position and velocity with respect to the chief (Fig. 1):

p=xi+yj+zk, p=xi+yj+ik (13)

primary
body

Fig. 1 Local-vertical local-horizon frame
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We can write deputy position and distance as

ra=r+p=0+x)i+yj+k (14)

ra =\ + 202 52 422 (15)
Time-derivative in F; of Eq. 14 gives the deputy velocity:
dry dr dp dr .
drg _dr  dp _dr 16
@ d A @ T PTexe (16
Differentiation of Eq. 16 leads to deputy acceleration:

d’rg  d&r P o L ( ) (17)
= — ® X @ X ® X (@ X

a2 a2 P P P P
Introducing (1) and (2) into (17), we obtain the general expression of the relative
motion:

Vg =

b+2wxp+é)xp+cox(wxp)——r3r+—3(r+p)——Ad+u (18)
r
d

where Ad is the differential perturbations acceleration vector:
Ad =dg —d. = Adyi + AdyJ + Adk (19)

In terms of LVLH components of p, we have the following set of second order
differential equations:

. I . . 1 r
I = <w§ — :—3) T+ WY — Wew,z + 2w,y + <T_2 — r_3> + Ady + u, (20a)
d d

= —w,x + <w3 +w? - ;;) Y+ wez — 2w,k + 2wy 2 + Ady + uy (20Db)
d

F = —waT — Wy + <wfj - 'L;) z— 2w,y + Ad, + u, (20¢)
r

d

where uy, uy and u, are the components of # along the LVLH unit vectors.

To propagate (20) and to compute @ and @ components in Egs. 9 and 12, we need
to know the chief distance and speed, i.e. r and 7. Chief velocity in the LVLH frame
is given by

vzj—:zf—kwxr:r'f—}-a)zr}' 2D
Further derivation of Eq. 21 with Eqgs. 9 and 12 gives:
%:bﬂoxv:('r’—wgr)i+dc,y}'+dc,zl} (22)
Combining (22) and (1), we obtain
= ol de (23)

The terms r and 7 can then be obtained by numerical integration of Eq. 23. Note that
d. x 1s in general a variable quantity, function of the time, of the chief position and/or
velocity and of many other variables and parameters according to the perturbations
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considered. In the following Sections, its expression will be provided for the zonal
harmonics perturbation and for the atmospheric drag.

Equations 11, 20 and 23 are the basis of our general framework for relative motion
description. Perturbations can be computed separately and then introduced in the
equations, in order to obtain an exact model of the relative motion under the influence
of the orbital perturbations of interest.

Remark 1 Equations 11, 20 and 23 can be transformed into a set of 9 first order
differential equations. From a system theory point of view, we have a system with
state vector x = [x, y,z,X, ¥, 2,7, F, h]T and input vector u. The quantities d ., dC 2
and Ad can be seen as system disturbances. The former two affect the LVLH frame
orientation, see Eqs. 9 and 12, as well as chief parameters r, 7 and h. The latter
influences the relative motion directly.

Remark 2 A more general expression for the LVLH angular velocity and acceleration
components is provided in [3], and repeated below for clarity’s sake:

r(dr . 1 .
a)x:];<@k), a)y=O, C()ZZ;<1)]) (24)

(2255 (- (5 9]
Kig.;) ,2;’ (1,])} (25h)

The third time derivative of the position vector (jerk) is given by

dr a (d*r n d (d*r n a (d*r\ d*r 26)
_ = — RN R RN v R RN RN
dr3 9r \ dr? ar \ dt? av \ dr2 ) dr?
where the term o (dzr /dtz) /0t accounts for time variation of the gravitational
parameter and of the perturbations’ parameters. In [3], the author considers this

term as being equal to zero under the assumption of constant mass distribution and
conservative force fields. This results in the following simplified expression for w:

) r[F (dr AP d?r &\ [ dr AN kra d*r @
= — | =] — . — 22— — . . v
=17 \ae n\az )\ a2 ar \ar2

used for later derivation in the reference.

Conversely, in our formulation only the gravitational parameter is assumed time-
invariant. Hence, the formulation in the present paper can take into account orbital
perturbations characterized by time-varying parameters, such as atmospheric drag
with time-dependent atmosphere density (see Remark 8), and the presence of a sec-
ond primary body (e.g. lunar perturbation in lower Earth orbits, see [13]). In addition,
in Eqs. 9 and 12 perturbations influence is explicit, as opposed to Eqgs. 24 and 25.
Note also that Egs. 9 and 12 can be obtained from Eqs. 24 and 25, observing that

$Br/de k=d,...

Wy =

SlI= >3

W, =
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Zonal Harmonics Perturbation
General Analytical Expression

Primary body gravity potential can be modeled using spherical harmonic series as

+o00

Req \*
wnwz—éP—Ejﬂf)&m@mw} (28)

k=2

where Req is the primary body equatorial radius, Ji are the zonal harmonics, P (&)
is the Legendre polynomial of order k

) — 1 d o/, . k 29
(6 = s (€ 1) 29)
and v is the angle between the primary body polar direction K and the spacecraft
position r, see Fig. 2 [6]. To include the effect of these perturbations in Eq. 20, we
must isolate the potential of a spherical body, i.e. —u/r (whose effect is already
included in Eq. 20), from the zonal harmonics potential, that is

+00

Req \*
mmw=%2(ﬁ>hme (30)

k=2

Zonal harmonics perturbation acceleration is given by minus the gradient of U, in
the spherical coordinates (r, ¥) [1],

Uy, . 13Uy, -

d; =-VUj; =— r— 31
Ji Ji ar r r a'(/f w ( )
Using the geometric relation
K = cosyF —siny (32)
+ K chief
ho Vi
w r
N\
equatorial A7 /~~<
' ~N o
plane - 0 \ J
( 7 g >
~ ~ \"*- i <
) ~———2"._node line

Fig.2 Chief orbital parameters
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and the chain rule, we can write (31) as follows,

. WUp~ 1 Uy dcosy 5
dj, === = S 5csy oy ¥
_ _aUJki"i‘ Sinl// 3Ujk 1}
- ar r dcos
_ _WUn, 10Uy (p . (33)
=~ '~ rocosy —cosyr

=a(r, y)F + B, ¥) (k — cos wi')

For the reader convenience, we defined the following accelerations

9 T Rea |
a(r,y) = — ;]Jk — ﬂZ Z(k +1) (_q> Ji Pr(cos ¥) (34)
r r — r
_ ey, _ﬂﬂo Req)k 3 P (cos )
po i) = rdcosy  r? k:2< - ) dcosy (35)
where
0P 1 At
98 2kk!dgktl ( - 1) (36)

Remark 3 Note that zonal harmonics perturbation is independent of §2, since the
zonal harmonics gravity potential is axisymmetric and depends only on » and .

Remark 4 In Eq. 33 it is easy to see that 8(r, ) is the gravity component pointing to
the equatorial plane due to zonal harmonics perturbations. The perturbation compo-
nent pointing to the primary body center of mass is given by a/(r, ¥) — B(r, ) cos ¥
instead.

Remark 5 If we denote with ri = rxi + Vyj + rzk the spacecraft position in the
inertial frame F;, we have that cos ¢ = rz/r. We can use this geometric relation to
simplify the expressions above and to avoid the use of the angle .

Differential Zonal Harmonics Perturbation

Using Eq. 33, we can obtain the expressions in the LVLH frame of the zonal
harmonics perturbation for the chief and the deputy.
For the chief, we know that # = i and

rcosy =rsinésini (37)

where (r, ¥) are chief spherical coordinates (see Fig. 2). Thus, Eq. 33 for the chief
in the LVLH frame simplifies in

d.c=a(r )i+ B ) (sini cos] + cosil}) (38)

since, given (5),

K = sinisin @i + sini cos 9}' + cosik 39
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For the deputy, we write (33) introducing deputy spherical coordinates (r4, ¥4),

dj.qa=0alq, Ya)rfa+ B(ra, Ya) (ff — cos ’»”d;'d>

A . (40)
= (a(ra, Ya) — B(ra, Ya) cos¥a) Fa + B(ra, Ya) K
The unit vector 74 is given by,
A 1 2 A A
Fa = — (4001 +yj +2k) (41
rd

Therefore, we can write the zonal harmonic perturbations acting on the deputy in the
LVLH frame as follows,

dj.a= I:(Ol(”da Ya) — B(ra, ¥a) cos Ya) = ﬂ + B(ra, ¥q) sini Sin@] i
+ [ ((ra, Ya) — B(ra, va) cos Yg) = ~ + B(ra, Ya) sini cos 9] Jj 42
+ | (@(ra, Ya) — B(ra, Ya) cos Yra) = =+ B(ra, Va) COSl]

The differential zonal harmonics perturbation is finally given by,

Ad]k = d./k,d - d./k,c

= |:(05d — Ba cos ¥yq) ra

-« +ﬂdsinisin9]f
+ [(ad — Bacosyia) rl + (Ba — ﬁ)sinicose]}‘
d

z .
+ [(ad — Ba cos Yq) ” + (Ba — B) cos l} k (43)
where o = a(r, ¥), B = B(r, ¥), aqg = a(ry, Yq) and By = B(ra, Ya).
Time-Derivative of Zonal Harmonics Perturbation Acting on the Chief Along k

To compute the angular acceleration @y in Eq. 12a, we must find the time-derivative
in the LVLH frame of the component along k of d j, ., i.e. of the term

djc, = B(r,y)cosi (44)
Derivation with respect to time of Eq. 44 gives
. dg(r, . dcosi
dje, = % cosi + B(r, ¥) 45)

The time-derivative of B(r, V) is

d,B(r V) = Req krd d P (cos ) 7 0 Pr(cos ¥r)
2 () [§ () e 5

r d cos Y r acosy
(46)
where
i (8Pk(cos 1//)) _ 82 P (cos ) dcos yr 7
dr 9 cosyr 9 cos? yr dt
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and

2 k+2
2P(5) 1 d (Ez_l)k s

982 2k dgk+2
Using Eq. 37 along with Egs. 8 and 9, we write the time-derivative of cos vy as
follows:
dcosy
dr

di .. do .
= —cosi sinf + — sini cos O
dr dr
= w, sini cosf (49)

Introducing (47) and (49) into (46), we obtain

d %P P
ﬂ(r v _ Z % (cos W)wz Ginicosd— (k+2)r % (cos /)
2 9 cos? ¥ r dcosy
(50)
Finally, the time-derivative of cosi can be expressed using Egs. 8 and 9,
dcosi di | . .
= ——sini = —wy sini cosf (28
dr dt

Introducing (50) and (51) in Eq. 45, we finally obtain the expression of d Ty

Remark 6 Notice that in Eq. 51 the angular velocity w, appears. As expected, the
time-derivative of cosi is influenced by all the perturbations acting on the chief, not
only the zonal harmonics.

Remark 7 In order to compute Ad j, and d Ji.c,» the parameters i, 6, cos ¥ and cos Vg
are needed. The former two can be obtained by propagation of Eqs. 8a and 8c. The
term cos ¥ can be computed using Eq. 37 or as described in Remark 5. In the latter
case,

A

rz=r-K =rsinisinf (52)
For the deputy, using again (37), we have that
ra-k 1 o - .
cos g = = — [(r + x)sinisin® + ysini cosf + zcosi] (53)
rd rd
Therefore, to include zonal harmonics perturbation we must propagate two additional
first order differential equation for i and 6, i.e. Eqs. 8a and 8c.

Atmospheric Drag

Atmospheric drag (for chief and deputy) can be quantified using the following
formulae,

1 _
dac _zpa(r)cb’cl‘vr,cvr,c (54)

1 _
doag = _E)Oa(rd)cb’évr,dvr,d (55)
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where p, (r) is the atmosphere density in r according to the model adopted, v, is the
velocity of the spacecraft relative to the atmosphere, C, = m/(C4A) is the spacecraft
ballistic coefficient with m denoting the spacecraft mass, Cy its drag coefficient and
A its average transversal section area [6]. If we assume that the atmosphere rotates
with the primary body, the spacecraft relative velocity v, can be approximated as
follows,
V,=V—w, XTr (56)

withw, = o pk denoting the primary body angular velocity.

Using Eq. 21, the chief relative velocity and speed with respect to the atmosphere
are

Ve = i'+(w—wp) X F &7
= ii+ szr}' - Aa)yric
Ure = \/r'Z +r2 (Awg + Awg) (58)

where we introduced the relative angular velocity,
Aw =0 — @) = waf+Awy}'+szlAc (59
Using Eq. 39, we have
Aw = (a)x — wp sini sinG)f — w)p sini cos 9}' + (cuZ —wp cosi) k (60)
The relative velocity and speed of the deputy are
Vpd = Vg —@p XTq
=Vt p+Aw xp (61)
[(f + X+ Awyz — Aa)zy)2

Ur,d

+ (G + Aw(r + x) — Awy2)? (62)

1

+ (2 + Awyy — Awy(r —l—)c))z]7

where we used Egs. 16, 21 and 57. By means of Eq. 61 and defining the coefficients,
1 _
Ve = =5Pa(r)Chy (63)

ya = —%paw)q;; (64)
we write the differential atmospheric drag perturbation as,
Ady =dgq—dae = (Yavra — VeVr.c) Vrc + Yavra (b + A® X p) (65)
or, using Eq. 57, in terms of LVLH components as,
Ady = [(Yavra — Yevre) P + Yavra (1 + Awyz — Aa)z)’)]f
+ [(Yavra — Yevre) Awgr + vavra (5 + Awyx — waz)]}
— [(Vavra — Vevre) Awyr — Yavea (2 + Awyy — Awyx)] k(66
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To compute w,, Eq. 12a, we need the time-derivative of d; .. From Eqgs. 54, 57 and
60, we have

da,c, = —VcUr,c AWyr = Wp Yl Uy, e SiNT COS O 67)
Given Eqs. 8a, 8c and 9, the time-derivative of Eq. 67 is
dy,c. = wpsini cosd [%rvr,c + Ve (Fore + rz')r,c)] 68)
+@pYevrer [@x cosi — w; sini sin 6]
with

dy. 1 __ydpu(r) _ I __10p4(r)

v (69)

e~ 27b¢ dr T 27he g
Note that in Eq. 69 the time-derivative of the ballistic coefficients does not appear,
since we implicitly assumed that the chief does not change its mass.

Remark 8 The atmosphere density changes also with time, for example due to solar
activity cycles. Hence, the coefficients y, and y,; are functions of time as well as of
spacecraft position. If we consider atmosphere time-variability, Eq. 69 becomes

dye _ 1 . 4dpatr) 1 .4 <3p“(”) + ap“(t’r)v) (70)

it~ 20 d T2 e e or
However, time-variability of the atmosphere is obviously difficult to estimate and

may be taken in account only for high fidelity simulations.

Remark 9 If we consider a static atmosphere model, i.e. the atmosphere does not
rotate with the primary body (as in [4]), we can significantly simplify the previous
results. In this case, chief and deputy relative velocity with respect to the atmosphere
are, respectively, v, = v and v, 4 = vg4. Using Eq. 21, the differential perturbation
simplifies in
Adg = (Yava — Vev) v + Yava (p + @ X p)
= [(ava — yev) F + yava (& — ozy)]i
+[(ava = yeve) w:r + vava (3 + w:x = 0x2)] j
+yava (2 + oxy) k (71)
In addition, given (21), the atmospheric drag on the chief is equal to,

dyc = YV = Yo (r; + a)zr}) (72)

Therefore, the term da,cz is equal to zero.

Direct Inclusion of Perturbations Expressed in the Inertial Frame

Itis possible to avoid direct calculation of perturbations in the LVLH frame, using the
coordinate change matrix Cﬁ, Eq. 5. Given the perturbation in the inertial frame, d’,
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the expression in the LVLH frame is simply d’ = C fd i Consequently, the differential
perturbations acceleration vector in F; is equal to

4d' =l (di, - di) (73)
The angular acceleration w, depends on the time-derivative of d,. ;. This term can be

computed using the expression of the disturbance in the inertial frame, dé, by means
of the following relation,

dlc = dc,xi"' dc,y.; + dc,zk
= Cf%i' — o' x Cﬁdi
Equations 73 and 74 may be useful for motion prediction, since one can avoid the
analytical computation of perturbations in the LVLH frame. However, they do not
provide any physical insight into the relative motion dynamics, unlike the derivation
that led to the results in the previous sections.

(74)

Conclusions

A general framework for relative motion description in the LVLH frame was devel-
oped using simple geometric relations and vector calculus. The equation set proposed
can be easily extended to include the perturbations that characterize the mission sce-
nario. We also derived the analytical expression of zonal harmonics perturbation and
atmosphere drag for their introduction in the proposed equations set. Inclusion of
general perturbations was also addressed. Since no approximations were made, all the
results presented here are exact and can be used for accurate relative motion analysis.
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