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Abstract
Equinoctial orbital elements were recently generalized from spherical geometry to
the oblate spheroidal geometry of Vinti theory. For the symmetric Vinti potential,
which accounts exactly for oblateness, these nonsingular elements are defined for all
nondegenerate orbital regimes and resolve the usual problems found in the classi-
cal elements associated with angle ambiguities. In the present work, the generalized
equinoctial elements are used to solve Vinti’s initial value problem, leading to a fully
nonsingular analytical solution for bounded orbits. The result is akin to deriving the
equinoctial form of Kepler’s equation for the two-body problem and then solving
it, formally completing the introduction of the new equinoctial element set. Deriva-
tions of the equinoctial integrals of the motion are included, as well as techniques to
eliminate all polar orbit singularities and solve a generalized Kepler’s equation. Mul-
tiple examples are presented. Code for predicting the Vinti orbit in oblate spheroidal
equinoctial elements is provided online as supplementary material.

Keywords Equinoctial elements · Oblate bodies · Vinti theory ·
Spheroidal method · Analytical solution · Orbit prediction · Intermediary

Introduction

A cursory glance at the astrodynamics landscape renders numerical methods indis-
pensable and analytical methods obsolete. In reality, astrodynamics tools must keep
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pace with increasingly complex missions. When the complexity stresses or breaks
existing tools, a synergetic solution that leverages both approaches can be a viable
option. One area that continues to use analytical methods is mission design, where
analytical solutions can enable rapid searches of large design spaces and furnish
good initial guesses to optimization software. Depending on the application, it can
be beneficial to perform the orbit propagation with an analytical solution like the one
presented in this paper. As the present solution includes oblateness, it would only
be useful if oblateness is not negligible, such as for many-revolution scenarios. As
an example, the authors used a modified Vinti propagator [14] in the ninth Global
Trajectory Optimization Competition (GTOC 9)1 to explore its applicability. In this
case, oblateness was essential to the dynamics of the mission design problem, which
required the active removal of 123 pieces of sun-synchronous debris from low Earth
orbit. To save fuel, it may be beneficial for the spacecraft to spend 10 days in transit to
the next piece of debris, exploiting oblateness effects to reach its target. Compared to
an eighth order Runge-Kutta numerical integrator taking 50 steps per revolution, the
analytical solution was found to offer a 400 times speed-up for that time of flight. The
solution developed in this work would lead to qualitatively similar behavior. These
types of speed-ups, manifested for certain applications and accuracy requirements,
are among the advantages that motivate the further development of Vinti theory.

The Vinti [23, 28] gravitational potential, which constructs orbits on an oblate
spheroidal geometry, is one of many so-called intermediaries, comprising a branch of
literature in celestial mechanics. In general, intermediaries can lead to exact solutions
to approximate problems. Perturbation methods [22], on the other hand, typically lead
to approximate solutions to an exact problem. Contributions in the realm of spherical
geometry include Cid and Lahulla’s radial intermediary [12, 16, 21] and the develop-
ment of a systematic approach to generating intermediaries to first order [15]. Biria
[1] discusses various intermediaries in greater detail. In the realm of spheroidal geom-
etry, a number of notable investigations into Vinti theory have been made in the last
few years [32, 33, 35]; these works utilized the symmetric Vinti potential (oblateness
without J3) and addressed methods of solution, incorporation of drag, the study of
resonances in the rotating frame, and applications to orbit determination. Wright [33]
adds air drag to Wiesel’s solution to the Vinti problem by applying general pertur-
bations techniques to the action-angle variables developed by Wiesel. Other related
work by Biscani and Izzo [6] presented a complete solution to the Euler problem
or problem of two fixed centers, whose connection to the Vinti problem has been
known for some time [8]. The Euler problem is considered a stepping stone between
the two-body problem and the circular restricted three-body problem, and is equally
applicable to modeling the orbital dynamics around rotationally symmetric primary
bodies. The solution of Biscani and Izzo [6] applies to bounded and unbounded orbits
of objects under attractive or repulsive forces.

Recent work on Vinti theory by the present authors began in 2016 when it was
revisited in a relative motion context [2, 5], employing the asymmetric Vinti potential
that is fit to the J2 and J3 spherical harmonic coefficients of a celestial body [27, 28].

1Information on GTOC 9 can be accessed at this website: https://sophia.estec.esa.int/gtoc portal/?page
id=814
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The work improved somewhat on Vinti theory itself, addressing computational ques-
tions, singularities, and numerical problems in the domain of bounded orbits. The
removal of a number of numerical issues generally brought the theory to a level
commensurate with methods for propagating classical spherical elements with two-
body dynamics in the same domain and transforming between those coordinates and
inertial position and velocity. The solution was implemented to order O(J 4

2 ) in the
secular terms and O(J 2

2 ) in the periodic terms, and while it is adjustable to higher
order, it is presently an approximate solution to the Vinti problem and does not pos-
sess double-precision accuracy. This solution can, in principle, be extended to an
order sufficient for double-precision accuracy without elliptic functions as long as J2
is less than roughly 0.17, when the series expansions are valid [14, 25].

The investigation [2, 5] also established the structure of the fundamental state tran-
sition matrix (STM) in the classical spheroidal element space. While the structure is
fixed, the authors developed its components in a two-part piecewise fashion to elim-
inate singularities in the partial derivatives. What the authors did not address is the
issue of linear dependence that can arise between the columns of the STM when
the bookend transformations to and from Earth-centered inertial (ECI) coordinates
are included. This issue should not come as a surprise because the exact same phe-
nomenon arises for classical spherical elements. To remove the linear dependence
for all combinations of spheroidal eccentricity and inclination, the effort continued
with the development of a nonsingular element set: the oblate spheroidal equinoctial
orbital elements [3, 4]. These elements employ the symmetric Vinti potential because
shifting the origin of the oblate spheroidal (OS) reference frame to account for J3
hamstrings the definition of an equinoctial element set [4]. In choosing the symmetric
gravitational potential, oblateness of the primary is embedded in the coordinates.

The complete introduction of the spheroidal equinoctial orbital elements is divided
into two parts. The first study [3] generalized the standard, spherical equinoctial
orbital elements [7, 11] to an oblate spheroidal geometry congruent with Vinti the-
ory. The effort focused on developing the point transformations that map between
the equinoctial elements and the inertial position and velocity vectors, including
derivations and algorithms. Their function, as such, is akin to that of the transforma-
tions established for spherical elements, wherein notions of osculating elements can
be adopted for a perturbed Vinti problem. State propagation in time is viewed as a
separate problem, and the analytical treatment is the subject of the present work.

The approach to analytical state propagation proceeds in the spirit of Vinti [24, 29],
reducing the inversion of the kinematic equations to successive solutions of Kepler’s
equation, modified here for equinoctial elements. Other techniques have been sug-
gested for the inversion expressed in classical elements [34]; the approach here can
exploit iterative root-solve algorithms typical for solving Kepler’s equation. The
authors recommend Laguerre’s method modified from Conway’s form [10] because
of the robustness it affords in the form of a free parameter that controls the order of
the root-solve. Der [13] employs this method for the same reason. To reach this stage
of the solution, many smaller steps must be taken, which are outlined here. First,
Vinti’s kinematic equations are re-expressed in spheroidal equinoctial elements. The
secular terms of the solution are transformed first, followed by the periodic terms.
Next, the spheroidal equinoctial integrals of the motion are derived. Like the classical
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element solution, these integrals of the motion are based on the spheroidal Delaunay
variables that Vinti employed. These Delaunay variables enable the extraction of the
periodic components of the equinoctial elements, which in turn make the equinoc-
tial integrals of the motion accessible. These latter elements are easily propagated in
time, and after the described root-solve, the final goal is obtained: an analytical solu-
tion to the Vinti problem in equinoctial elements. The investigation concludes with a
number of examples to test the analytical Vinti orbit propagator.

Problem Statement

Vinti’s analytical solution can be expressed as a nonlinear function f of the initial
state xi . More precisely, the solution can be written as

x = f(t, xi ), (1)

where the state vector is defined as

x� = [
r� v� ]

, (2)

so that in ECI coordinates, x = [X, Y,Z, Ẋ, Ẏ , Ż]�. The quantities r and v rep-
resent inertial position and velocity vectors, respectively. The dynamical problem
considered concerns a spacecraft traveling under the influence of the symmetric Vinti
potential [23]

V = − μρ

ρ2 + c2η2
, (3)

where μ = GM is the gravitational parameter of the primary, ρ is the OS coordinate
equal to the semiminor axis of the tangent oblate spheroid, η is the OS coordinate
associated with latitude that is approximately equal to the sine of the declination,
and 2c is the focal separation for the oblate spheroid (c is the radius of the oblate
spheroid’s focal circle). The OS coordinate system geometry is illustrated in Fig. 1,
which presents a cross-section of the XZ-plane. The third OS coordinate is the right
ascension, φ, which is identical to the azimuthal angle in spherical coordinates. The

Fig. 1 Geometry of oblate
spheroidal coordinates for Earth:
cross-section of the XZ-plane
(the η = 0 line marks the
equatorial plane) zoomed in to
an equatorial radius of
approximately 451 km [5]
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ECI and OS reference frames share the same origin. Constant values of ρ specify
confocal oblate spheroids, those of η specify confocal hyperboloids of one sheet, and
those of φ specify meridional planes. The focal separation is fit to the dominant term
of the traditional spherical harmonic potential as

c2 = R2
e J2, (4)

where Re is the equatorial radius. With this fit, the Vinti potential is exact for a sym-
metric oblate spheroid where J4 = −J 2

2 , J6 = +J 3
2 , . . . , but relative to the Earth’s

potential, for example, the fit is approximate, notionally modeling J2+εJ4+ε2J6+· · ·
for some small ε. In the case of the Earth, the Vinti potential includes roughly
72% of J4.

Using the gravitational potential V of Eq. 3 and OS coordinates, Vinti derived the
Hamiltonian, H, as

H = 1

2

[
ρ2 + c2

ρ2 + c2η2
p2

ρ + 1 − η2

ρ2 + c2η2
p2

η + 1
(
ρ2 + c2

) (
1 − η2

)p2
φ

]

− μρ

ρ2 + c2η2
,

(5)
where pρ , pη, and pφ are the conjugate momenta given by

pρ = ρ2 + c2η2

ρ2 + c2
ρ̇ (6)

pη = ρ2 + c2η2

1 − η2
η̇ (7)

pφ =
(
ρ2 + c2

) (
1 − η2

)
φ̇. (8)

He then solved the dynamical problem by obtaining the Hamilton-Jacobi equation
and applying separation of variables [23].

Details on the notation and computation of certain constants and intermediate
quantities are available in a number of references [24, 27, 29] and are not covered
in this paper. Corrections to certain quantities, such as the Bj and Bjk coefficients,
are given in Walden and Watson [30]. The notation in this paper follows the nota-
tion of Vinti’s 1966 theory [27] except that J3 is set to zero. Also note the use of the
RAAN-like variable �′ that Vinti developed in 1969 [29].

Kinematic Equations

Following the methods of Hamilton-Jacobi theory, the problem is reduced to a set
of kinematic equations that define three of the six constants of the motion. The
kinematic equations are generally expressed as [14]

t + β1 = R1 + c2N1 (9)

β2 = −α2R2 + α2N2 (10)

β3 = φ + c2α3R3 − α3N3, (11)
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where t denotes the time, Rj denotes the ρ-integrals for j = 1, 2, 3 defined as

R1 =
∫ ρ

ρ1

±ρ2F (ρ)−1/2 dρ (12)

R2 =
∫ ρ

ρ1

±F (ρ)−1/2 dρ (13)

R3 =
∫ ρ

ρ1

±(ρ2 + c2)−1F (ρ)−1/2 dρ, (14)

Nj denotes the η-integrals for j = 1, 2, 3 defined as

N1 =
∫ η

0
±η2G (η)−1/2 dη (15)

N2 =
∫ η

0
±G (η)−1/2 dη (16)

N3 =
∫ η

0
±(1 − η2)−1G (η)−1/2 dη, (17)

and αj and βj are the Jacobi constants for j = 1, 2, 3. Specifically, α1 is the total
energy or Hamiltonian, α2 is closely related to the total angular momentum, α3 is the
polar component of the angular momentum, τ = −β1 is the time of spheroidal peri-
apsis passage, β2 = ω is the argument of spheroidal periapsis, and β3 = � is the right
ascension of the spheroidal ascending node (spheroidal RAAN). These six quanti-
ties are canonical constants of the motion analogous to the Jacobi constants obtained
for the two-body problem. The quantities F (ρ) and G (η) correspond to the quar-
tics that must be factored to obtain a, e, and I , which are respectively the spheroidal
semimajor axis, eccentricity, and inclination. For readability, the “spheroidal” qual-
ifier is often omitted and elements should be understood as spheroidal unless noted
otherwise.

The derivation of the approximate analytical solution in OS equinoctial elements
begins with Vinti’s solution in classical elements. His classical element solution
expressed Eqs. 9–11 correct to O(J 3

2 ) in secular terms and O(J 2
2 ) in periodic terms

using truncated series as

t + β1 = (−2α1)
−1/2

[

b1E + a (E − e sin E) + A1f +
2∑

k=1

A1k sin kf

]

+c2α−1
2 u1/2 (

B ′
1ψ + B12 sin 2ψ + B14 sin 4ψ

)
(18)

β2 = −α2 (−2α1)
−1/2

[

A2f +
4∑

k=1

A2k sin kf

]

+u1/2 (B2ψ + B22 sin 2ψ + B24 sin 4ψ) (19)

β3 = �′ + c2α3 (−2α1)
−1/2

[

A3f +
4∑

k=1

A3k sin kf

]

−α3α
−1
2 u1/2 (B3ψ + B32 sin 2ψ) . (20)
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Readers can identify the familiar E − e sin E term of the Kepler problem in Eq. 20
and view its appearance here as part of a generalized Kepler’s equation. The variable
f is the spheroidal true anomaly, E is the spheroidal eccentric anomaly, and ψ is
the true argument of spheroidal latitude. The quantities b1, Aj , Ajk , Bj , Bjk , and u

are constants. When using Vinti’s method of computing u, the solution is accurate to
O(J 3

2 ) in secular terms, as stated. However, as presently implemented, u is computed
from Getchell’s factorization algorithm to arbitrary accuracy [17], ultimately making
the solution accurate to O(J 4

2 ) in secular terms [27].

Definition of Oblate Spheroidal Equinoctial Orbital Elements

As stated earlier, details on the coordinate transformation between ECI coordinates
and OS equinoctial elements are located in a separate paper by the authors [3]. The
six modified OS equinoctial elements are described as follows using the notation of
Gim and Alfriend [18] for the vector components2

œ1 = p spheroidal semilatus rectum

œ2 = q1
œ3 = q2

}
components of the spheroidal eccentricity vector

œ4 = p1
œ5 = p2

}
components of the spheroidal ascending node vector .

œ6 = L true spheroidal longitude (21)

Walker et al. [31] coined the terminology that distinguishes between standard and
modified equinoctial elements, where the standard OS equinoctial elements would
use semimajor axis a instead of p and the mean spheroidal longitude λ instead of L.
The modified set is chosen because it is nonsingular for the full range of eccentricity
and inclination. The definition of equinoctial elements in terms of classical elements
is repeated here for convenience. Given OS classical elements, the OS equinoctial
elements are determined as

p = p

q1 = e cos
(
ω′ + K�′)

q2 = e sin
(
ω′ + K�′)

p1 =
[

tan

(
I

2

)]K

cos �′

p2 =
[

tan

(
I

2

)]K

sin �′

L = f + ω′ + K�′, (22)

2In the work of Gim and Alfriend, the spherical orbital elements are used to define a curvilinear coordinate
system.
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where ψ = f + ω′, K is the retrograde factor defined as

K =
{ +1 direct OS equinoctial elements

−1 retrograde OS equinoctial elements
, (23)

�′ is a different RAAN, and ω′ is a different argument of periapsis. The ′ symbol dis-
tinguishes these variables from the constants of the motion β2 = ω and β3 = � and
also indicates a closer connection to the spheroidal Delaunay variables obtained after

Fig. 2 Direct equinoctial reference frames for different geometries [4]
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various canonical transformations. The connection between these angular variables
and the associated constants will be made clear in subsequent sections with explicit
equations. For clarity, the direct equinoctial reference frames associated with spheri-
cal and spheroidal geometry are respectively illustrated side by side in Fig. 2a and b.

While the constants of the motion are important, the solution method presented in
this work, which builds on Vinti’s classical element approach, utilizes the spheroidal
Delaunay variables to solve the Vinti problem. To see why, consider a simple analogy.
In the Kepler problem, a solution is obtained in terms of the mean anomaly and not
the corresponding constant of the motion, the time of periapsis passage. In the Vinti
problem, the spheroidal RAAN and argument of periapsis constants must similarly
be transformed to spheroidal Delaunay variables in order to solve the problem in this
manner.

Converting to Equinoctial Elements: Secular Terms

Writing the secular components in terms of equinoctial elements requires the
following definition for eccentric spheroidal longitude, F :

F = E + ω′ + K�′. (24)

It is also convenient at this time to similarly define the mean spheroidal longitude as

λ = M + ω′ + K�′, (25)

where M denotes the spheroidal mean anomaly.
From Eqs. 22 and 24, observe that certain combinations of angles must be added

to both sides of Eqs. 18–20 to obtain L and F on the right-hand side (RHS). First,
focus on Eq. 18 and consider the term (a + b1)E. Adding (−2α1)

−1/2 (a + b1)(ω
′ +

K�′) to both sides will result in a (a + b1)F term on the RHS and the left-hand
side (LHS) can simply absorb the unknown quantity into the unknown constant β1.
The new quantities on the LHS are denoted as β̃j for j = 1, 2, 3. This procedure
is generally applied to the remaining secular terms in Eqs. 18–20, resulting in the
following transformed equations:

t + β̃1 = (−2α1)
−1/2

[

b1F + a (F − e sin E) + A1L +
2∑

k=1

A1k sin kf

]

+c2α−1
2 u1/2 (

B ′
1L + B12 sin 2ψ + B14 sin 4ψ

)
(26)

β̃2α
−1
2 = − (−2α1)

−1/2

[

A2L +
4∑

k=1

A2k sin kf

]

+α−1
2 u1/2 (B2L + B22 sin 2ψ + B24 sin 4ψ) (27)

β̃3 = c2α3 (−2α1)
−1/2

[

A3L +
4∑

k=1

A3k sin kf

]

−α3α
−1
2 u1/2 (B3L + B32 sin 2ψ) , (28)
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where

β̃1 = β1+ (−2α1)
−1/2 (a+ b1+ A1)(ω

′+ K�′)+ c2α−1
2 u1/2B ′

1K�′ (29)

β̃2α
−1
2 = β2α

−1
2 − (−2α1)

−1/2 A2(ω
′ + K�′) + α−1

2 u1/2B2K�′ (30)

β̃3 = β3 + c2α3 (−2α1)
−1/2 A3(ω

′ + K�′)
−α3α

−1
2 u1/2B3K�′ − �′. (31)

Equations 29–31 are an important intermediate result that will be useful later, but
the transformation is not yet complete because the periodic terms, having not been
addressed, still contain f and ψ .

Converting to Equinoctial Elements: Periodic Terms

There are multiple ways to proceed, but the approach here aims to maintain the form
of the periodic terms where the sines contain multiple-angle arguments of kf or kψ

for k = 1, . . . , 4. These trigonometric terms can be written in terms of equinoctial
elements by applying Chebyshev’s recursive formula and observing that the periodic
coefficients Ajk contain a factor ek and Bjk contain a factor Qk , where j = 1, 2, 3
denotes the kinematic equation and k = 1, . . . , 4. Define new periodic coefficients
in terms of the old as

Ãjk ≡ Ajk

ek
(32)

B̃jk ≡ Bjk

Qk
. (33)

Note that the new coefficients should not be computed this way since e and/or Q can
go to zero, where Q = sin I ′ and I ′ = I when J3 = 0. To compute Ãjk or B̃jk ,
simply use the original formulas with omission of ek and Qk . Now, ek and Qk are
instead grouped with the sine functions, such as e sin f or Q4 sin 4ψ .

The basic conversion process is demonstrated for the e sin E term. It is straight-
forward to show from angle sum and difference identities that

e sin E = e sin
(
F − ω′ − K�′)

= e sin F cos
(
ω′ + K�′) − e cos F sin

(
ω′ + K�′) . (34)

Therefore,

e sin E = q1 sin F − q2 cos F . (35)

Applying similar identities for e cos E gives

e cos E = q1 cos F + q2 sin F . (36)

This process can be applied recursively for any argument x and for all terms of higher
frequency using Chebyshev’s formula,

sin nx = 2 cos x sin [(n − 1) x] − sin [(n − 2) x] , (37)

for a positive integer n ≥ 2. For example, with n = 2, e2 sin 2f = 2e2 cos f sin f can
be grouped in terms of lower-frequency quantities as 2 (e cos f ) (e sin f ). Carrying
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out the process to the fourth term gives the following relations for periodic functions
of kf in terms of periodic functions of kL:

q̃1 (q1, q2, L) ≡ e sin f = q1 sin L − q2 cos L (38)

q̃2 (q1, q2, L) ≡ e2 sin 2f =
(
q2

1 − q2
2

)
sin 2L − 2q1q2 cos 2L (39)

q̃3 (q1, q2, L) ≡ e3 sin 3f =
(
q3

1 − q1q
2
2

)
sin 3L +

(
q3

2 − q2
1q2

)
cos 3L (40)

q̃4 (q1, q2, L) ≡ e4 sin 4f =
(
q4

1 − 6q2
1q2

2 + q4
2

)
sin 4L

+4
(
q1q

3
2 − q3

1q2

)
cos 4L. (41)

The periodic functions of kψ in terms of periodic functions of kL are slightly more
complicated to derive. The form of these relations is identical to that of the relations
for kf except that there is now a coefficient (1 + K cos I )k . The relations are stated
as

p̃2 (p1, p2, L) ≡ Q2 sin 2ψ = (1 + K cos I )2
[(

p2
1 − p2

2

)
sin 2L

− 2Kp1p2 cos 2L] (42)

p̃4 (p1, p2, L) ≡ Q4 sin 4ψ = (1 + K cos I )4
[(

p4
1 − 6p2

1p
2
2 + p4

2

)
sin 4L

+ 4K
(
p1p

3
2 − p3

1p2

)
cos 4L

]
. (43)

These equations can be written strictly in terms of p1 and p2 by observing that

(1 + K cos I )2 = 4

4
(1 + K cos I )2

= 4

(
1 + K cos I

2

)2

=
{

4 cos4
(

I
2

)
, if K = +1

4 sin4 (
I
2

)
, if K = −1

. (44)

It follows that

(1 + K cos I )2 = 4
(
1 + p2

1 + p2
2

)2
(45)

for either value of K . Eq. 45 can be substituted into Eq. 42. Squaring Eq. 45 gives

(1 + K cos I )4 = 16
(
1 + p2

1 + p2
2

)4
, (46)

which can be substituted into Eq. 43. After the substitutions, Eqs. 42 and 43 become

Q2 sin 2ψ = 4
(
1 + p2

1 + p2
2

)2

[(
p2

1 − p2
2

)
sin 2L − 2Kp1p2 cos 2L

]
(47)

Q4 sin 4ψ = 16
(
1 + p2

1 + p2
2

)4

[(
p4

1 − 6p2
1p

2
2 + p4

2

)
sin 4L

+ 4K
(
p1p

3
2 − p3

1p2

)
cos 4L

]
. (48)
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Converting to Equinoctial Elements: Final Kinematic Equations

Finally, having represented the secular and periodic terms with spheroidal equinoc-
tial elements, the kinematic equations can be expressed strictly in terms of these
nonsingular orbital elements as

t + β̃1 = (−2α1)
−1/2

[

b1F + a (F − q1 sin F + q2 cos F)

+ A1L +
2∑

k=1

Ã1ke
k sin kf

]

+c2α−1
2 u1/2

(
B ′

1L + B̃12Q
2 sin 2ψ + B̃14Q

4 sin 4ψ
)

(49)

β̃2α
−1
2 = − (−2α1)

−1/2

[

A2L +
4∑

k=1

Ã2ke
k sin kf

]

+α−1
2 u1/2

(
B2L + B̃22Q

2 sin 2ψ + B̃24Q
4 sin 4ψ

)
(50)

β̃3 = c2α3 (−2α1)
−1/2

[

A3L +
4∑

k=1

Ã3ke
k sin kf

]

−α3α
−1
2 u1/2

(
B3L + B̃32Q

2 sin 2ψ
)

, (51)

where it is understood that Eqs. 38–41 and 47–48 can be substituted for the periodic
terms in ek sin kf and Qk sin kψ . The substitution is useful for the propagation step,
but not essential for the present coordinate transformation. The reason is that, while
sin f and sin ψ are undefined for the singular cases, nonsingular expressions do exist
for e sin f and Q sin ψ . For this particular coordinate transformation, it is more com-
putationally efficient to combine these latter expressions with Chebyshev’s formula
in Eq. 37 than to use the more complicated equinoctial form. When computing the
elements from initial conditions in ECI coordinates at an initial time ti , the right-hand
sides of Eqs. 49–51 are calculable.

Equinoctial Integrals of theMotion and Spheroidal Delaunay
Variables

It is instructive to first give a motivation of why oblate spheroidal equinoctial
integrals of the motion are desired and a road map of how to obtain them.

Motivation

As emphasized in Biria and Russell [3], there is a notion of complete elements asso-
ciated with the angular variables, �′, ω′, and f (and combinations thereof), which are
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viewed as the composition of secular and periodic parts, expressed mathematically
as

�′ = �′
s + �′

p (52)

ω′ = ω′
s + ω′

p (53)

f = Ms + fp. (54)

The subscript “s” denotes a secular part and the subscript “p” denotes a periodic
part. If the initial values of the secular parts of the spheroidal equinoctial elements
are available, then their linear dependence on time facilitates their propagation. The
periodic parts can be added later in concert with solving the generalized Kepler’s
equation. These initial values may be given somehow, but if they must be obtained
from initial ECI coordinates, then the following discussion and derivations apply.

A RoadMap to Obtaining the OS Equinoctial Integrals of theMotion

The work of Biria and Russell [3] demonstrated how to obtain the complete equinoc-
tial orbital elements {p, q1, q2, p1, p2, L} from ECI coordinates. Applying angle sum
identities to the definitions of q1 and q2 in Eq. 22 after separating the angles into
secular and periodic parts as

q1 = e cos
(
ω′ + K�′) = e cos

(
ω′

s + K�′
s + ω′

p + K�′
p

)
(55)

q2 = e sin
(
ω′ + K�′) = e sin

(
ω′

s + K�′
s + ω′

p + K�′
p

)
(56)

gives

q1 = q1s cos
(
ω′

p + K�′
p

)
− q2s sin

(
ω′

p + K�′
p

)
(57)

q2 = q1s sin
(
ω′

p + K�′
p

)
+ q2s cos

(
ω′

p + K�′
p

)
, (58)

and inverting the equations to solve for qjs gives

[
q1s

q2s

]
=

⎡

⎣
cos

(
ω′

p + K�′
p

)
sin

(
ω′

p + K�′
p

)

− sin
(
ω′

p + K�′
p

)
cos

(
ω′

p + K�′
p

)

⎤

⎦
[

q1
q2

]
. (59)

Equation 59 indicates that the secular parts of q1 and q2 are calculable as long as the
periodic parts of ω′ and �′ are known. Similarly, the elements pjs are determined as

[
p1s

p2s

]
=

[
cos �′

p sin �′
p

− sin �′
p cos �′

p

] [
p1
p2

]
. (60)

Lastly, the secular part of the true longitude, Ls = Ms + ω′
s + K�′

s , is also desired.
Note that Ls is equivalent to the secular part of the mean longitude, λs . As shown in
the following, it turns out that λs can be obtained directly. Therefore, the unknowns
to be solved for in the following derivation are ω′

p, �′
p, and λs .
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Oblate Spheroidal Delaunay Elements

The oblate spheroidal equinoctial integrals of the motion are obtained from the
spheroidal Delaunay elements that Vinti employed for his perturbation work [26].
Vinti partly attributes these elements to Izsak [19]. The spheroidal Delaunay vari-
ables describe the secular evolution of a Vinti trajectory and are the result of several
canonical transformations. While not always clear in the literature, it is important to
note that the secular components of certain spheroidal orbital elements are equivalent
to the Delaunay elements. Using the subscript “s” to indicate that the quantity only
contains the secular part, the relations are given by

l ≡ Ms (61)

g ≡ ω′
s (62)

h ≡ �′
s . (63)

Adopting Delaunay’s notation serves as a helpful reminder that these are canonical
elements. However, it is emphasized that the elements M , ω′, and �′ are not canon-
ical when the periodic components are included. This feature is distinctly different
from the two-body problem, wherein the mean anomaly is canonical and simply
varies linearly with time. Interestingly, the relation �′

s = h was not pointed out until
1980 [34] and the relation ω′

s = g has never been given explicitly.
Next, the evolution of the spheroidal Delaunay variables must be described explic-

itly. Their values at t = 0 are given in terms of the original canonical elements
as

l0 = 2πν1

(
β1 − c2β2α

−1
2 B ′

1B
−1
2

)
(64)

l0 + g0 = 2πν2

[
β1 + β2α

−1
2 (a + b1 + A1) A−1

2

]
(65)

h0 = β3 − c2α3 (−2α1)
−1/2 A3l0 + α3α

−1
2 u1/2B3 (l0 + g0) , (66)

where the νj are the fundamental frequencies, later defined explicitly. Eqs. 64 and 65
are given by Vinti [27] and Eq. 66 can be interpreted from Eq. (9) in Wu and Tong
[34]. Before moving on, observe in Eqs. 64–66 that l0 and h0 are easily isolated but
not g0. While g0 could be isolated and an expression for it obtained, as formulated, g0
always appears with l0 as l0 + g0. It is therefore useful to draw one more connection
between the OS elements and the Delaunay elements. The equivalence between the
secular part of the true argument of spheroidal latitude and the sum of two of the
Delaunay elements can be stated as

ψs ≡ l + g. (67)

Now, naturally, the relations in Eqs. 64–66 still hold, as the dynamical problem is
unchanged. These Delaunay elements are not calculable when seeking nonsingular
elements because the βj are unknown, but Eqs. 64–66 will still be of great use. To
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see how, notice that the β̃j are known and Eqs. 29–31 can be used to substitute for
βj in Eqs. 64–66. Note that while Vinti preferred to maintain β3 as an element in
his classical element solution, this luxury is no longer available because the third
kinematic equation is no longer decoupled from the others in an equinoctial element
solution. The spheroidal Delaunay element h0 must then be used instead of β3, as
will be seen shortly.

Substituting Eqs. 29–31 for βj in Eqs. 64–66 and simplifying leads to the
following simple equations

l0 + ω′
i + K�′

i = 2πν1

(
β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)
(68)

l0 + g0 + K�′
i = 2πν2

[
β̃1 + β̃2α

−1
2 (a + b1 + A1) A−1

2

]
(69)

h0 − �′
i = β̃3 − c2α3 (−2α1)

−1/2 A3
(
l0 + ω′

i + K�′
i

)

+α3α
−1
2 u1/2B3

(
l0 + g0 + K�′

i

)
. (70)

The right-hand sides of Eqs. 68–70 are identical in form to Eqs. 64–66, but βj is
replaced by β̃j , making the right-hand sides calculable. Notice on the left-hand sides
of Eqs. 68–70 that the elements are referenced to different epochs. The spheroidal
Delaunay elements correspond to the time t = 0, denoted by subscript “0”, while the
classical spheroidal elements reference some given initial time, denoted by subscript
“i”.

To reconcile these differences in epoch, the Delaunay elements are adjusted to ref-
erence the same given initial time. Vinti wrote the secular evolution of these elements
referenced to the time t = 0 as

l = l0 + 2πν1t (71)

l + g = l0 + g0 + 2πν2t (72)

h = h0 + 2π (ν3 − ν2 sgn α3) t, (73)

but these dynamics can be equivalently referenced to a given initial time (or arbitrary
time) as

l = li + 2πν1 (t − ti ) (74)

l + g = li + gi + 2πν2 (t − ti ) (75)

h = hi + 2π (ν3 − ν2 sgn α3) (t − ti ) , (76)

where

li = l0 + 2πν1ti (77)

li + gi = l0 + g0 + 2πν2ti (78)

hi = h0 + 2π (ν3 − ν2 sgn α3) ti . (79)
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For convenience, the constant fundamental frequencies νj are given below as

Ṁs = 2πν1 = (−2α1)
1/2

a0 + A1 + c2A2B
′
1B

−1
2

(80)

ψ̇s = 2πν2 = α2u
−1/2A2B

−1
2

a0 + A1 + c2A2B
′
1B

−1
2

(81)

φ̇s = 2πν3 = −α3

a0 + A1 + c2A2B
′
1B

−1
2

×
{
c2A3 − A2

B2

[
B3 + 1

S̃

(
h1√

1 − 2ζ
+ h2√

1 + 2ζ

)]}
, (82)

where S̃ = √
1 − S, and S = sin2 I , h1, h2, and ζ are constants from Vinti’s 1966

solution [27]. Equations 80 and 81 are derived by Vinti [27] and Eq. 82 is derived in
Biria and Russell [5]. Note that ν3 is composed of a linear combination of ν1 and ν2,
and is directly related to the secular motion of right ascension. Since right ascension
is discontinuous for polar orbits and poorly defined for nearly polar orbits, observable
in the division by S̃, an alternative variable or expression is required to make the
theory uniformly valid.

Removing the Polar Orbit Singularity

An aside is necessary here to address the removal of the singularity in Eq. 82. First,
note that the time derivative of Eq. 73 is clearly determined as

ḣ = 2π (ν3 − ν2 sgn α3) . (83)

Now, one option is to directly replace h by �′
s , the secular part of a slowly-changing

variable �′ similar to the Keplerian RAAN that tracks a slowly rotating reference
plane [29], obtained by removing the part of φs that varies rapidly near a pole. Upon
removal of the fast part, Eq. 83 can be replaced by

ḣ = �̇′
s = − α3

a0 + A1 + c2A2B
′
1B

−1
2

(
c2A3 − A2

B2
B3

)
. (84)

With some manipulation, it can be shown that this expression agrees with the deriva-
tive of Wu and Tong’s formula [34] for �′

s . The same result is obtained by ignoring
the periodic terms in Vinti’s full expression for �′ [29]. Further justification for
removing the fast part is that the ECI coordinates can be expressed in terms of the
elements in such a way that they do not depend on the fast part, only on �′.

An alternative approach leading to the same result is to observe that since the
present interest is in ḣ, an alternative expression for φ̇s can be used that does not
contain the singularity. By substituting Eqs. (27), (147), (149.1), and (154) from Vinti
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[27] into Eq. 82 of this paper and manipulating the equations, it is possible to show
that

α3√
1 − S

(
h1√

1 − 2ζ
+ h2√

1 + 2ζ

)
= α2√

u
sgn α3, (85)

where the
√

1 − S in the denominator cancels with the term in α3. Making this sub-
stitution in Eq. 82, Eq. 83 can be readily applied to arrive at the expression in Eq. 84
for ḣ = �̇′

s .

Final Nonsingular Equations for the Unknowns

Finally, Eqs. 68–70 can be referenced to a consistent epoch (the given initial time)
and the singularity associated with polar orbits can be removed. The final result is

li + ω′
i + K�′

i = 2πν1

(
ti + β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)
(86)

li + gi + K�′
i = 2πν2

[
ti + β̃1 + β̃2α

−1
2 (a + b1 + A1) A−1

2

]
(87)

hi − �′
i = β̃3 + ḣti

−c2 α3

(−2α1)
1/2

A3 (2πν1)
(
β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)

+α3α
−1
2 u1/2B3 (2πν2)

[
β̃1 + β̃2α

−1
2 (a + b1 + A1) A−1

2

]
.

(88)

Equations 86–88 may now be used to obtain expressions for the three unknowns: ω′
p,

�′
p, and λs . From the definitions in Eqs. 52–53, it is seen that subtracting Eq. 87

from Eq. 86 gives ω′
pi

as

ω′
pi

= 2πν1

(
ti + β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)

−2πν2

[
ti + β̃1 + β̃2α

−1
2 (a + b1 + A1) A−1

2

]
. (89)

Equation 88 already gives the negative of �′
p so that �′

pi
is determined as

�′
pi

= −
(
β̃3 + ḣti

)

+c2 α3

(−2α1)
1/2

A3 (2πν1)
(
β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)

−α3α
−1
2 u1/2B3 (2πν2)

[
β̃1 + β̃2α

−1
2 (a + b1 + A1) A−1

2

]
. (90)

Lastly, adding Eq. 87 to K times Eq. 88 gives λsi as

λsi = Kβ̃3 + (
2πν2 + Kḣ

)
ti

−Kc2 α3

(−2α1)
1/2

A3 (2πν1)
(
β̃1 − c2β̃2α

−1
2 B ′

1B
−1
2

)

+
(

1+ Kα3α
−1
2 u1/2B3

)
(2πν2)

[
β̃1+ β̃2α

−1
2 (a+ b1+ A1) A−1

2

]
. (91)
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Equations 89 and 90 enable the computation of q1s , q2s , p1s , and p2s at time ti
through Eqs. 59 and 60, while λsi is directly determined by Eq. 91. The spheroidal
semilatus rectum, p, is already known because it is a constant of the motion in both
classical and equinoctial elements; it is obtained from factoring the F(ρ) quartic.

Propagating the Secular Parts of the Spheroidal Equinoctial Elements

It is now assumed that the secular oblate spheroidal equinoctial element set, which
is defined as œs = {p, q1s , q2s , p1s , p2s , Ls}, has been obtained somehow, either as
given quantities or as a result of a transformation from ECI coordinates as described
in the preceding sections. These secular elements are either constant or evolve with
time according to the following formulas:

p (t) = p (92)
[

q1s (t)

q2s (t)

]
=

[
cos

[(
ġ + Kḣ

)
�t

] − sin
[(

ġ + Kḣ
)
�t

]

sin
[(

ġ + Kḣ
)
�t

]
cos

[(
ġ + Kḣ

)
�t

]
] [

q1s (ti )

q2s (ti )

]
(93)

[
p1s (t)

p2s (t)

]
=

[
cos

(
ḣ�t

) − sin
(
ḣ�t

)

sin
(
ḣ�t

)
cos

(
ḣ�t

)
] [

p1s (ti )

p2s (ti )

]
(94)

λs (t) = λs (ti) + (
l̇ + ġ + Kḣ

)
�t, (95)

where

�t = t − ti . (96)

Equation 95 shows λs evolving linearly with time.

Solving the Generalized Kepler’s Equation

The selected approach to solving the generalized Kepler’s equation follows that of
other authors, such as Getchell [17], where periodic terms are neglected in the first
iteration. The complication is that the use of equinoctial elements means that all three
kinematic equations are coupled.

For iteration j = 0, set λj = λs , q1j
= q1s , q2j

= q2s , p1j
= p1s , and p2j

= p2s

and choose Fj = λj as an initial guess. Then, using a desired root-solving routine,
solve the equinoctial form of Kepler’s equation for Vinti theory:

λj = Fj − γ1q1j
sin Fj + γ1q2j

cos Fj , (97)

where

γ1 = a

a0
= a

a + b1
≤ 1. (98)
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The authors recommend a variable order Laguerre’s method [13]. Note in Eq. 98
that γ1 is Getchell’s notation [17]. Once converged on a value for Fj , obtain Lj by
first computing the sine and cosine as

sin Lj =
(

1 − q2
1j

bj

)
sin Fj + q1j

q2j
bj cos Fj − q2j

1 − q1j
cos Fj − q2j

sin Fj

(99)

cos Lj =
(

1 − q2
2j

bj

)
cos Fj + q1j

q2j
bj sin Fj − q1j

1 − q1j
cos Fj − q2j

sin Fj

, (100)

where

bj = 1

1 +
√

1 − q2
1j

− q2
2j

, (101)

and then use the arctangent to compute Lj as

Lj = atan2
(
sin Lj , cos Lj

)
. (102)

Next, it is necessary to perform an update step to incorporate the periodic terms
that were neglected earlier. These periodic components are ω′

pj
, �′

pj
, and λpj

, and
they are calculable from the available quantities, which consist of some variables but
mostly constants. First, compute lj + ω′

j + K�′
j as

lj + ω′
j + K�′

j = 2πν1

×
{

1

(−2α1)
1/2

[

b1Fj + a
(
Fj − q1j

sin Fj + q2j
cos Fj

)

+ A1Lj +
2∑

k=1

Ã1kq̃k

(
q1j

, q2j
, Lj

)
]

+ c2 u1/2

α2

[

B ′
1Lj +

2∑

k=1

B̃1(2k)p̃(2k)

(
p1j

, p2j
, Lj

)
]

+ c2 B ′
1

B2 (−2α1)
1/2

[

A2Lj +
4∑

k=1

Ã2kq̃k

(
q1j

, q2j
, Lj

)
]

− c2 B ′
1u

1/2

B2α2

[

B2Lj +
2∑

k=1

B̃2(2k)p̃(2k)

(
p1j

, p2j
, Lj

)
]}

,

(103)
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which is analogous to Eq. 86, and then compute lj + gj + K�′
j as

lj + gj + K�′
j = 2πν2

×
{

1

(−2α1)
1/2

[

b1Fj + a
(
Fj − q1j

sin Fj + q2j
cos Fj

)

+ A1Lj +
2∑

k=1

Ã1kq̃k

(
q1j

, q2j
, Lj

)
]

+ c2 u1/2

α2

[

B ′
1Lj +

2∑

k=1

B̃1(2k)p̃(2k)

(
p1j

, p2j
, Lj

)
]

− a + b1 + A1

A2 (−2α1)
1/2

[

A2Lj +
4∑

k=1

Ã2kq̃k

(
q1j

, q2j
, Lj

)
]

+ (a + b1 + A1) u1/2

A2α2

×
[

B2Lj +
2∑

k=1

B̃2(2k)p̃(2k)

(
p1j

, p2j
, Lj

)
]}

, (104)

which is analogous to Eq. 87. It follows that ω′
pj

can be determined as

ω′
pj

=
(
lj + ω′

j + K�′
j

)
−

(
lj + gj + K�′

j

)
, (105)

�′
pj

as

�′
pj

= − c2α3 (−2α1)
−1/2

[

A3Lj +
4∑

k=1

Ã3kq̃k

(
q1j

, q2j
, Lj

)
]

+ α3α
−1
2 u1/2

[
B3Lj + B̃32p̃2

(
p1j

, p2j
, Lj

)]

+c2α3 (−2α1)
−1/2 A3

(
lj + ω′

j + K�′
j

)

−α3α
−1
2 u1/2B3

(
lj + gj + K�′

j

)
, (106)

and λpj
as

λpj
= a + b1 + A1

a + b1

(
ω′

pj
+ K�′

pj

)
+ c2 (−2α1)

1/2 u1/2

α2 (a + b1)
B ′

1K�′
pj

− 1

a + b1

[

A1
(
Lj − λs

) +
2∑

k=1

Ã1kq̃k

(
q1j

, q2j
, Lj

)
]

−c2 (−2α1)
1/2 u1/2

α2 (a + b1)

[

B ′
1

(
Lj − λs

) +
2∑

k=1

B̃1(2k)p̃(2k)

(
p1j

, p2j
, Lj

)
]

.

(107)
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(b) Osculating spherical equinoctial elements

Fig. 3 Example 1: Side-by-side comparison of spheroidal and spherical equinoctial elements for a
nominally circular equatorial Vinti trajectory evolving over roughly 18 orbits with J2 = 5.08 × 10−2

Then q1j
and q2j

can be updated with the inverse of Eq. 59 and p1j
and p2j

can be
updated with the inverse of Eq. 60. The whole process is then repeated until con-
verged by returning to Eq. 97, setting j = j + 1, λj = λs + λpj

, and choosing
Fj = λj as an initial guess. The algorithm concludes when convergence is achieved
to a desired tolerance. A companion code for the OS equinoctial Vinti propagator is
provided as an Online Resource.3

Examples

Two examples are explored in this section, one at Earth and one at Saturn. The accu-
racy of Vinti dynamics relative to low-fidelity spherical harmonic representations
was assessed in prior work [1, 5] and is not discussed here. Instead, the opportunity
is taken to focus on the capabilities of the analytical propagator and the geometric
interpretation of the new element set.

Example 1 investigates how the equinoctial elements evolve over approximately
18 orbits for a nominally circular equatorial low Earth orbit (LEO) case with an ini-
tial periapsis radius of rp = 7, 300 km. To better spotlight the disparity between

3Code updates will be available from this website: http://sites.utexas.edu/russell/publications/code/vinti/
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the spheroidal and spherical elements, oblateness is exaggerated an order of mag-
nitude above Earth’s by setting J2 = 5.08 × 10−2. Figure 3a shows the spheroidal
elements and Fig. 3b the spherical elements. These plots are overlaid in Fig. 4 to
emphasize the short-periodic averaging effect. The spherical elements are obtained
by numerically integrating Hamilton’s equations of motion under the Vinti potential
and transforming from ECI coordinates to osculating spherical elements.

With this comparison, it is possible to interpret a geometric relationship between
spheroidal and spherical elements. The last three elements appear almost indistin-
guishable from each other, but the first three are remarkably different. While the
spherical p is constant and maintains the value of 7,300 km, the spheroidal p, which
is strictly a constant of the motion, is notably almost 640 km smaller. The spheri-
cal p is constant because the orbit is equatorial. The long-periodic effects evident in
the spheroidal q1 and q2 agree with those of their spherical counterparts. Note that
the long-periodic effect in q1 and q2 is an artifact of representing the eccentricity
vector in vector components, not from the traditional notion found in perturba-
tion theory. In fact, long-periodic terms do not exist under the Vinti potential [27]
and may be considered absorbed into the coordinates; the short-periodic effects are
orders of magnitude smaller than for the spherical elements. In the spherical q’s, the
short-periodic effects are a consequence of the short-periodic variations in spherical
eccentricity. These short-periodic effects do not appear in the spheroidal q’s because,
like the spheroidal semilatus rectum, the spheroidal eccentricity is a constant of the
motion. The spheroidal q’s appear to track the short-periodic average of the spher-
ical q’s, but this is an artifact of the spheroidal coordinate transformation. Solving

Fig. 4 Example 1: Complete
spheroidal equinoctial elements
overlaid on the osculating
spherical elements
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Fig. 5 Example 1: Vinti
trajectory in the ECI frame for a
nominally circular equatorial
orbit with J2 = 5.08 × 10−2,
looking down on the equatorial
plane
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the Vinti problem does not invoke any averaging techniques, as the spheroidal p is
clearly not an average of the spherical p. The effective averaging of short-periodic
variations generally applies to p1, p2, and L as well, but the effects are not visible
for the particular example in Fig. 3. Even if the orbit were inclined in this example,
the amplitude of the short-periodic variations would be on a much smaller scale than
the amplitude of the long-periodic variations for these three elements; the averaging
effect would still not be apparent in a comparison similar to Fig. 3. Figure 5 illustrates
the associated Vinti trajectory in the ECI frame.

Example 2 moves the focus toward Saturn, where certain phases of mission
design based on two-body dynamics are known to fail due to Saturn’s highly oblate
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Fig. 6 Example 2: Vinti trajectory in the Saturn-centered inertial frame for a Saturn orbit insertion sce-
nario. The first three panes show the trajectory projected onto three different orthogonal planes and the
bottom-right pane shows the 3D trajectory
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shape [9]. The current example investigates Saturn orbit insertion using the Vinti
potential. Figure 6 illustrates the associated Vinti trajectory in the Saturn-centered
inertial frame. The trajectory is shown in the bottom-right pane. To clarify the
perspective, the first three panes show the trajectory projected onto three differ-
ent orthogonal planes. Gravity field data is taken from Jacobson et al. [20], where
J2 ≈ 1.6291 × 10−2 and J4 ≈ 9.36 × 10−4. Recall that the Vinti potential cap-
tures approximately 72% of J4 for the Earth. At Saturn, the Vinti potential captures
roughly 28% of J4. Other parameter values used are μ = 3.7931 × 107 km3/s2

and Re = 60, 330 km. Initial osculating spherical orbit parameters are chosen as
rp = 61, 330 km, eK = 0.99, IK = 10◦, �K = 30◦, ωK = 11◦, fK = 6◦. The
subscript “K” denotes Keplerian as opposed to spheroidal orbital elements. The sim-
ulation is carried out for a little over a year (about 10 revolutions) to visualize the
long-term effects on the orbit. A comparison of spheroidal and spherical elements is
shown in Fig. 7. While the short-periodic averaging effects still exist, at this scale,
they are not apparent and the last five spheroidal and spherical elements have simi-
lar values. Again, the semilatus rectum is seen to be distinctly different between the
spheroidal and spherical elements. Since the eccentricity is quite high, the eccentric-
ity and node vector components experience what looks like a step function at each

Fig. 7 Example 2: Comparison
of spheroidal and spherical
equinoctial elements for a
Saturn orbit insertion scenario,
propagated over roughly 10
revolutions 0 1 2 3
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periapsis passage, when the effects of oblateness are much stronger. For the same
reason, the true longitude is very nonlinear in time. The angle moves rapidly through
periapsis, resulting in the observed heartbeat characteristic. Note that after one year,
the effect of neglecting 72% of J4 will manifest itself as a sizable phase error. For the
much shorter duration of orbit insertion, however, the phase error will not accumulate
significantly and the Vinti trajectory offers a good approximation.

Given the complexity of a Vinti propagator, any means of validating an imple-
mentation is valuable to practitioners. The constants of the motion can fulfill this
role in principle. However, the authors found that their properties are not adequately
preserved if traditional approximations are used, assuming inputs and outputs are
desired in inertial position and velocity. The constants are preserved to double pre-
cision or about 15 digits only when the exact expression for �̇′ is used, which was
developed recently by the authors [4]. When performing transformations near a pole,
the approximation proposed in that study still preserves the constants of the motion.
The symmetry of the Vinti problem also causes the total angular momentum to be
conserved for an equatorial orbit, an important corner case.

Conclusions

A nonsingular analytical solution to the unperturbed Vinti problem is presented for
bounded orbits. The method avoids the angle ambiguities of classical orbital elements
by solving the problem in oblate spheroidal equinoctial orbital elements, the gener-
alization of traditional equinoctial elements to an oblate spheroidal geometry. New
geometric interpretations of spheroidal elements are also discussed. Innate to the
geometrical description in these coordinates, five of the oblate spheroidal equinoc-
tial elements appear to naturally track the singly averaged value of the spherical
equinoctial elements. The constant element is the spheroidal semilatus rectum, which
in general is not the average of its spherical counterpart. While the examples con-
sidered scenarios with large J2 values to illustrate geometric features, oblateness is
generally important for real missions, as for the Earth and most other bodies. Such an
analytical solution may be useful in preliminary mission design as a more accurate
starting point relative to a two-body-based solution, offering increased accuracy for
bounded orbits, including in the vicinity of the critical inclination. This solution also
enables future work on the study of perturbations through the variational equations,
and, being nonsingular for bounded orbits, prescribes an analytical state transition
matrix (STM) that is nonsingular in regimes where some of the previous analytical
STMs based on Vinti theory have been singular.
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