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Abstract
Accurate models for spacecraft relative dynamics are essential to the design of high-
precision control and long-term estimation. In the literature, numerous analytical
models have been proposed that describe, with different degrees of accuracy, the rel-
ative dynamics in presence of specific perturbations. These models however may be
limited for future missions, like long-baseline formation flying, that will require ana-
lytical formulations capable of considering the influence of different perturbations
at the same time, in order to meet the high-demanding mission requirements. The
aim of this Note is to provide a general and flexible framework for the inclusion of
arbitrary perturbations into the equations of relative motion. The framework decou-
ples the perturbations influence from the Keplerian component of the motion, so that
designers can include the perturbations of interest according to the mission scenario.
In the future, the proposed framework might be used by autonomous spacecraft for
real-time reconfiguration of the guidance system in response to a changed operating
scenario. The inclusion of arbitrary zonal harmonics perturbations and atmospheric
drag into our framework is discussed.
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Introduction

Relative motion dynamic models are fundamental for the study of space operations
involving coordination of two or more spacecraft, such as formation flying, ren-
dezvous and in-orbit assembly of orbital structures. Accurate prediction and analysis
of the evolution of relative position and velocity, especially in the long term, require
accurate models that include several orbital perturbations that may influence the
spacecraft dynamics.

Many models describing the relative motion in the local-vertical local-horizon
(LVLH) frame under the influence of different perturbations have been proposed in
the literature. Kechichian [7] presented an exact relative dynamics model under J2
and atmospheric drag perturbations, applying Newtonian mechanics techniques. A
set of equations including a linear model for atmospheric drag was proposed in [5].
A linearized high-fidelity model with J2 perturbation was presented in [9]. Pluym
and Damaren [8] proposed a relative motion model which includes a second order
approximation of the J2 perturbation together with a third order approximation of
the differential gravity (i.e. the difference between the two spacecraft gravity accel-
eration). Xu and Wang [11] used Lagrangian mechanic techniques to develop an
exact model of relative motion subject to J2 perturbation. In [12] arbitrary zonal har-
monics perturbation was considered. Xu et al. [13] introduced lunar perturbation in
the relative motion dynamics description. A set of relative motion equations taking
into account third-body perturbation is also presented in [2], developed by means of
Lagrangian mechanics. A recent comprehensive survey on relative motion models,
which includes also equation sets developed in frames different from the LVLH, is
presented in [10].

Even if some of the previously cited works provide exact models, the authors only
considered a specific subset of perturbations. Extension of their results to include
other perturbations that may act on the spacecraft and influence the relative motion
is not straightforward. To this end a general framework for relative motion analysis
in the LVLH frame that can include different perturbations is needed. Casotto [3]
recently proposed a general set of equations for describing the relative dynamics in
presence of arbitrary perturbations. However, the influence of the orbital perturbation
on the dynamics, and in particular on the precession of the LVLH frame, is not evident
in the equations developed, since their contribution is not decoupled from the Kep-
lerian component of the motion. As a consequence, perturbations influence cannot
be properly analyzed. Moreover, since the author considers perturbations character-
ized by time-invariant parameters, orbital perturbations with parameters varying with
time, as in the case of time-varying atmosphere density or lunar perturbation in lower
Earth orbits, cannot be included.

The aim of this Note is to provide a general set of differential equations for the
exact description of relative motion dynamics in presence of arbitrary orbital per-
turbations. Unlike past models, the proposed model offers a structured approach for
perturbations inclusion, so that perturbations of interest can be readily introduced
according to the mission scenario. Such a capability is possible since the pertur-
bations effect on the relative dynamics is separated from the Keplerian component
of the motion, as opposed to [3]. This reconfigurability feature makes the model
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appealing for motion prediction and design of model-based nonlinear controllers and
observers. In particular, different controllers and observers can be designed using the
same set of equations but with different sets of perturbations included. In this way,
the controllers and observers obtained can address different mission scenario and can
be activated depending on the required accuracy, available computational resources,
perturbations to be considered in the current mission phase and so on. In addition,
in the proposed model perturbations effects can be analyzed separately. Differently
to previous works [11–13], the equation set proposed was developed using only vec-
tor calculus and simple geometric relations. As examples, we show how arbitrary
zonal harmonics perturbation and atmospheric drag can be included in the proposed
model. The equation set proposed in this Note can potentially accommodate many
other perturbations, like solar radiation pressure, third-body gravitational effects, etc.
Inclusion of these perturbations in the equation set developed is not discussed in the
following. Nevertheless, general guidelines for inclusion of their expression in the
inertial frame are provided.

General Equations of Relative Motion

Consider a passive spacecraft, in the following referred to as chief, orbiting a primary
body, and a spacecraft which is able to maneuver, denoted as deputy. The dynamics
of the two spacecraft is respectively given by

d2r

dt2
= − μ

r3
r + dc (1)

d2rd

dt2
= − μ

r3d

rd + dd + u (2)

where μ is the primary body gravitational parameter, r is the spacecraft position
with respect to the primary body center of mass, d quantifies in terms of accelera-
tion the perturbations acting on the spacecraft, u is the deputy control vector [6]. The
subscript d denotes deputy’s parameters. When the subscript is dropped, the parame-
ter is referred to the chief, except for the perturbations. Vectors are denoted using the
bold font, e.g. v, and their Euclidean norm is denoted using the normal font, e.g. v.
Unit vectors are indicated using an hat, e.g. v̂.

We define the local-vertical local-horizon frame Fl , centered in the chief center of
mass, as follows:

Fl =
{
î, ĵ , k̂

}
=

{
r

r
, k̂ × î,

h

h

}
(3)

where h = hk̂ = r × v is the chief massless angular momentum and v its velocity.
We also introduce an inertial frame as

Fi =
{
Î , Ĵ , K̂

}
(4)

centered on the primary body center of mass. The unit vector K̂ is aligned with the
primary body angular velocity vector.
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In the following, two different operators will be used for distinguishing between
the reference frame in which the time-derivatives are taken. Time-derivative in the
inertial frame will be denoted using Leibniz’s notation, i.e. with the operator d/dt ,
whereas the time-derivative in the LVLH frame will be denoted using Newton’s
notation, that is using an upper dot.

The coordinate change matrix from the inertial frame to the LVLH frame, Cl
i :

Fi → Fl , is a function of the chief orbital elements (i, Ω, θ), respectively the chief
orbit inclination, right ascension of the ascending node and true latitude [7],

Cl
i (i, Ω, θ) =

⎡
⎣

cΩcθ − sΩsθci sΩcθ + cΩsθci sθ si
−cΩsθ − sΩcθci −sΩsθ + cΩcθci cθ si

sΩsi −cΩsi ci

⎤
⎦ (5)

The operator cα and sα denote cosα and sinα, respectively. The LVLH frame angular
velocity and acceleration vectors, with respect to the inertial frame, are:

ω = ωx î + ωy ĵ + ωzk̂, ω̇ = ω̇x î + ω̇y ĵ + ω̇zk̂ (6)

The angular velocity components in the LVLH frame are given by [7]:

Let us express the disturbance on the chief in the LVLH frame as dc = dc,x î+dc,y ĵ+
dc,zk̂. Orbital parameters time-derivatives are provided by the Gauss variational
equations [6]:

di

dt
= r cos θ

h
dc,z (8a)

dΩ

dt
= r sin θ

h sin i
dc,z (8b)

dθ

dt
= h

r2
− r sin θ cos i

h sin i
dc,z (8c)

Substitution of Eqs. 8 into 7 gives:

ωx = r

h
dc,z , ωy = 0, ωz = h

r2
(9)

The terms ωx and ωz are also called steering rate of the orbital plane and orbital
rate [11].
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In order to compute the LVLH components of the angular acceleration ω̇, we need
the analytical expression of ḣ. Using Eqs. 1 and 9, the angular momentum time-
derivative in the LVLH frame is given by:

ḣ = dh

dt
− ω × h

= r × d2r

dt2
− ω × h

= r × dc − ω × h

= r î ×
(
dc,x î + dc,y ĵ + dc,zk̂

)
−

(
ωx î + ωzk̂

)
× hk̂

= rdc,y k̂ (10)

Since ḣ = ḣk̂, we have that

ḣ = rdc,y (11)

The LVLH components of ω̇ are then given by:

To describe the relative motion, we introduce the vectors ρ and ρ̇, respectively the
deputy relative position and velocity with respect to the chief (Fig. 1):

ρ = x î + yĵ + zk̂, ρ̇ = ẋ î + ẏĵ + żk̂ (13)

Fig. 1 Local-vertical local-horizon frame
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We can write deputy position and distance as

rd = r + ρ = (r + x) î + yĵ + zk̂ (14)

rd =
√

(r + x)2 + y2 + z2 (15)

Time-derivative in Fi of Eq. 14 gives the deputy velocity:

vd = drd

dt
= dr

dt
+ dρ

dt
= dr

dt
+ ρ̇ + ω × ρ (16)

Differentiation of Eq. 16 leads to deputy acceleration:

d2rd

dt2
= d2r

dt2
+ ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ) (17)

Introducing (1) and (2) into (17), we obtain the general expression of the relative
motion:

ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ) − μ

r3
r + μ

r3d

(r + ρ) = Δd + u (18)

where Δd is the differential perturbations acceleration vector:

Δd = dd − dc = Δdx î + Δdy ĵ + Δdzk̂ (19)

In terms of LVLH components of ρ, we have the following set of second order
differential equations:

where ux , uy and uz are the components of u along the LVLH unit vectors.
To propagate (20) and to compute ω and ω̇ components in Eqs. 9 and 12, we need

to know the chief distance and speed, i.e. r and ṙ . Chief velocity in the LVLH frame
is given by

v = dr

dt
= ṙ + ω × r = ṙ î + ωzr ĵ (21)

Further derivation of Eq. 21 with Eqs. 9 and 12 gives:

dv

dt
= v̇ + ω × v =

(
r̈ − ω2

z r
)

î + dc,y ĵ + dc,zk̂ (22)

Combining (22) and (1), we obtain

r̈ = − μ

r2
+ ω2

z r + dc,x (23)

The terms r and ṙ can then be obtained by numerical integration of Eq. 23. Note that
dc,x is in general a variable quantity, function of the time, of the chief position and/or
velocity and of many other variables and parameters according to the perturbations
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considered. In the following Sections, its expression will be provided for the zonal
harmonics perturbation and for the atmospheric drag.

Equations 11, 20 and 23 are the basis of our general framework for relative motion
description. Perturbations can be computed separately and then introduced in the
equations, in order to obtain an exact model of the relative motion under the influence
of the orbital perturbations of interest.

Remark 1 Equations 11, 20 and 23 can be transformed into a set of 9 first order
differential equations. From a system theory point of view, we have a system with
state vector x = [x, y, z, ẋ, ẏ, ż, r, ṙ, h]T and input vector u. The quantities dc, ḋc,z

and Δd can be seen as system disturbances. The former two affect the LVLH frame
orientation, see Eqs. 9 and 12, as well as chief parameters r , ṙ and h. The latter
influences the relative motion directly.

Remark 2 Amore general expression for the LVLH angular velocity and acceleration
components is provided in [3], and repeated below for clarity’s sake:

ωx = r

h

(
d2r

dt2
· k̂

)
, ωy = 0, ωz = 1

r

(
v · ĵ

)
(24)

The third time derivative of the position vector (jerk) is given by

d3r

dt3
= ∂

∂t

(
d2r

dt2

)
+ ∂

∂r

(
d2r

dt2

)
v + ∂

∂v

(
d2r

dt2

)
d2r

dt2
(26)

where the term ∂
(
d2r/dt2

)
/∂t accounts for time variation of the gravitational

parameter and of the perturbations’ parameters. In [3], the author considers this
term as being equal to zero under the assumption of constant mass distribution and
conservative force fields. This results in the following simplified expression for ω̇x :

ω̇x = r

h

[
ṙ

r

(
d2r

dt2
· k̂

)
− 2

r

h

(
d2r

dt2
· ĵ

)(
d2r

dt2
· k̂

)
+ k̂

T ∂

∂r

(
d2r

dt2

)
v

]
(27)

used for later derivation in the reference.
Conversely, in our formulation only the gravitational parameter is assumed time-

invariant. Hence, the formulation in the present paper can take into account orbital
perturbations characterized by time-varying parameters, such as atmospheric drag
with time-dependent atmosphere density (see Remark 8), and the presence of a sec-
ond primary body (e.g. lunar perturbation in lower Earth orbits, see [13]). In addition,
in Eqs. 9 and 12 perturbations influence is explicit, as opposed to Eqs. 24 and 25.
Note also that Eqs. 9 and 12 can be obtained from Eqs. 24 and 25, observing that
d3r/dt3 · k̂ = ḋc,z.
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Zonal Harmonics Perturbation

General Analytical Expression

Primary body gravity potential can be modeled using spherical harmonic series as

U(r, ψ) = −μ

r

[
1 −

+∞∑
k=2

(
Req

r

)k

JkPk(cosψ)

]
(28)

where Req is the primary body equatorial radius, Jk are the zonal harmonics, Pk(ξ)

is the Legendre polynomial of order k

Pk(ξ) = 1

2kk!
dk

dξk

(
ξ2 − 1

)k

(29)

and ψ is the angle between the primary body polar direction K̂ and the spacecraft
position r , see Fig. 2 [6]. To include the effect of these perturbations in Eq. 20, we
must isolate the potential of a spherical body, i.e. −μ/r (whose effect is already
included in Eq. 20), from the zonal harmonics potential, that is

UJk
(r, ψ) = μ

r

+∞∑
k=2

(
Req

r

)k

JkPk(cosψ) (30)

Zonal harmonics perturbation acceleration is given by minus the gradient of UJk
in

the spherical coordinates (r, ψ) [1],

dJk
= −∇UJk

= −∂UJk

∂r
r̂ − 1

r

∂UJk

∂ψ
ψ̂ (31)

Using the geometric relation

K̂ = cosψ r̂ − sinψψ̂ (32)

Fig. 2 Chief orbital parameters
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and the chain rule, we can write (31) as follows,

dJk
= − ∂UJk

∂r
r̂ − 1

r

∂UJk

∂ cosψ
∂ cosψ

∂ψ
ψ̂

= − ∂UJk

∂r
r̂ + sinψ

r

∂UJk

∂ cosψ
ψ̂

= − ∂UJk

∂r
r̂ − 1

r

∂UJk

∂ cosψ

(
K̂ − cosψ r̂

)

= α(r, ψ)r̂ + β(r, ψ)
(
K̂ − cosψ r̂

)
(33)

For the reader convenience, we defined the following accelerations

α(r, ψ) = −∂UJk

∂r
= μ

r2

+∞∑
k=2

(k + 1)

(
Req

r

)k

JkPk(cosψ) (34)

β(r, ψ) = −1

r

∂UJk

∂ cosψ
= − μ

r2

+∞∑
k=2

(
Req

r

)k

Jk

∂Pk(cosψ)

∂ cosψ
(35)

where
∂Pk(ξ)

∂ξ
= 1

2kk!
dk+1

dξk+1

(
ξ2 − 1

)k

(36)

Remark 3 Note that zonal harmonics perturbation is independent of Ω , since the
zonal harmonics gravity potential is axisymmetric and depends only on r and ψ .

Remark 4 In Eq. 33 it is easy to see that β(r, ψ) is the gravity component pointing to
the equatorial plane due to zonal harmonics perturbations. The perturbation compo-
nent pointing to the primary body center of mass is given by α(r, ψ)−β(r, ψ) cosψ

instead.

Remark 5 If we denote with r i = rX Î + rY Ĵ + rZK̂ the spacecraft position in the
inertial frame Fi , we have that cosψ = rZ/r . We can use this geometric relation to
simplify the expressions above and to avoid the use of the angle ψ .

Differential Zonal Harmonics Perturbation

Using Eq. 33, we can obtain the expressions in the LVLH frame of the zonal
harmonics perturbation for the chief and the deputy.

For the chief, we know that r̂ = î and

r cosψ = r sin θ sin i (37)

where (r, ψ) are chief spherical coordinates (see Fig. 2). Thus, Eq. 33 for the chief
in the LVLH frame simplifies in

dJk,c = α(r, ψ)î + β(r, ψ)
(
sin i cos θ ĵ + cos ik̂

)
(38)

since, given (5),

K̂ = sin i sin θ î + sin i cos θ ĵ + cos ik̂ (39)
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For the deputy, we write (33) introducing deputy spherical coordinates (rd , ψd),

dJk,d = α(rd, ψd)r̂d + β(rd, ψd)
(
K̂ − cosψd r̂d

)

= (α(rd, ψd) − β(rd, ψd) cosψd) r̂d + β(rd, ψd)K̂
(40)

The unit vector r̂d is given by,

r̂d = 1

rd

(
(r + x)î + yĵ + zk̂

)
(41)

Therefore, we can write the zonal harmonic perturbations acting on the deputy in the
LVLH frame as follows,

dJk,d =
[
(α(rd, ψd) − β(rd, ψd) cosψd) r+x

rd
+ β(rd, ψd) sin i sin θ

]
î

+
[
(α(rd , ψd) − β(rd, ψd) cosψd)

y
rd

+ β(rd, ψd) sin i cos θ
]
ĵ

+
[
(α(rd , ψd) − β(rd, ψd) cosψd) z

rd
+ β(rd, ψd) cos i

]
k̂

(42)

The differential zonal harmonics perturbation is finally given by,

ΔdJk
= dJk,d − dJk,c

=
[
(αd − βd cosψd)

r + x

rd
− α + βd sin i sin θ

]
î

+
[
(αd − βd cosψd)

y

rd
+ (βd − β) sin i cos θ

]
ĵ

+
[
(αd − βd cosψd)

z

rd
+ (βd − β) cos i

]
k̂ (43)

where α = α(r, ψ), β = β(r, ψ), αd = α(rd, ψd) and βd = β(rd, ψd).

Time-Derivative of Zonal Harmonics Perturbation Acting on the Chief Along k̂

To compute the angular acceleration ω̇x in Eq. 12a, we must find the time-derivative
in the LVLH frame of the component along k̂ of dJk,c, i.e. of the term

dJk,cz
= β(r, ψ) cos i (44)

Derivation with respect to time of Eq. 44 gives

ḋJk,cz
= dβ(r, ψ)

dt
cos i + β(r, ψ)

d cos i

dt
(45)

The time-derivative of β(r, ψ) is

dβ(r, ψ)

dt
= − μ

r2

+∞∑
k=2

Jk

(
Req

r

)k [
d

dt

(
∂Pk(cosψ)

∂ cosψ

)
− (k + 2)

ṙ

r

∂Pk(cosψ)

∂ cosψ

]

(46)
where

d

dt

(
∂Pk(cosψ)

∂ cosψ

)
= ∂2Pk(cosψ)

∂ cos2 ψ

d cosψ

dt
(47)
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and
∂2Pk(ξ)

∂ξ2
= 1

2kk!
dk+2

dξk+2

(
ξ2 − 1

)k

(48)

Using Eq. 37 along with Eqs. 8 and 9, we write the time-derivative of cosψ as
follows:

d cosψ

dt
= di

dt
cos i sin θ + dθ

dt
sin i cos θ

= ωz sin i cos θ (49)

Introducing (47) and (49) into (46), we obtain

dβ(r, ψ)

dt
= − μ

r2

+∞∑
k=2

Jk

(
Req

r

)k [
∂2Pk(cosψ)

∂ cos2 ψ
ωz sin i cos θ−(k+2)

ṙ

r

∂Pk(cosψ)

∂ cosψ

]

(50)
Finally, the time-derivative of cos i can be expressed using Eqs. 8 and 9,

d cos i

dt
= −di

dt
sin i = −ωx sin i cos θ (51)

Introducing (50) and (51) in Eq. 45, we finally obtain the expression of ḋJk,cz
.

Remark 6 Notice that in Eq. 51 the angular velocity ωx appears. As expected, the
time-derivative of cos i is influenced by all the perturbations acting on the chief, not
only the zonal harmonics.

Remark 7 In order to computeΔdJk
and ḋJk,cz

, the parameters i, θ , cosψ and cosψd

are needed. The former two can be obtained by propagation of Eqs. 8a and 8c. The
term cosψ can be computed using Eq. 37 or as described in Remark 5. In the latter
case,

rZ = r · K̂ = r sin i sin θ (52)

For the deputy, using again (37), we have that

cosψd = rd · K̂

rd
= 1

rd
[(r + x) sin i sin θ + y sin i cos θ + z cos i] (53)

Therefore, to include zonal harmonics perturbation we must propagate two additional
first order differential equation for i and θ , i.e. Eqs. 8a and 8c.

Atmospheric Drag

Atmospheric drag (for chief and deputy) can be quantified using the following
formulae,

da,c = −1

2
ρa(r)C−1

b,cvr,cvr,c (54)

da,d = −1

2
ρa(rd)C−1

b,dvr,dvr,d (55)
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where ρa(r) is the atmosphere density in r according to the model adopted, vr is the
velocity of the spacecraft relative to the atmosphere,Cb = m/(CdA) is the spacecraft
ballistic coefficient with m denoting the spacecraft mass, Cd its drag coefficient and
A its average transversal section area [6]. If we assume that the atmosphere rotates
with the primary body, the spacecraft relative velocity vr can be approximated as
follows,

vr = v − ωp × r (56)

with ωp = ωpK̂ denoting the primary body angular velocity.
Using Eq. 21, the chief relative velocity and speed with respect to the atmosphere

are

vr,c = ṙ + (
ω − ωp

) × r (57)

= ṙ î + Δωzr ĵ − Δωyr k̂

vr,c =
√

ṙ2 + r2
(
Δω2

y + Δω2
z

)
(58)

where we introduced the relative angular velocity,

Δω = ω − ωp = Δωx î + Δωy ĵ + Δωzk̂ (59)

Using Eq. 39, we have

Δω = (
ωx − ωp sin i sin θ

)
î − ωp sin i cos θ ĵ + (

ωz − ωp cos i
)
k̂ (60)

The relative velocity and speed of the deputy are

vr,d = vd − ωp × rd

= vr,c + ρ̇ + Δω × ρ (61)

vr,d =
[(

ṙ + ẋ + Δωyz − Δωzy
)2

+ (ẏ + Δωz(r + x) − Δωxz)
2 (62)

+ (
ż + Δωxy − Δωy(r + x)

)2] 1
2

where we used Eqs. 16, 21 and 57. By means of Eq. 61 and defining the coefficients,

γc = −1

2
ρa(r)C−1

b,c (63)

γd = −1

2
ρa(rd)C−1

b,d (64)

we write the differential atmospheric drag perturbation as,

Δda = da,d − da,c = (
γdvr,d − γcvr,c

)
vr,c + γdvr,d (ρ̇ + Δω × ρ) (65)

or, using Eq. 57, in terms of LVLH components as,

Δda = [(
γdvr,d − γcvr,c

)
ṙ + γdvr,d

(
ẋ + Δωyz − Δωzy

)]
î

+ [(
γdvr,d − γcvr,c

)
Δωzr + γdvr,d (ẏ + Δωzx − Δωxz)

]
ĵ

− [(
γdvr,d − γcvr,c

)
Δωyr − γdvr,d

(
ż + Δωxy − Δωyx

)]
k̂ (66)

The Journal of the Astronautical Sciences (2020) 67: 98–112 109



To compute ω̇x , Eq. 12a, we need the time-derivative of da,cz
. From Eqs. 54, 57 and

60, we have

da,cz
= −γcvr,cΔωyr = ωpγcrvr,c sin i cos θ (67)

Given Eqs. 8a, 8c and 9, the time-derivative of Eq. 67 is

ḋa,cz
= ωp sin i cos θ

[
dγc

dt rvr,c + γc

(
ṙvr,c + rv̇r,c

)]

+ωpγcvr,cr
[
ωx cos i − ωz sin i sin θ

] (68)

with
dγc

dt
= −1

2
C−1

b,c

dρa(r)

dt
= −1

2
C−1

b,c

∂ρa(r)

∂r
v (69)

Note that in Eq. 69 the time-derivative of the ballistic coefficients does not appear,
since we implicitly assumed that the chief does not change its mass.

Remark 8 The atmosphere density changes also with time, for example due to solar
activity cycles. Hence, the coefficients γc and γd are functions of time as well as of
spacecraft position. If we consider atmosphere time-variability, Eq. 69 becomes

dγc

dt
= −1

2
C−1

b,c

dρa(t, r)

dt
= −1

2
C−1

b,c

(
∂ρa(t, r)

∂t
+ ∂ρa(t, r)

∂r
v

)
(70)

However, time-variability of the atmosphere is obviously difficult to estimate and
may be taken in account only for high fidelity simulations.

Remark 9 If we consider a static atmosphere model, i.e. the atmosphere does not
rotate with the primary body (as in [4]), we can significantly simplify the previous
results. In this case, chief and deputy relative velocity with respect to the atmosphere
are, respectively, vr,c = v and vr,d = vd . Using Eq. 21, the differential perturbation
simplifies in

Δda = (γdvd − γcv) v + γdvd (ρ̇ + ω × ρ)

= [
(γdvd − γcv) ṙ + γdvd (ẋ − ωzy)

]
î

+ [
(γdvd − γcvc) ωzr + γdvd (ẏ + ωzx − ωxz)

]
ĵ

+γdvd (ż + ωxy) k̂ (71)

In addition, given (21), the atmospheric drag on the chief is equal to,

da,c = γcvv = γcv
(
ṙ î + ωzr ĵ

)
(72)

Therefore, the term ḋa,cz
is equal to zero.

Direct Inclusion of Perturbations Expressed in the Inertial Frame

It is possible to avoid direct calculation of perturbations in the LVLH frame, using the
coordinate change matrix Cl

i , Eq. 5. Given the perturbation in the inertial frame, d i ,
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the expression in the LVLH frame is simply d l = Cl
id

i . Consequently, the differential
perturbations acceleration vector in Fl is equal to

Δd l = Cl
i

(
d i

d − d i
c

)
(73)

The angular acceleration ω̇x depends on the time-derivative of dc,z. This term can be
computed using the expression of the disturbance in the inertial frame, d i

c, by means
of the following relation,

ḋ
l

c = ḋc,x î + ḋc,y ĵ + ḋc,zk̂

= Cl
i
dd i

c

dt − ωl × Cl
id

i
c

(74)

Equations 73 and 74 may be useful for motion prediction, since one can avoid the
analytical computation of perturbations in the LVLH frame. However, they do not
provide any physical insight into the relative motion dynamics, unlike the derivation
that led to the results in the previous sections.

Conclusions

A general framework for relative motion description in the LVLH frame was devel-
oped using simple geometric relations and vector calculus. The equation set proposed
can be easily extended to include the perturbations that characterize the mission sce-
nario. We also derived the analytical expression of zonal harmonics perturbation and
atmosphere drag for their introduction in the proposed equations set. Inclusion of
general perturbations was also addressed. Since no approximations were made, all the
results presented here are exact and can be used for accurate relative motion analysis.
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