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Abstract
This paper introduces a new class of finite-time feedback controllers for rigid-body
attitude dynamics subject to full actuation. The control structure is Lyapunov-based
and is designed to regulate the configuration from an arbitrary initial state to any
prescribed final state within user-specified finite transfer-time. A salient feature here
is that the synthesis of the control structure is explicit, i.e., given the transfer-time
time, the feedback-gains are explicitly stated to satisfy the convergence specifica-
tions. A major contrast between this work and others in the literature is that instead
of resorting to feedback-linearization (to get to the so-called normal form), our
approach efficiently marries the process of designing time-varying feedback gains
with the logarithmic Lyapunov function for attitude kinematics based on the Modi-
fied Rodrigues Parameters representation. Saliently, this finite-time solution extends
nicely for accommodating trajectory tracking objectives and possesses robustness
with respect to bounded external disturbance torques. Numerical simulations are per-
formed to test and validate the performance and robustness features of the new control
designs.

Keywords Attitude tracking · Finite-time control · Disturbance rejection ·
Modified Rodrigues parameters

Introduction

This work introduces a finite-time feedback controller for fully actuated rigid-body
attitude dynamics. We make use of Lyapunov’s Direct Method to design a feedback
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law that regulates the configuration from an arbitrary initial state to any final state
within a desired finite transfer-time tf . The control synthesis is explicit, i.e., given
the transfer-time time tf , the feedback-gains are explicitly stated to satisfy the
convergence specifications, even in the presence of bounded disturbances.

Several recent papers in literature address finite-time regulation problems for
fully-controllable systems that are diffeomorphic to the so-called normal form
representation. Some of these methods stem from non-smooth feedback, such as
bang-bang [1], fractional-order systems, and/or sliding-mode controllers. These
methods usually introduce discontinuous dynamics through feedback, which can lead
to chattering and excitation of undesired frequencies [2]. Other methods are built on
top of the “Lyapunov differential inequality” [3], and many recent results stem from
this methodology (see Ref. [4] and references therein). Whereas many of existing
methods provide results for finite-time control algorithms, the explicit synthesis of
such feedback schemes is far from being fully resolved, especially when applied to
nonlinear systems such as the attitude control problem.

In this work, we introduce a feedback control law whose feedback gains are time-
varying and grow unbounded towards the terminal time tf . Although the notion of
using unbounded feedback gains can be unsettling at a first glance, such an approach
has certain strong theoretical underpinnings that are based upon variational calculus.
Specifically, finite-horizon optimal control problems with terminal state constraints
are known to produce unbounded feedback gains [5].

The major contributions of this paper are as follows. Our formulation introduces
a feedback structure that is closely related to Ref. [4]. However, a major contrast is
that our work does not seek to arbitrarily cancel out nonlinearities including those
associated with the non-working terms within Euler’s rotational dynamics equations.
Thus, instead of resorting to the traditional approach of feedback-linearization, our
approach utilizes the unbounded gains in conjunction with the logarithmic Lyapunov
function presented by Ref. [6] for the attitude kinematics based on the Modified
Rodrigues Parameters (MRPs) representation.

This paper is structured along these following lines: Section “Control Design”
presents our control design for attitude stabilization around the origin, while
Section “Tracking Control” extends the result for trajectory tracking problems (such
as slew maneuvers). Section “Practical Considerations” introduces some practical
considerations for the implementation of the designed controller. Section “Simulation
Results” presents numerical simulation results and Section “Conclusion” summarizes
the paper by drawing some concluding remarks.

Control Design

Assume a rotation of an angle ψ ∈ ( −2π, 2π
)
rad around a unit-norm axis ê ∈ R

3.
The three-parameter MRP (Modified Rodrigues Parameters) representation σ ∈ R

3

for the same rotation is defined as:

σ � ê tan
ψ

4
. (1)

The Journal of the Astronautical Sciences (2020) 67:552–570 553



The kinematics of MRPs [7] is given by

σ̇ (t) = 1

4
B

(
σ (t)

)
ω(t), (2)

where ω(t) ∈ R
3 is the angular velocity expressed in a body-fixed frame, and

B
(
σ (t)

) = (1 − σ T σ )I 3 + 2σ ∗ + 2σσ T , (3)

where we denote v∗ as the skew-symmetric matrix associated with a vector v ∈ R
3.

It should be noticed that the product σ T B(σ ) satisfies the property:

σ T B(σ ) = (1 − σ T σ )σ T + 2σ T σσ T = (1 + σ T σ )σ T . (4)

The composition rule between the MRPs σ 1 and σ 2 is given by [8]:

σ 3 � σ 1 ⊗ σ 2 = (1 − ||σ 1||2)σ 2 + (1 − ||σ 2||2)σ 1 + 2σ ∗
2σ 1

1 + ||σ 1||2||σ 2||2 − 2σ T
1 σ 2

. (5)

The direction cosine matrix associated with an MRP σ can be obtained by:

C(σ ) = I + 8(σ ∗)2 − 4(1 − σ T σ )σ ∗

(1 + σ T σ )2
(6)

Defining the MRP inverse σ−1 as the parameterization for the rotation matrix
C(σ−1) = CT (σ ), then the relation between σ−1 and σ is given by:

σ−1 = −σ . (7)

The body angular velocity ω(t) evolves according with Euler’s rotation equation:

J ω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t), (8)

where J = J T > 0 is the inertia tensor expressed in the body-fixed frame, u(t) is
an input torque, and d(t) is an unknown bounded disturbance torque.

The goal of this work is to find a control law for u(t), t ∈ [0, tf ), such that
σ (tf ) = ω(tf ) = 0, for some specified final time 0 < tf < ∞, even in the presence
of non-zero disturbance torques. We accomplish this through a backstepping design:
first, we assume that ω(t) = ωr (t) is an “input” to Eq. 2. We find a Lyapunov
candidate function that stabilizes the MRP in finite time (i.e., σ (tf ) = 0) by applying
the control law ωr (t), t ∈ [0, tf ). Then, we use ωr (t) to find a new control law u that
stabilizes both σ (t) and ω(t).

Section “MRP Stabilization” presents the procedure for stabilizing (2) assum-
ing input ω(t) = ωr (t). Section “Attitude Stabilization” presents the backstepping
formulation for designing the feedback law u(t) that stabilizes both (2) and (8).

MRP Stabilization

Assume that ωr (t) is the input to

σ̇ (t) = 1

4
B

(
σ (t)

)
ωr (t), t ∈ [0, tf ). (9)
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Next, define the function μ(t) as:

μ(t) � tf

tf − t
, t ∈ [0, tf ). (10)

One should note that μ(0) = 1, μ(t) > 1, ∀t ∈ (0, tf ), and limt→tf μ(t) = ∞. In
addition, the derivative of μ(t) with respect to time is given by:

μ̇(t) = tf

(tf − t)2
= 1

tf

(
tf

tf −t

)2 = 1

tf
μ2(t), t ∈ [0, tf ). (11)

The integral of μ2(t) with respect to time is given by:
∫ t

0
μ2(β) dβ = t2f

tf − t
|t0 = tf μ(t)|t0 = tf (μ(t) − 1) = tf μ̄(t), (12)

where μ̄(t) � μ(t) − 1. The signal μ̄(t) satisfies the properties μ̄(0) = 0, μ̄(t) >

0, ∀t ∈ (0, tf ), limt→tf μ̄(t) = ∞, and ˙̄μ(t) = μ̇(t).
We define the following Lyapunov candidate function:

V0(t) = μλ(t) ln
(
1 + σ T (t)σ (t)

)
, t ∈ [0, tf ), (13)

for some λ ∈ R>0. Clearly, V (t) = 0 ⇐⇒ ||σ (t)|| = 0, and V (t) > 0, ∀t ∈ [0, tf ),
if ||σ (t)|| 
= 0.

The time derivative of Eq. 13 is given by:

V̇0(t) = ∂V0

∂μ
μ̇(t) + ∂V0

∂σ
σ̇ (t)

= λμλ−1μ̇(t) ln
(
1 + σ T (t)σ (t)

) + 1

4

∂V0

∂σ
B(σ (t))ωr (t)

= λ

tf
μλ+1(t) ln

(
1 + σ T (t)σ (t)

) + μλ(t)

2
· σ T (t)

1 + σ T (t)σ (t)
B(σ (t))ωr (t)

= λ

tf
μλ+1(t) ln

(
1 + σ T (t)σ (t)

) + μλ(t)

2
· σ T (t)B(σ (t))

1 + σ T (t)σ (t)
ωr (t). (14)

Using the property from Eq. 4 into Eq. 14 leads to:

V̇0(t) = λ

tf
μλ+1(t) ln

(
1 + σ T (t)σ (t)

) + μλ(t)

2
σ T (t)ωr (t). (15)

Since ln(1 + η) ≤ η, ∀η ≥ 0, then:

V̇0(t) ≤ λ

tf
μλ+1(t)σ T (t)σ (t) + μλ(t)

2
σ T (t)ωr (t) (16)

In addition, μλ+1(t)σ T (t)σ (t) ≤ μλ+2(t)σ T (t)σ (t), t ∈ [0, tf ), leading to:

V̇0(t) ≤ λ

tf
μλ+2(t)σ T (t)σ (t) + μλ(t)

2
σ T (t)ωr (t)

= μλ(t)σ T (t)
(

λ
tf

μ2(t)σ (t) + 1
2ωr (t)

)
(17)
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We can choose the control law:

ωr (t) = −2
(

λ
tf

μ2(t)σ (t) + kμ2(t)σ (t)
)

(18)

= −2
(

λ
tf

+ k
)

μ2(t)σ (t), (19)

= −φμ2(t)σ (t), (20)

for some constant gain k > 0, φ � 2
(

λ
tf

+ k
)

> 0 and t ∈ [0, tf ), leading to:

V̇0(t) ≤ −kμλ+2(t)σ T (t)σ (t). (21)

Noticing again that − ln(1 + η) ≥ −η, ∀η ≥ 0, then:

V̇0(t) ≤ −kμλ+2(t) ln
(
1 + σ T (t)σ (t)

)

= −kμ2(t)V0. (22)

Invoking the Comparison Lemma [9], we have that:

V0(t) ≤ V0(0) exp
[ −k

∫ t

0μ2(γ ) dγ
]
. (23)

Using Eq. 12, we get:

V0(t) ≤ V0(0) exp
[ −ktf · μ̄(t)

]

μλ(t) ln
(
1 + σ T (t)σ (t)

) ≤ V0(0) exp
[ −ktf · μ̄(t)

]
. (24)

Observing that limt→tf exp
[ −ktf · μ̄(t)

] = 0, then:

lim
t→tf

V0(t) ≤ 0 =⇒ lim
t→tf

V0(t) = 0 =⇒ lim
t→tf

σ (t) = 0. (25)

Therefore, if the control law in Eq. 20 is realizable (i.e. ωr ∈ L∞), then we have
finite time convergence of σ to the origin. Also, it is desirable that limt→tf ωr (t) = 0,
which would imply that once the state σ reaches zero at t = tf , it will remain there
for t > tf (i.e., soft-landing).

Taking the two-norm of the control law from Eq. 20, we get that:

||ωr (t)|| = φ||μ2(t)σ (t)|| (26)

Therefore, it is sufficient to say that if the product μ2σ ∈ L∞, then ωr ∈ L∞,
implying that the control law is realizable. Appendix A proves that if Eq. 24 holds
true, then μα1σ ∈ L∞, ∀α1 ∈ R, implying that:

∃ α2 ∈ R s.t . ||μα1 (t)σ (t)|| ≤ α2, ∀t ∈ [0, tf ) =⇒ ||μα1−1(t)σ (t)|| ≤ α2

μ2(t)
∀t ∈ [0, tf ).

(27)

Choosing α1 = 3, we have that:

lim
t→tf

||μ2(t)σ (t)|| ≤ lim
t→tf

α2

μ2(t)
= 0. (28)

Therefore, from Eq. 26 we get that limt→tf ||μ2(t)σ (t)|| = 0 =⇒
limt→tf ||ωr (t)|| = 0.
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Attitude Stabilization

In the previous subsection, the variable ω(t) = ωr(t) was assumed to be a control
variable. Now, we employ a backstepping design to stabilize σ (t) and ω(t) in finite
time. The equations of motion are given by:

{
σ̇ (t) = g(σ )ω(t)

J ω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t)
, (29)

where g(σ ) � 1
4B

(
σ (t)

)
, and d(t) is a bounded disturbance input with ||d(t)|| ≤ d̄ .

The goal is to design u(t) such that u ∈ L∞ and limt→tf [σ (t), ω(t)] = 0.
We rewrite (2) as:

σ̇ (t) = g(σ )ω(t) + g(σ )ωr (t) − g(σ )ωr (t)

= g(σ )ωr (t) + g(σ )
(
ω(t) − ωr (t)

)

= g(σ )ωr (t) + g(σ )ωe(t), (30)

where ωe(t) � ω(t) − ωr (t).
Then, we construct a new Lyapunov candidate function V : [0, tf ) → R

+:

V (t) = V0(t) + 1

2
μ4(t)ωT

e (t)Jωe(t),

= μλ(t) ln
(
1 + σ T (t)σ (t)

) + 1

2
μ4(t)ωT

e (t)Jωe(t). (31)

The time derivative of Eq. 31 is given by:

V̇ (t) = ∂V0

∂μ
μ̇(t) + ∂V0

∂σ
σ̇ (t) + 2μ3(t)μ̇(t)ωT

e (t)Jωe(t) + μ4(t)ωT
e (t)J ω̇e

= ∂V0

∂μ
μ̇(t) + ∂V0

∂σ
g(σ )ωr (t) + ∂V0

∂σ
g(σ )ωe(t) + 2

tf
μ5(t)ωT

e (t)Jωe(t)

+μ4(t)ωT
e (t)

[
u(t) + d(t) − ω∗(t)Jω(t) − J ω̇r (t)

]
.

From Eqs. 14–22 in the previous section, it follows that:

∂V0

∂μ
μ̇(t) + ∂V0

∂σ
g(σ )ωr (t) ≤ −kμ2(t)V0(t), (32)

for some k > 0 and ωr (t) given by Eq. 20. Using Eq. 32 together with the property
from Eq. 4, we get:

V̇ (t) ≤ −kμ2(t)V0(t) + μλ(t)

2
σ T (t)ωe(t) + 2

tf
μ5(t)ωT

e (t)Jωe(t)

+μ4(t)ωT
e (t)

[
u(t) − ω∗(t)Jω(t) − J ω̇r (t)

] + μ4(t)ωT
e (t)d(t).
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Focusing on the disturbance term, we have that:1

μ4(t)ωT
e (t)d(t) = μ2(t)

(
μ2(t)ωT

e (t)
)
d(t)

≤ 1

2
μ2(t)

[
μ4(t)||ωe(t)||2 + ||d(t)||2 ]

≤ 1

2
μ6(t)||ωe(t)||2 + 1

2
μ2(t)d̄2. (33)

In addition, using the fact μ5(t)ωT
e (t)Jωe(t) ≤ μ6(t)ωT

e (t)Jωe(t), we get that:

V̇ (t) ≤ −kμ2(t)V0(t) + μλ(t)

2
σ T (t)ωe(t) + 2

tf
μ6(t)ωT

e (t)Jωe(t)

+μ4(t)ωT
e (t)

[
u(t) + μ2(t)

2 ωe(t) − ω∗(t)Jω(t) − J ω̇r (t)

]
+ 1

2
μ2(t)d̄2

≤ −kμ2(t)V0(t) + 1

2
μ2(t)d̄2

+μ4(t)ωT
e (t)

[
u(t)+μ2(t)

(
1
2 I + 2

tf
J

)
ωe(t)−ω∗(t)Jω(t)−J ω̇r (t) + 1

2μλ−4(t)σ (t)
]
.(34)

We can choose the control law:

u(t) = −
(

1
2kJ + 2

tf
J + 1

2I
)

μ2(t)ωe(t)− 1

2
μλ−4(t)σ (t)+ω∗(t)Jω(t)+J ω̇r (t),

(35)
where ω̇r (t) can be obtained by differentiating Eq. 20:

ω̇r (t) = −φμ2(t)
[

2
tf

μ(t)σ (t) + g(σ )ω(t)
]

= − 2

tf
φμ3(t)σ (t) − φg(σ )μ2(t)ωe(t) − φg(σ )μ2(t)ωr (t)

= − 2

tf
φμ3(t)σ (t) − φg(σ )μ2(t)ωe(t) + φ2g(σ )μ4(t)σ (t). (36)

Substituting Eq. 35 into Eq. 34 leads to:

V̇ (t) ≤ −kμ2(t)V0(t) − 1

2
kμ6(t)ωT

e (t)Jωe(t) + 1

2
μ2(t)d̄2

≤ −kμ2(t)
(
V0(t) + 1

2μ
4(t)ωT

e (t)Jωe(t)
) + 1

2
μ2(t)d̄2

≤ −kμ2(t)V (t) + 1

2
μ2(t)d̄2. (37)

Once again, invoking the Comparison lemma leads to:

V (t) ≤ (t, 0)V (0) + (t, 0)
∫ t

0
(0, τ )

1

2
μ2(t)d̄2 dτ, (38)

1We use the property abT c ≤ 1
2

(
a2||b||2 + ||c||2 )

, ∀a ∈ R>0, b ∈ R
n, c ∈ R

n, n ∈ Z>0.
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where (t1, t2) = exp
[ −ktf

(
μ(t1) − μ(t2)

) ]
. Solving the integral in Eq. 38, we

can show that:

V (t) ≤ V (0) exp
[ −ktf · μ̄(t)

] + d̄2

2k

(
1 − exp

[ −ktf · μ̄(t)
] )

(39)

We provide the analysis for the disturbance free case in Section “Disturbance-Free
Analysis” and the analysis for the case with non-zero disturbance torques in
Section “Disturbance Analysis”. We demonstrate that the control objectives are
reached in the disturbance-free case for any λ > 0, while we require λ = 8 to satisfy
complete disturbance rejection at terminal time tf .

Disturbance-Free Analysis

In the absence of disturbances, d̄ = 0 and the following holds:

V (t) ≤ V (0) exp
[ −ktf · μ̄(t)

] =⇒
{ 1

2μ4(t)ωT
e (t)Jωe(t) ≤ V (0) exp

[ −ktf · μ̄(t)
]

μλ ln(1 + σ T σ ) ≤ V (0) exp
[ −ktf · μ̄(t)

] (40)

lim
t→tf

V (t) ≤ 0 =⇒ lim
t→tf

V (t) = 0 =⇒
⎧
⎨

⎩

lim
t→tf

||μ2(t)ωe(t)||2 = 0

lim
t→tf

||σ (t)||2 = 0
. (41)

Since limt→tf ωe(t) = 0 and limt→tf ωr (t) = 0 (See Eqs. 26 and 28), then
limt→tf ω(t) = 0. Also, the right-hand side of Eq. 39 is a bounded function, for
t ∈ [0, tf ), implying that:

V ∈ L∞ =⇒ ωe ∈ L∞ =⇒ ω ∈ L∞, (42)

where the last implication above holds true given that ωr = −φμ2σ ∈ L∞ (See
Appendix A).

We need to ensure that the control torque u(t) is bounded. According with Eqs. 40
and 41, μ2ωe ∈ L∞, σ ∈ L∞, limt→tf ||μ2(t)ωe(t)|| = 0, and limt→tf ||σ (t)|| = 0.
Given that Eq. 40 holds, Appendix A shows that μ3σ ∈ L∞, limt→tf ||μ3(t)σ (t)|| =
0, μ4σ ∈ L∞, limt→tf ||μ4(t)σ (t)|| = 0. Since σ ∈ L∞, then g(σ ) ∈ L∞.

Therefore, u(t) is composed as a sum of bounded signals, which implies that
u ∈ L∞. In addition, since limt→tf ||μ2(t)ωe(t)|| = 0, limt→tf ||σ (t)|| = 0,
limt→tf ||μ3(t)σ (t)|| = 0 and limt→tf ||μ4(t)σ (t)|| = 0, then limt→tf u(t) = 0.

Disturbance Analysis

Equation 39 can be upper bounded as:

V (t) ≤ V (0) + d̄2

2k
. (43)

Defining the constant V̄ � V (0) + d̄2

2k , if follows that:

μλ(t) ln(1 + σ T (t)σ (t)) ≤ V̄ (44)
1

2
μ4(t)ωT

e (t)Jωe(t) ≤ V̄ . (45)

The Journal of the Astronautical Sciences (2020) 67:552–570 559



Starting from Eq. 44, it is possible to show that μλ/2σ ∈ L∞ and that
limt→tf μρ(t)σ (t) = 0, ∀ρ < λ/2 (See Appendix B), which implies that
limt→tf σ (t) = 0, if λ > 0.

Given that the control law of Eq. 35 is function of ω̇r (t), which depends on
μ4(t)σ (t) (see Eq. 36), then we need that λ/2 ≥ 4 =⇒ λ ≥ 8 to satisfy μ4σ ∈ L∞.
Additionally, the control law of Eq. 35 depends on μλ−4(t)σ (t), implying that we
need λ − 4 ≤ λ/2 =⇒ λ ≤ 8. Therefore, λ = 8 satisfies both μ4σ ∈ L∞ and
μλ−4σ ∈ L∞.

Equation 45 implies that μ2ωe ∈ L∞. Also, since ωT
e (t)Jωe(t) ≤ μ−4(t)V̄ , then

limt→tf ωT
e (t)Jωe(t) = 0 =⇒ limt→tf ωe(t) = 0.

Given that limt→tf ωe(t) = 0 and limt→tf ωr (t) = limt→tf −φμ2(t)σ (t) = 0
(for λ = 8), then limt→tf ω(t) = limt→tf ωe(t) + limt→tf ωr (t) = 0.

Therefore, by choosing λ = 8 we have that the control law of Eq. 35 is a
sum of bounded terms, implying that u ∈ L∞. In addition, limt→tf σ (t) = 0
and limt→tf ω(t) = 0, accomplishing the desired control objectives. One should
also note that there are no guarantees that limt→tf u(t) = 0, as is the case for the
disturbance-free control.

Tracking Control

In the previous section, we developed a stabilizing controller that takes the system to
the origin. In this section, we generalize the solution for tracking a desired trajectory.

Assume a desired trajectory given by a desired orientation signal σ d(t) and a
desired angular velocity signal ωd(t). The objective is to reach the desired trajectory
at time t = tf , i.e., δσ (tf ) = 0 and δω(tf ) = 0, where δσ (t) � σ (t) ⊗ σ−1

d (t)

is the reference attitude error and δω(t) � ω(t) − C(δσ )ωd(t) is the angular veloc-
ity error expressed in the true orientation’s frame of reference. The matrix C(δσ )

is the direction cosine matrix equivalent to the rotation δσ (see Eq. 6) and satisfies
Ċ(δσ ) = −δω∗C(δσ ). We assume that the quantities σ d(t), ωd(t), and ω̇d(t) are
fully specified as part of the tracking control objective.

As in the previous section, we first assume that the error dynamics for δσ̇ (t) is
driven by a signal δωr (t) as follows:

δσ̇ (t) = g(δσ )δωr (t), (46)

where g(δσ ) � 1
4B(δσ ).

We can choose the control law

δωr (t) = −φμ2(t)δσ (t), (47)

which was already shown to lead to limt→tf δσ (t) = 0. Also, we’ve already proven
that the control law given by Eq.47 is realizable and that limt→tf δωr (t) = 0.

In order to control the tracking error dynamics, we need to stabilize the equations
of motion below:

{
δσ̇ (t) = g(δσ )δω(t)

J ω̇(t) = −ω∗(t)Jω(t) + u(t) + d(t)
. (48)
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In order to achieve stability, we define the angular velocity error signal δωe(t) �
δω(t) − δωr (t). The derivative of J δωe(t) is given by:

J δω̇e(t) = J δω̇(t) − J δω̇r (t)

= J ω̇(t) − JĊ(δσ )ωd (t) − JC(δσ )ω̇d (t) − J δω̇r (t)

= −ω∗(t)Jω(t) + u(t) + d(t) + J δω∗(t)C(δσ )ωd (t) − JC(δσ )ω̇d (t) − J δω̇r (t), (49)

where δω̇r (t) can be obtained by differentiating Eq. 47:

δω̇r (t) = −φμ2(t)
[

2
tf

μ(t)δσ (t) + g(δσ )δω(t)
]
. (50)

We choose the control law:

u(t) = −
(

1
2kJ + 2

tf
J + 1

2 I
)

μ2(t)δωe(t) − 1

2
μλ−4(t)σ (t) + ω∗(t)Jω(t) + J ω̇r (t)

−J δω∗(t)C(δσ )ωd (t) + JC(δσ )ω̇d (t). (51)

Replicating the same analysis as in the stabilization case, it is possible to show
that the tracking error converges to zero: limt→tf δσ (t) = 0 and limt→tf δω(t) = 0.
In addition, it is possible to use the same arguments as before to show that the control
law from Eq. 51 is realizable (both in the presence and absence of disturbances).

Practical Considerations

We have proven in the previous sections that the control laws Eqs. 35 and 51 are
bounded even in the presence of disturbances. Still, there are some practical aspects
that have to be considered when utilizing these controller designs.

An important matter that arises in any real implementation concerns the feedback
control using noisy measurements. Assuming a measurement model with zero-mean
additive noise, the designed control laws cannot guarantee to drive the system to the
origin anymore. As t approaches tf , μ(t) increases unboundedly and amplifies the
measurement noise that is introduced into the system through Eqs. 35 or 51. Instead
of being driven to the origin, the system states converge to a time-varying residual
set whose extent changes as a function of μ(t).

A simple saturation heuristic that can be used to remedy the noise amplification is
to bound μ(t) as follows:

μ(t) =
{ tf

tf −t
, t ∈ [0, κtf )

tf
tf −κtf

, t ∈ [κtf , ∞)
, (52)

for some user-chosen κ ∈ (0, 1). This heuristic avoids μ(t) from becoming
unbounded and thereby eliminating the possibility of increasingly amplifying the
measurement noise.

A judicious choice of κ in Eq. 52 depends on the measurement noise characteris-
tics, as well as the final time tf . As κ approaches 0, the risk is that the system might
not reach an acceptably small residual set within the prescribed finite time. Alterna-
tively, as κ approaches 1, the noise amplification might be too high, demanding too
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much on the actuators. Therefore, a rational choice of κ would be one that caps the
signal μ(t) as soon as the system reaches to within a small enough residual set.

In order to identify whether or not the system trajectories are within the residual
set, one can perform a rigorous analysis to characterize the measure of the residual set
as a function of noise variance, initial states and final time. Alternatively, our expe-
rience based on extensive numerical simulations of the control laws Eqs. 35 and 51
shows that it is possible to determine whether the system has reached the residual
set by analyzing the Fast Fourier Transform (FFT) of the measured angular velocity
ω (δω for the tracking case) and identifying the instant when the high-frequencies
(mostly noise) dominates the measured signal.

Finite-time (or even infinite time) convergence to the origin in the presence of
noise is unattainable, given that the controller attempts to converge to a measured
zero, which is not the true zero. Once the system states reach within a residual set,
we cannot really claim that there is any advantage in using the control law from
Eqs. 35 or 51 with respect to other works in the literature, including non-finite
controllers. This means that one can run the finite-time controller until the system
reaches the residual set, then switch to some other classical control law, such as
a Proportional-Derivative controller [6, 10, 11] tuned with optimal feedback gains
(minimizing actuation energy or residual set measure).

Simulation Results

This section presents some simulation results for the designed control laws. In
the absence of measurement noise, we show that the designed control laws drive
the system to zero error as expected. Section “Perfect Measurements” presents
results for the control being applied in the absence of measurement noise, while
Section “Noise Corrupted Measurements” shows the results for the control law with
noisy measurements. Our simulations are performed for final time tf = 30s.

For all simulations, the initial orientation is given by a rotation of ψ(0) = π

around the axis ê(0) = 1/
√
3

[
1, 1, 1

]T , and the initial angular velocity is given by

ω(0) = [ −0.03, 0.04, −0.05
]T . The inertia matrix is given by:

J =
⎡

⎣
95 −0.69 0.18
−0.69 190 0.12
0.18 0.12 142.5

⎤

⎦ (53)

Perfect Measurements

This section presents simulation results for attitude stabilization using noise-free
measurements. We are able to demonstrate that the system converges to arbitrary final
configurations for arbitrary initial conditions. We implement μ(t) with saturation as
in Eq. 52 with κ = 0.995, avoiding the singularity at t = tf .

Figure 1 shows the result for the stabilization of the system to the origin using
the control law from Eq. 35. Values below 2.20 · 10−16 are considered zero and are
not shown on the log plot. We can see that the system is being driven towards the
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Fig. 1 Time histories of state trajectories for the set-point regulation case with perfect measurements

origin increasingly faster until the machine zero is reached. Notice that the states
(ω(t) and σ (t)) and the inputs (u(t)) all converge to zero. The log plots fade after 20
seconds, but one should have in mind that this is the double precision zero, not the
mathematical zero. The mathematical zero should only happen at exactly t = tf as
per our proofs.

Figure 2 shows the result for the stabilization of a perturbed system to the origin
using the control law from Eq. 35 with λ = 8. The disturbance is constant and given
by d(t) = [

1, 1, 1
]T . The angular velocity ω(t) reaches zero before the terminal

time, while ||σ (tf )|| = 3.62 · 10−12. In steady state, the input torque compensates

the disturbance signal u(t) → [ −1, −1, −1
]T .

Figure 3 shows a result for the stabilization of the system to a tumbling configura-
tion, using the control law from Eq. 51. The desired trajectory follows the differential
equation:

{
σ̇ d(t) = g(σ d)ωd(t)

J ω̇d(t) = −ω∗
d(t)Jωd(t)

, (54)

with σ d(0) = −1/
√
3

[
1, 1, 1

]T , ωd(0) = [
0.01, 0.01, 0.01

]T . We can see
that, for this scenario, the states of the error dynamics converge to “machine-zero”
sometime after about 20s. The states (ω(t) and σ (t)) and the input torques u(t) all
converge to zero.
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Fig. 2 Time histories of state trajectories for the set-point regulation case with perfect measurements and
applied disturbances
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Fig. 3 Time histories of state trajectory errors for the trajectory tracking case with perfect measurements
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Noise CorruptedMeasurements

In order to test the presented algorithm in presence of noise, we add measurement
noise that is typical for a spacecraft with a star tracker, a gyroscope, and is executing
an onboard state estimation algorithm.We assume that the state estimator is executing
at a rate of 100Hz, and that it produces angular velocity measurements with standard
deviation σω = 0.002rad/s and attitude measurements with angular orientation error
having standard deviation of σφ = 2arcsec= 9.7 · 10−6rad (in fact, commercial star
tracker standard deviation is typically below 1.5arcsec [12]).

Figure 4 shows a result for the stabilization of the system to the origin using the
two heuristics described in Section “Practical Considerations” for measurement noise
accommodation. The blue plot implements μ(t) as in Eq. 52 with a fixed value of
κ = 0.85 (Fixed Kappa Method - FKM). The red plot implements the FFT heuristic
described in Section “Practical Considerations” by analyzing the FFT of ||ω|| over a
window of 256 measurements, and tracking the instant at which frequencies above
10Hz dominate over frequencies below 10Hz.

We can see in the blue plot of Fig. 4 that even though the state errors reach a
residual set sometime after 13s, the controller gains keep increasing until t = 25.5s.
Because of this, the FKM controller demands more control torque on average than
the one using the FFT method, which capped the value of μ(t) at t = 12.22s. In
average, the FKM results get to a narrower residual set for δσ than the FFT results,
but the residual set for δω is larger in the FKM results than it is in FFT one.
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Fig. 4 System convergence to the origin with noisy measurements. The blue plot shows the controller that
caps μ(t) at κ = 0.85, while the red plot shows the controller that detects the switching time through the
FFT method
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Conclusion

In this paper, we have introduced a finite-time controller for fully-actuated rigid-
body attitude dynamics. The feedback control law is stablished using Lyapunov’s
direct method, regulating the system’s configuration from any arbitrary initial state
to any final one within user-specified finite transfer time tf even in the presence
of disturbances. In order to achieve finite-time regulation, the feedback gain grows
unbounded as time approaches tf .

We have presented simulation results, demonstrating the efficacy of the controller
in reaching the desired configuration within finite time. In presence of noise, the
system trajectories are shown to converge within a residual set and we propose
mechanisms to avoid unnecessary amplification of noise.

An interesting avenue for further work would be seeking the design of a finite-time
controller for attitude dynamics without going through the backstepping process, as
in the current work. An obvious downside of the backstepping design is that the
designed control laws (35 and 51) are algebraically heavy due to the fact that they par-
tially compensate for the “non-working” gyroscopic terms in the attitude dynamics
equations (for example, the ω∗Jω term). On the other hand, the literature for asymp-
totic attitude stabilization (not finite-time) is abundant with control designs that can
be obtained without gyroscopic compensation [6, 10].

Appendix A

In this section, we prove that if:

μλ(t) ln
(
1 + σ T (t)σ (t)

) ≤ V0(0) exp
[ −ktf · μ̄(t)

]
, (55)

then μα1σ ∈ L∞, ∀α1 ∈ R.
Starting from Eq. 55, we use the definition μ̄(t) � μ(t) − 1 to get:

μλ(t) ln
(
1 + σ T (t)σ (t)

) ≤ V0(0) exp
[ −ktf · (μ(t) − 1)

]

= V0(0)e
ktf exp

[ −ktf · μ(t)
]

= α2 exp
[ −ktf · μ(t)

]
, (56)

where α2 � V0(0)ektf > 0.
Defining β(t) � exp

[ −ktf · μ(t)
]
, it follows that:

μλ(t) ln
(
1 + σ T (t)σ (t)

) ≤ α2β(t)

ln
(
1 + σ T (t)σ (t)

) ≤ α2μ
−λ(t)β(t)

1 + σ T (t)σ (t) ≤ exp
[
α2μ

−λ(t)β(t)
]

σ T (t)σ (t) ≤ exp
[
α2μ

−λ(t)β(t)
] − 1

μ2α1(t)σ T (t)σ (t) ≤ μ2α1(t)
[
exp

[
α2μ

−λ(t)β(t)
] − 1

]

||μα1(t)σ (t)||2 ≤ exp
[
α2μ

−λ(t)β(t)
] − 1

μ−2α1(t)
. (57)
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In order to show that the signal f (t) � ||μα1(t)σ (t)||2 is bounded, we need to
evaluate the limit as t → tf . Taking the limit on both sides:

lim
t→tf

f (t) ≤ lim
t→tf

exp
[
α2μ

−λ(t)β(t)
] − 1

μ−2α1(t)
. (58)

The above limit can be rewritten as:

lim
t→tf

f (t) ≤ lim
μ→∞

exp
[
α2μ

−λ exp
[ −k · tf · μ

] ] − 1

μ−2α1
. (59)

Assuming that λ < 2α1, Lemmas 1 and 2 are used to prove that the right-hand
side of Eq. 59 is equal to zero, implying that ||μα1(t)σ (t)||2 ∈ L∞, ∀ α1 > λ/2. In
addition, since ||μη1(t)σ (t)||2 ≤ ||μη2(t)σ (t)||2, for η1 ≤ η2, then ||μα1(t)σ (t)||2 ∈
L∞, ∀ α1 ∈ R.

Lemma 1 For any finite real constants α1 
= 0, α2 > 0, γ1 > 0, γ2 > 0, then:

lim
x→0+ α1x

−γ1exp
[ −α2x

−γ2
] = 0. (60)

Proof Making the substitution y = x−γ2 , then:

lim
x→0+ α1x

−γ1exp
[ −α2x

−γ2
] = lim

y→∞ α1y
γ3+γ4e−α2y, (61)

where γ3 ∈ N � �γ1/γ2� and γ4 ∈ [0, 1) � γ1/γ2 − γ3.
One can notice that the limit in Eq. 61 is a product of zero with ∞, which can be

solved for by using L’Hospital’s rule. Defining γ5 � γ3 + γ4, we apply L’Hospital’s
rule γ3 times, leading to:

lim
y→∞ α1y

γ5e−α2y = lim
y→∞ −α1α2γ5y

γ5−1e−α2y

= lim
y→∞ α1α

2
2γ5(γ5 − 1)yγ5−2e−α2y

= · · ·
= lim

y→∞(−1)γ3α1α
γ3
2 γ5(γ5 − 1) · · · (γ5 − γ3)y

γ4e−α2y . (62)

If γ4 = 0, then the proof is complete. However, if γ4 ∈ (0, 1), then we need to use
L’Hospital’s rule one more time:

lim
y→∞ α1y

γ5e−α2y = lim
y→∞(−1)γ3+1α1α

γ3+1
2 γ5(γ5 − 1) · · · (γ5 − γ3)γ4y

γ4−1e−α2y = 0. (63)

Lemma 2 For any finite real constants α1 > 0, α2 > 0, and 0 < γ1 ≤ γ2 < γ3, then
limx→∞ f (x) = 0, where:

f (x) = exp
[
α1x

−γ2 exp
[ −α2x

γ1
] ] − 1

x−γ 3
. (64)
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Proof Defining y � x−γ3 , we have that y−γ4 = xγ1 , and yγ5 = x−γ2 , where γ4 � γ1
γ3

and γ5 � γ2
γ3
. Since 0 < γ1 ≤ γ2 < γ3, then 0 < γ4 ≤ γ5 < 1. The limit can be

rewritten as:

lim
x→∞ f (x) = lim

y→0+ f (y) = exp
[
α1y

γ5 exp
[ −α2y

−γ4
] ] − 1

y
. (65)

For notation simplicity, we define β(y) � exp
[ −α2y

−γ4
]
, leading to:

lim
y→0+ f (y) = lim

y→0+
exp

[
α1y

γ5β(y)
] − 1

y
. (66)

It is straightforward to see that limy→0+ β(y) = 0 and that limy→0+ eα1y
γ5β(y) =

1. Since this limit is a ratio of zero with zero, we can use L’Hospital’s rule to show that
the right-hand side of Eq. 66 converges to zero as y → 0+. We define the numerator
signal as:

n(y) � eα1y
γ5β(y) − 1. (67)

Clearly, it is sufficient to prove that if limy→0+ dn(y)
dy

= 0, then

lim
y→0+

eα1y
γ5β(y) − 1

y
= 0, (68)

implying that limy→0+ f (y) = 0. Using the notation f ′ � ∂f
∂y

the derivative of n(y)

is given by:

n′(y) = α1

(
γ5
yγ6 β(y) + yγ5β ′(y)

)
eα1y

γ5β(y), (69)

where γ6 > 0 is defined as γ6 � 1 − γ5. Given that

β ′(y) = α2γ4y
−γ4−1 exp

[ −α2y
−γ4

] = α2γ4

yγ7
β(y), (70)

for γ7 � 1 + γ4 > 1, we can substitute Eq. 70 into Eq. 69:

n′(y) = α1

(
γ5
yγ6 β(y) + α2γ4

yγ7−γ5
β(y)

)
eα1y

γ5β(y). (71)

One should note that since γ7 > 1 and 0 < γ5 < 1, then γ7 − γ5 > 0. Using
Lemma 1 and the definition β(y) � exp

[ −α2y
−γ4

]
, then:

{
limξ→0+ γ5

yγ6 β(y) = 0,
limξ→0+ α2γ4

yγ7−γ5
β(y) = 0 . (72)

Remembering that limy→0+ β(y) = 0, and that limy→0+ eα1y
γ5β(y) = 1, then

limy→0+ n′(y) = 0, which implies that limx→∞ f (x) = 0.

Appendix B

In this section, we show that the inequality

μλ(t) ln(1 + σ T (t)σ (t)) ≤ V̄ , (73)
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for a constant V̄ > 0, implies that μλ/2σ ∈ L∞ and that limt→tf μρ(t)σ (t) =
0, ∀ρ < λ/2.

Starting from Eq. 73, we have that:

σ T (t)σ (t) ≤ exp
[
V̄ μ−λ(t)

] − 1 (74)

μλ(t)σ T (t)σ (t) ≤ μλ(t)
[
exp

[
V̄ μ−λ(t)

] − 1
]

(75)

||μλ/2(t)σ (t)||2 ≤ exp
[
V̄ μ−λ(t)

] − 1

μ−λ(t)
. (76)

In order to show that the signal f (t) � ||μλ/2(t)σ (t)||2 is bounded, we need to
evaluate the limit as t → tf . Taking the limit on both sides:

lim
t→tf

f (t) ≤ lim
t→tf

exp
[
V̄ μ−λ(t)

] − 1

μ−λ(t)
. (77)

Assuming λ > 0, the above limit can be rewritten as:

lim
t→tf

f (t) ≤ lim
μ→∞

exp
[
V̄ μ−λ

] − 1

μ−λ
. (78)

Defining ξ(t) � μ−λ(t), we have that:

lim
t→tf

f (t) ≤ lim
ξ→0+

exp
[
V̄ ξ

] − 1

ξ
. (79)

Since the above limit is a ratio of zero with zero, we can use L’Hospital’s rule:

lim
t→tf

f (t) ≤ lim
ξ→0+

d
dξ

[
exp

[
V̄ ξ

] − 1
]

d
dξ

ξ
(80)

= lim
ξ→0+ V̄ exp

[
V̄ ξ

]
(81)

= V̄ (82)

Therefore, f (t) � ||μλ/2(t)σ (t)||2 is bounded, i.e., μλ/2σ ∈ L∞. Also, since
||μλ/2(t)σ (t)||2 ≤ V̄ , then for any ε > 0 and constant ρ such that 2ε + ρ = λ/2 we
have that ||μρσ (t)||2 ≤ μ−ε(t)V̄ , implying that limt→tf ||μρσ (t)||2 = 0.
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