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Abstract
To design a free-return orbit for manned lunar mission based on low earth orbit (LEO)
rendezvous, an adaptive LEO-phase free-return orbit design method based on high-
precision dynamics model is proposed. First, the radius of perilune and the absolute
value of perilune velocity are decoupled using a coordinate system rotation, which is
derived from moon-centric local vertical and local horizontal instantaneous coordinate
system at the time of perilune. The two Euler rotation angles and the absolute value of
perilune velocity are used as independent design variables because their initial values
are easy to guess. Next, a two-segment numerical integration strategy is proposed to
calculate orbital elements at the moments of trans-lunar injection and free-return
vacuum perigee. Subsequently, an optimization algorithm software package for solving
large-scale nonlinear sequential quadratic programming problems (SQP_snopt) is
employed to search the objective free-return orbit with a fixed trans-lunar injection
inclination and the other two constraints on radiuses of perigee at the times of trans-
lunar injection and vacuum perigee. After that, an iteration algorithm is devised to
adjust trans-lunar injection window for adaptive LEO-phase. Finally, numerical results
show a fast and accurate performance of the direct optimization method, which can
provide valuable references to manned lunar missions based on LEO rendezvous.
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Introduction

The moon is the nearest celestial body of the earth and the first stop for human’s
exploration of the universe, and the only manned lunar landing mission is Apollo
project in human history. The free-return orbit and the hybrid orbit are used in
Apollo project for astronauts’ transfer to the moon. Different from an unmanned
lunar probe with a lower-energy trans-lunar journey of about five days, the two
types of orbit both have three days of trans-lunar journey. The free-return orbit has
an especial capability to ensure the safety of the astronauts for returning to the
earth when an abort occurs on the trans-lunar phase. The astronauts’ spacecraft in
injected into free-return orbit from a low earth orbit (LEO) and makes a moon’s
gravity assisted swing-by near the moon’s orbital plane after reaching the vicinity
of the moon, then free returns to the earth vicinity without any other maneuver,
except for the essential mid-course corrections. The free-return orbit is widely
used in the history of manned lunar missions because of this special natural
property, such as Zond - 5, 6, 7, 8 (unmanned lunar test missions of Soviet Union)
and the Apollo-8, 10, 11, 12, 14 (manned missions of USA). One of the legends in
the history of manned spaceflights is when Apollo-13 aborted at 56 h after trans-
lunar injection. An orbit maneuver replaced the astronauts’ spacecraft into a free-
return orbit, and returned the astronauts to the earth’s ocean surface safely [1]. The
design accuracy of the free-return orbit in Apollo epoch is lower subject to its
limited computing capacity at that time. The higher orbital accuracy is timeless to
pursue yet. The description of the earth-moon gravitational space focuses on the
circular-restricted three-body problem (CR3BP), matched conic model (double
two-body model), and the pseudo-state model, whereas the high-precision ephem-
eris dynamics model is the most similar description of the realistic model. The
complexity of designing a free-return orbit depends on which trans-lunar orbital
dynamics model is applied.

In the early of 1960s, Miele [2] discovers the existence of symmetric orbits in
CR3BP, and proposes an analytic method to design the symmetric orbits. Later,
Schwaniger [3] establishes circumlunar free-return orbit design model in CR3BP, and
studies its fundamental geometry characteristics. Jesick [4] points of four types of free-
return orbits exist on the view of x-o-y plane in CR3BP, the first one is the circumlunar
free-return orbit for manned lunar landing mission, the second is the Egorov-class free-
return orbit discovered by Egorov [5] in 1969, which is named by Farquhar [6] for a
concept of exploring the earth’s geomagnetic tail. The remaining two types of free-
return orbits departure from earth vicinity with a retrograde manner are bootless now.
He [7] analyzes the quasi-symmetric solution domain of the four types of free-return
orbits in an ephemeris dynamics model based on Jesick’s work. So, if no special
emphasis, the free-return orbit denotes the circumlunar free-return orbit with “8”
shapes.

Another dynamics model is the matched conic model which is presented by Egorov
[8] in 1958. Its accuracy is lower than CR3BP, but it has a brief analytic computing
manner. The matched conic model has a practical value of the Apollo epoch to recent
years. Tolson [9] analyzes the geometrical characteristic of lunar orbits established from
earth-moon trajectories. Penzo [10] studies a design method of free-return orbit, and
analyzes the trans-lunar duration, the perilune altitude, the inclinations of departure and
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return the earth, and the entrance and exit velocity vectors cross the moon’s influence
sphere. Dallas [11] discusses the fight duration, the fuel consumption, and the orbital
design difficulty level of free-return orbit. Gibson [12] compares and analyzes the error
between the matched conic model and the high-precision model, indicates that the
matched conic models can be approximated well to the high-precision model for orbital
characteristics analysis. Peng [13] proposed a serial optimization strategy to design
free-return orbit, which solves the initial values of design variables employing the
particle swarm optimization algorithm with matched conic model, and then searches
the final orbital elements applying sequential quadratic programming (SQP) with a
high-precision dynamics model. Li [14] introduces a conception of multi-segment free-
return orbit, in which two free-return orbital segments have an identical position but
different velocity in the trans-lunar phase and have different orbital elements at the time
of perilune. In this conception, a conclusion can be obtained with the matched conic
model that a velocity-impulse maneuver less than 400 m/s at the identical position can
change the orbital inclination of perilune to 156 deg. without changing the free-return
nature.

The pseudo-state model is proposed by Wilson [15] in 1970. It has both the
matched conic model’s analytic computing manner and the accuracy of CR3BP. Its
error is about 20% comparing with the error of the matched conic model, hence
many studies about free-return orbit depends on this model [16–20]. After 2004,
NASA’s Constellation program returns USA’s manned space to the moon again,
and it emphasizes the astronauts’ security and the technical improvements. The
LEO rendezvous manner and more higher-precision orbital plan are preferred [21].
Some scholars begin to study the orbit’s design method and error features in high-
precision ephemeris dynamics model about manned lunar landing mission. Yan
[22] proposes a method for designing the trans-earth orbit with high-precision
model. He [23] studies the free-return orbit deviation propagation mechanism and
robust design method. Yim [24] designs a method of approaching the high latitude
landing circumlunar free return orbit.

To sum up, the design methods of the free-return orbit in the literatures all have
a low accuracy except for Peng’s serial calculation strategy [13] and have no
adaptive LEO-phase capacity to support the new flight-mode based on LEO
rendezvous [21]. The required method of designing the free-return orbits to want
any-phase self-adaption ability to match the orbital parameters of low earth orbit
after rendezvous and checking of spacecraft initiative, but the classical method of
Apollo project is to wait the next revolution trans-lunar injection opportunity in
low earth parking orbit for matching the backup trans-lunar orbit [25]. This paper
proposes a method to solve this problem. After the introduction, the high-precision
model and engineering constraints are described, and then the generation process
of the adaptive LEO-phase free-return orbit is introduced. An example validates
the effectiveness of this method.

Dynamics model and engineering constraints

This section presents the high-precision orbital dynamics model and engineering
constraints according to Apollo 11 mission [25].
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Dynamics Model

The high-precision acceleration forced on the astronauts’ spacecraft can be described by
a second-order differential equation in the J2000.0 earth-centric coordinate system
(J2000.0E) as shown in Eq.(1).

r
�� ¼ −μE

r

r3
þ AN þ ANSE þ ANSM þ AR þ AD þ AP ð1Þ

where, r is the position vector of the astronauts’ spacecraft in J2000.0E; r¨ is the
acceleration, which is the second-order differential of r; μE is the geocentric gravita-
tional constant in WGS84 model using 3.986004418 × 1014 km3/s2; AN is the n-body
centric perturbation accelerations, here it means the forces on the astronauts’ spacecraft
from sun and moon; the locations of sun, earth and moon are obtained from Jet
Propulsion Laboratory DE405/LE405 ephemeris label; ANSE is the non-spherical per-
turbation acceleration of earth, here 6 degree by 6 order is adopted using WGS84
model; ANSM is the non-spherical perturbation acceleration of moon, 6 degree by 6
order is adopted using LP165P model; AR is the solar radiation pressure that is related to
the astronauts’ spacecraft area to mass ratio and the reflection factor; AD is the
atmospheric drag perturbation acceleration that is ignored in the trans-lunar journey
beyond LEO generally; finally AP is the propulsion acceleration.

Engineering Constraints

Different from a general lunar probe, a free-return orbit is subjected to engineering
constraints for manned lunar landing mission. The subscripts “tli”, “prl” and “ren”
represent the astronauts’ spacecraft’s position at the times of trans-lunar injection,
perilune, and re-entry, respectively. The engineering constraints can be depicted as
shown in Eq. (2).

itli ¼ iLEO
Ωtli ¼ ΩLEO

utli ¼ uLEO
rtli ¼ RE þ hLEO
Δvtli≤3:2 km=s
tprl−ttli≈3 day
rprl ¼ RM þ hprl
Δvprl≤1 km=s
tren−tprl≈3 day
−6:5 deg≤Θren≤−5:5 deg

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

where, i, Ω and u are the inclination, right ascension of ascending node (RAAN) and
argument of latitude in J2000.0E, respectively. The argument of latitude is used to give
the instantaneous position of the astronauts’ spacecraft on LEO, and it is the sum of
argument of perigee ω and true anomaly f : u = ω + f. RE and RM are equatorial radius of
the earth and the moon, here hLEO is the altitude of LEO. hprl is the free-return orbital
altitude at the time of perilune. Δvtli and Δvprl are the impulses at the times of trans-
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lunar injection and perilune. Θren is the skipping re-entry path angle at the earth’s
atmosphere interface about 122 km returned from the moon. t is the flight time of the
astronauts’ spacecraft.

Generation of adaptive LEO-phase free-return orbit

The generation of an adapting LEO-phase free-return orbit, with high-precision orbital
dynamics model and engineering constraints, is presented in this section.

Independent Design Variables

The perilune of a symmetric free-return orbit is always at the earth-moon extended line,
and its orbital plane is always near the moon’s orbital plane at the time of perilune in
CR3BP [4], but a little deviation always exists on a high-precision model [7]. As
everyone knows, the free-return exists because of its flight velocity vector is almost
always opposite to the moon’s orbital velocity vector during the time of the moon’s
assist swing-by. It leads an effect that the free-return orbital elements after perilune are
quite sensitive to the orbital elements of the trans-lunar injection. To effectively reduce
the free-return orbital designing sensitivity, this paper presents the orbital elements at
the time of perilune to be the independent design variables. It can be described as
follows:

Step 1: there are always two spherical angles to locate the position of the free-
return orbit’s perilune point vector in the moon-centric local vertical and local
horizontal (LVLH) coordinate system at the time of perilune. The moon-centric
LVLH coordinate system is described as shown in Fig. 1. Here,ΩM, iMand uM are
the RAAN of the moon, the moon’s orbital inclination, and the argument of
latitude at the time of perilune in J2000.0E, respectively. Just a z-x-z type Euler
elementary rotation in Eq. (3) can rotate a vector from the J2000.0 moon-centric
coordinate system to the moon-centric LVLH coordinate system.

M1 ¼ Mz uMð ÞMy iMð ÞMz ΩMð Þ ð3Þ

And the two spherical angles α and β are defined in the moon-centric LVLH coordinate
system as shown in Fig. 2. As thus, the free-return orbit’s perilune point vector just
needs a matrix in Eq. (4) to rotate a z-y type Euler angle from the moon-centric LVLH
coordinate system.

M2 ¼ My −βð ÞMz αð Þ ð4Þ

So, the perilune position vector in the moon-centric LVLH coordinate system is
shown in Eq. (5). Here, rprl is the radius value of the free-return orbit’s perilune and has
a normal constant for follow-up lunar orbit insertion.
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rLVLHprl ¼ rprl cosβcosα cosβsinα sinβ½ �T ð5Þ

Step 2: a spherical angle γ is applied to describe the free-return orbit’s velocity
vector at the time of perilune as shown in Fig. 3. Based on the Step 1, its velocity
vector just needs an additional elementary x type of Euler angle rotation from the
moon-centric LVLH coordinate system. The whole rotation matrix with a z-y-x
type of Euler angles rotation is shown as Eq. (6).

M3 ¼ Mx γð ÞMy −βð ÞMz αð Þ ð6Þ

Assuming a confirmed perilune time tprl has been designed for lunar orbit insertion and
follow-up lunar surface descent, and as mentioned the radius value of the free-return

Fig. 1 The drawing of the moon-centric LVLH coordinate system

Mx

My

Mz

MO

Perilune point

LVLH

Free-return

orbit

Fig. 2 The drawing of the two spherical angles to locate the perilune point vector



orbit’s perilune point has a normal constant. There are four elements are independent:
the absolute value of perilune velocity vprl and the three Euler angles (i.e. α, β, and γ).
Thus, the four independent design variables at the time of perilune can describe an
exclusive circumlunar free-return orbit. The values of vprl is related to the radius value
of the perilune point rprl and the orbit’s eccentricity eprl in the moon-centric LVLH
coordinate system as shown in Eq. (7).

vprl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μM 1þ eprl

� �
=rprl

q
ð7Þ

Here, μM is the lunar gravitational constant using 4.902801056 × 1012 m3/s2 in
LP165P model. For a free-return orbit with a low perilune altitude, its eccen-
tricity eprl is greater than 1 and less than 2, so the initial value of vprl is about
2.55 × 103 m/s. In addition, both the values of α and β are close to zero, and
the value of γ is close to 180 deg. [7].

Two-Segment Numerical Integration Strategy

As the reason that the free-return orbit is quiet sensitive mentioned in section 3.1, this
paper presents a method to divide the free-return orbit into two segments to reduce the
instability as shown in Fig. 4. One obtains the orbital elements at the time of trans-lunar
injection from perilune via a negative numerical integration manner, and the other
segment obtains the orbital elements at the time of re-entry from perilune via a positive
numerical integration manner. It is a flexible use of the multi-point correction scheme,
and is similar to the multiple shooting methodologies for a long-time flight and
sensitive transfer orbit design problem [26].

The skipping re-entry path angle at the earth’s atmosphere interface is not simple and
direct to compute. Therefore, the vacuum perigee is used here. A lunar returned orbit
with a − 6° skipping re-entry flight path angle has a corresponding 51 km vacuum
perigee altitude at 122 km [27].
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Searching Model Applying SQP_snop

A general searching model applied SQP_snopt (Student Edition, 7.2–2008) [28] is
established as follow:

The independent design variables are shown in Eq. (8).

x ¼ α β γ vprl½ � ð8Þ

The low and upper boundaries (i.e. l.b. & u.b.) of x are shown in Eq. (9).

l:b:&u:b:

α∈ −10; 10½ � deg
β∈ −10; 10½ � deg
γ∈ 170; 190½ � deg

2:45≤vprl≤2:65 km=s

8>><
>>:

ð9Þ

The free-return orbit’s radiuses at the times of trans-lunar injection and vacuum perigee
compose the equivalence constraints (i.e. e.c.) as shown in Eq. (10). Here, the super-
script []∗ denotes the objective value, and the subscript “vcp” denotes vacuum perigee
as mentioned in section 3.2.

e:c:
rtli−rLEO ¼ 0
rvcp−r*vcp ¼ 0

�
ð10Þ

The free-return orbit for maned lunar landing mission based on LEO rendezvous has
two contained constraints: Firstly, the orbit’s inclination at the time of trans-lunar
injection is close or equal to the former vehicle or space-station on LEO. On the other
hand, the returned segment will not fly after lunar orbit insertion in a normal program.
Here, a minimized optimization objective function is designed as shown in Eq. (11).

minJ ¼ jitli−iLEOj→0 ð11Þ

The free-return orbit is a six degree of freedom dynamics system, two of them are fixed
at the time of perilune (i.e. the radius value rprl and the embedded true anomaly is zero).
Four independent design variables are used to matching two equivalence constraints in
Eq. (10) and one optimization objective function in Eq. (11). Therefore, the solution is
not one and only.

Adaptive LEO-Phase Iteration Algorithm

The LEO’s inclination constraint in Eq. (2) can be matched by the optimization
objective function in Eq. (11). The LEO’s RAAN constraint in Eq. (2) need the launch
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day-window of LEO vehicle to match. In order to satisfy the argument of latitude
constraint in Eq. (2), an adaptive LEO-phase iteration algorithm is presented as shown
in Eq. (12)

tnewprl ¼ toldprl þ λ⋅ uoldLEO−u
old
tli

� �TLEO

2π
ð12Þ

Here, TLEO is the LEO’s orbit period. uoldtli is the argument of latitude of the free-return
orbit in J2000.0 E at the time of trans-lunar injection, which is corresponding to the old
time of perilune toldprl , and uoldLEO is the argument of latitude of LEO at the time of trans-

lunar injection, and it is corresponding to toldprl . λ is a Newton-downhill ratio, the choice

between 0 and 1 can be made. A new free-return orbit’s elements can be calculated by a
new time of perilune tnewprl with the SQP_snopt optimization algorithm mentioned in

section 3.3. The new arguments of latitudes unewLEO and unewtli of LEO and free-return orbit,
respectively, at the times of trans-lunar injection are refreshed. The iteration process
stops until unewtli matches unewLEO at the engineering requirement. The iteration algorithm
stops, and the ultimate free-return orbit’s elements meet the objective phase of LEO
rendezvous.

Results and Discussion

In this section, the method to design an adaptive LEO-phase free-return orbit is tested
by numerical simulation. The results and discussion are displayed and summarized.

Problem Configuration

Assume that the time of perilune is set as January 1, 2025 00:00:00.000 in Gregorian
universal coordinated time format (UTCG). The perilune altitude hprl is equal to 111 km
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(60 n.mi.), and it means rprl is equal to 1849.2 km is equivalent as the equator radius of
the moon is equal to 1738.2 km. The equator radius of the earth is set up for
6378.137 km, therefore, two equality constraints in Eq. (10) are equivalent to rLEO=
6563.337 km (i.e. hLEO= 185.2 km, 100 n.mi.) and r*vcp= 6429.137 km (i.e. h*LEO=
51 km) [25]. The objective value iLEO is equal to 28.5 deg. (0.49742 rad) refer to Cape
Kennedy [29]. The Runge-Kutta 7th–8th order adaptive-step integrator is adopted, and
the initial step is set as 60 s. The maximum absolute and relative errors both are set as
1 × 10−11, and the interpolation tolerance of searching the periapsis is set as 1 × 10−7.
The simulation is coded by Visual C++ on a computer using Intel Core2–2.0 GHz
CPU.

Process of SQP_snopt Searching FRO

Set the initial values of independent variables as mentioned in section 3.1. The iteration
process of searching an objective orbital inclination of free return orbit is shown in
Fig. 5. It costs about 1980 s for 30 iteration times until the nonlinear constraints and
optimization function converge, respectively.

The free-return orbit’s elements are listed in Table 1. The iteration process shows
that the proposed method has an excellent performance.

In addition, for testing the adaptive LEO-phase iteration algorithm in Eq. (12),
suppose that the worst LEO-phase situation took place, the delta argument of latitude
of the free-return orbit and LEO at the time of trans-lunar injection is set as 180 deg. as
listed in Table 1. The bold-font denotes the important iteration values of argument of
the latitude.

Process of Adaptive LEO-Phase Free-Return Orbit Iteration

As the worst situation assumed in the section 4.2, the iteration process of adaptive
LEO-phase free-return orbits is listed in Table 2. The Newton-downhill ratio is set as
0.9 considering the convergence speed and consistency in this example. After three
times iteration, the delta argument of latitude of the free-return orbit and LEO becomes
0.21 deg., so, we think it satisfies the engineering constraints. It proved to be effective
that the proposed method searches an adaptive LEO-phase free-return orbit. The radius
of the perigees of trans-lunar injection and vacuum perigee matching the equality
constraints shows that the two-segment numerical integration strategy is convenient.

The values of the independent design variables of free-return orbit are listed in
Table 3, which are so adjacent to the initial values mentioned in section 3.1

Table 3 The values of independent design variables

Iteration α/deg β/deg γ/deg vprl/km∙s−1

0 −0.10748 −0.03181 −0.03137 2.55453

1 −0.10931 −0.02809 −0.03383 2.55460

2 −0.10996 −0.03188 −0.03065 2.55460

3 −0.10995 −0.03188 −0.03064 2.55460
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significantly, and it is the reason why the optimization model applying SQP_snop in
section 3.3 has an advantage of fast convergence speed.

Conclusions

In this study, an adaptive LEO-phase free-return orbit design model applying
SQP_snop optimization algorithm is investigated, which has an advantage of fast
convergence speed due to the two-segment numerical integration strategy and the
particular independent design variables. Then a simple iteration for designing adaptive
LEO-phase FRO is proposed, a Newton-downhill ratio is employed to improve the
robust capacity and convergence speed of the iteration process. Simulation results
based on a high-precision dynamics model have demonstrated the effectiveness of this
approach. It could be used in the future manned lunar missions based on LEO
rendezvous.
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