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Abstract
Root locus plots are one of the basic design tools in classical control. They help the
designer tune control gains which appear linearly in the coefficients of the closed loop
characteristic polynomial. And they give considerable intuition to the designer, based
on the simple rules that root loci must follow. When designing a control system, one
wants to know where the zeros are, but when designing a digital control system new
issues appear. The original zero locations when mapped to discrete time are functions
of the new parameter, the sample time T (as well as the pole locations). In addition, new
zeros are usually introduced by the discretization process. The purpose of this paper is
to give a general understanding of the nature of root loci of discrete time transfer
function zeros as a function of this parameter T. We consider the complete range of
values from T equal zero to infinity to understand the full plot. Reasonable sample rates
will only use part of the plots. The characteristic polynomial coefficients are nonlinear
functions of T so the usual root locus rules do not apply. One can be amazed at how the
usual root locus rules are repeatedly violated, and what new kinds of unexpected
behavior can be observed.
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Introduction

Root locus plots are a fundamental tool used in the design of feedback control systems.
They describe the motion of the closed loop poles that dictate the decay of transients as
a function of a controller gain. The gain appears linearly in the coefficients of the
characteristic polynomial, and based on this there is a set of rules that the root locus
must satisfy that help the designer understand the effects of changing the gain. One of
these rules is that the loci start at the poles of the open loop transfer function when the
gain is zero, and there must be one locus ending at each zero of the transfer function as
the gain goes to infinity. The remaining root loci must go to infinity as the gain goes
from zero to infinity. These rules apply not only to continuous time systems, but also to
discrete time systems, provided the parameter being varied appears linearly in the
coefficients of the characteristic polynomial.

When the controller of a feedback control system is to be implemented digitally,
then the plant is normally fed by a zero order hold. One designs to make the sampled
output perform well, after converting the plant Laplace transfer function to its equiv-
alent z-transfer function, or equivalently convert the plant differential equation to an
equivalent difference equation that has no approximation, i.e. the difference equation
solution is exactly the same as the differential equation solution at the sample times.
Poles and zeros in the Laplace transfer function are mapped into poles and zeros in the
z-transfer function. In the design process, it is clear that one wants to know the locations
of these zeros. For digital systems, the locations of the poles and zeros are now not only
a function of any gain one wants to adjust, but also a function of the new variable, the
time interval T between samples. This parameter appears in the characteristic polyno-
mial in a nonlinear way, so that the usual root locus rules do not apply. And the
behavior as a function of this parameter can be very unexpected and surprising, as
illustrated here.

The poles of the Laplace transfer function map in a simple easily understood
manner, each pole in the z-plane is only a function of the location of the pole in the
s-plane. But the mapping of zero locations in the s-plane to the z-plane is not so simple,
the locations are not only a function of the location of the s-plane zeros, but also a
function of the poles of the system. This paper studies the root locus plots of the
resulting zero locations as a function of the sample time T as it goes from zero to
infinity. Only a part of this locus corresponds to sample rates with practical Nyquist
frequencies, but we study the behavior of the complete locus. We study the mapping of
zero locations not only for zeros located in the left half s-plane, but also the locus of the
image of non-minimum phase zeros of the Laplace transfer function, i.e. zeros in the
right half of the s-plane. It is observed that these loci can be amazingly complicated, do
amazing things, and we present analysis to explain the behavior. In addition, they easily
do things that are impossible according the root locus rules that everyone is familiar
with. As one mild example of the unexpected behavior, it is observed that a non-
minimum phase zero in the s-plane can map inside the unit circle, and be a minimum
phase zero in the z-plane.

Vibration suppression is an important problem in many spacecraft. One important
use for knowledge of the zero locations is repetitive control [1, 2]. It is one method that
can in theory completely cancel vibrations at a location of fine pointing equipment on
board spacecraft. Reference [3] performs experiments demonstrating such algorithms.
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Reference [4] performs experiments on a floating spacecraft testbed for laser commu-
nication between spacecraft or to ground, in order to cancel vibrations of the laser beam
caused by slight imbalance in control moment gyros. To make such repetitive controller
designs it is fundamental to know where the zeros are outside the unit circle. The
repetitive control objective is zero tracking error. Such zeros are ubiquitous and they
prevent attempting to invert the system transfer function as a compensator for this
purpose, making it necessary to create much more complicated compensators.

Non-minimum phase systems in continuous time plant models present a challenge to
control system designers, and such systems are common [5]. The most interesting
behavior observed in the mapping of zeros in G(s) to zeros in G(z), occur for such
systems. One of the interesting properties of such systems is that initially they go the
wrong direction in response to a unit step input, and then reverse direction to reach a
steady state response with the right sign. Altitude control of an aircraft represents an
example of non-minimum phase behavior. An airplane flying straight and level needs
to increase the angle of attack in order to gain altitude, and the plane temporarily looses
altitude while increasing the angle of attack. An example that can apply to spacecraft is
controlling a sensor at one end of a flexible element by rotating the other end of the
element. As the base starts to rotate in one direction, the slope or sensor pointing at the
other end of the first vibration mode shape can easily temporarily point in the opposite
direction of the commanded base rotation. Minimum phase zeros can arise in physical
systems such as vibration dampers. In additions to such zeros, even when there are no
zeros in continuous time to map to discrete time, the discretization process for a
majority of systems introduces zeros, some of which are non-minimum phase.

The Need for Extra Zeros in Discrete Time Models of Continuous Time
Systems

In digital control, the controller usually takes the output error at the sample times kT,
where k is an integer and T is the sample time interval, computes an updated control
action that goes into a zero order hold that applies this control action to the physical
world, holding the most recent control action until the next time step when a new
control action arrives and is applied. The output is sampled at the sample times and
used to compute the error needed by the control law. The physical world is a differential
equation which can be represented by Laplace transfer function G(s). The differential
equation can be replaced by a difference equation whose solution at the sample times is
the same as that of the differential equation, and this can be represented by a z-transfer
function G(z). (We apologize to purists that this should mean G(s) with s replaced by z,
instead of a new function.)

The relationship between these two functions is given by

G zð Þ ¼ 1−z−1
� �

Z G sð Þ=s½ � ð1Þ

This relationship can be derived as follows. The G(s)/s represents the unit step
response, and the Z indicates taking the z-transform of the sequence of step response
values at the sample times. The zero-order-hold input consists of constant inputs from
one time step kT to the next (k + 1)T. Hence, one can write this time step of input toG(s)
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using superposition, as the sum of a unit step input at kT multiplied by height u(kT),
minus the same input shifted to time step (k + 1)T. Adding this up for each time step
creates two convolution summations, and the transform of a convolution sum is the
product of the transforms of the functions involved. The 1 times Z[G(s)/s] gives the first
summation in transform space, and the second summation gives z−1Z[G(s)/s]. This
proof derives the result from the definition of zero order hold which is made in the time
domain. Textbooks usually make derivations using less fundamental and intuitive
considerations, starting in transform space.

The transfer function consists of a denominator polynomial whose roots are the
poles of the transfer function, and a polynomial in the numerator whose roots are the
zeros of the transfer function. It is the purpose of this paper to develop an understanding
of how the roots of the numerator polynomial move as the sample time interval T is
changed from the limiting values of zero to infinity.

Note that in any usual digital control block diagram, after converting the plant to its
equivalent z-transfer function and then finding the closed loop transfer function, the
zeros of the converted plant transfer function G(z) become zeros of this closed loop
transfer function [6]. Hence, the locations described here are important when making a
root locus plot for choosing a proportional control gain, since there must be one root
ending at each zero as the gain tends toward infinity. Knowing the locations of zeros
outside the unit circle in the z-transfer function is fundamental in designing repetitive
control systems as mentioned above. Zeros outside the unit circle prevent using the
inverse of the transfer function to try to produce zero tracking error.

Types of Zeros

Sampling Zeros

There are two types of zeros in the z-transfer function after convertingG(s) toG(z). One
type called sampling zeros is introduced in the conversion process. Consider a third
order system that has no zero in continuous time

d3y
dt3

þ a2
d2y
dt2

þ a1
dy
dt

þ a0y ¼ u G sð Þ ¼ 1

s3 þ a2s2 þ a1sþ a0
ð2Þ

When transformed, it takes the form

y k þ 3ð ÞTð Þ þ α2y k þ 2ð ÞTð Þ þ α1y k þ 1ð ÞTð Þ þ α0y kTð Þ ¼ β2u k þ 2ð ÞTð Þ þ β1u k þ 1ð ÞTð Þ þ β0u kTð Þ
G zð Þ ¼ β2z

2 þ β1zþ β0

z3 þ α2z2 þ α1zþ α0

ð3Þ

The original Laplace transfer function had no zero, but the resulting z-transfer function
has two zeros. It must have two zeros because, when you make a change in the input at
time kT, you are making the output start moving. You do not expect to see a change
instantaneously at kT, but you do expect to see a change in the output at the next sample
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time (k + 1)T. This means that the most up to date input on the right hand side of the
difference equation should be one step behind the most up to date output on the left
hand side. Hence, in this example, two zeros are introduced in the conversion process.

We will see that there are isolated exceptions to this statement. In the case of non-
minimum phase systems in continuous time G(s), the unit step response goes negative
initially, and then becomes positive. If the first sample time coincides with the time
when the unit step response crosses zero, there will be two time steps delay in the input
to output of G(z), i.e. two time steps difference between the most recent entry on the
right, and that on the left.

Reference [7] gives the asymptotic locations of these sampling zeros as sample time
interval T tends to zero. The development of this result concludes that the zeros
introduced approach the locations that are images of n − 1 zeros at infinity, given by
computing the zeros of

G zð Þ ¼ 1−z−1
� �

Z 1=sn−m−1
� � ð4Þ

n is the number of poles, and m is the number of zeros in continuous time, which is zero
in this case. The asymptotic zero locations (as T tends to zero) introduced outside or on
the unit circle are given in Table 1, and for every zero outside there is a zero inside
introduced at the reciprocal location. References [1, 2] present methods to design a
repetitive controller that converges to zero error tracking a periodic trajectory, com-
pensating for the effect of these zeros on the system response by introducing more zeros
outside and inside the unit circle.

Consider a third order system G(s) = 6/[(s + 1)(s + 2)(s + 3)]. The pole excess n –
m is 3 so there are two zeros introduced which asymptotically approach −3.732 and
− 1/3.732 as T tends to zero. Figure 1 shows what the zero locations are for sample
rates ranging from 0 to 100 Hz. One observes that these zeros are at the origin when
the sample interval is so long that the system reaches steady state response to the
step input by the end of each time step, and they approach their asymptotic values
rather fast as sampling frequency increases. Although not in the usual format, this
represents a root locus plot of these zeros as a function of sample rate. All of the
introduced zeros lie on the negative real axis in the z-plane, and they all go from the

Table 1 Asymptotic location of sampling zeros

n -m Zero locations outside and on unit circle

2 −1
3 −3.732
4 −1, −9.899
5 −2.322, −23.20
6 −1, −4.542, −51.22
7 −1.868, −8.160, −109.3
8 −1, −3.138, −13.96, −228.5
9 −1.645, −4.957, −23.14, −471.4
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origin to the asymptotic locations given by the table as the sample rate goes from
limiting values of zero to infinity.

Intrinsic Zeros

When there are zeros in the continuous time transfer function G(s), there are images of
these zeros in G(z) called intrinsic zeros. If there are m intrinsic zeros, then one only
needs to introduce n −m − 1 zeros in the discretization to have the needed one time step
delay through G(z) as described above. The number of sampling zeros introduced is
reduced by m as indicated in the Table.

Properties of the Mapping of Intrinsic Zeros Observed from Analytical
Solution of a Simple Problem

Consider the transfer functionG(s) = (s− a1)/[(s − b1)(s − b2)]. The unit step response S(t) can
be computed by making a partial fraction expansion and then taking the inverse transform

G sð Þ 1
s
¼ s−a1ð Þ

s−b1ð Þ s−b2ð Þ ¼
A

s−b1ð Þ þ
B

s−b2ð Þ þ
C
s

S tð Þ ¼ Aeb1t þ Beb2t þ Ce0t
ð5Þ

where

A ¼ −b1 þ a1ð Þ
−b2 þ b1ð Þ −b1ð Þ B ¼ −b2 þ a1ð Þ

−b1 þ b2ð Þ −b2ð Þ C ¼ −a1
b1b2

Converting each term to its sampled z-transform equivalent (1/(s −α) converts to z/(z −
eαT)) and putting everything over a common denominator produces Z[G(s)/s]. Then
multiply by (1 − z−1) to obtain the equivalent z-transfer function
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Fig. 1 Sampling zero locations for a third order system as a function of sample frequency
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G zð Þ ¼ A z−eb2T
� �

z−e0Tð Þ þ B z−eb1T
� �

z−e0Tð Þ þ C z−eb1T
� �

z−eb2T
� �

z−eb2Tð Þ z−eb1Tð Þ ð6Þ

Property 1: Examining this procedure shows that a pole at location s in G(s) maps
exactly to a pole z = esT in G(z). It is easy to see that this is a general property. One
can also see that this mapping makes the solutions of the homogeneous differential
equation and of the homogeneous difference equation match at the sample times.
A root of the differential equation characteristic polynomial at a point s, produces a
solution estwhich when samples is eskT. A root of the difference equation
polynomial at point z produces a solution zk. To make these match one sets zk =
eskT = (esT)k, indicating that to match outputs the difference equation root must be
z = esT.
Property 2: Collecting the coefficients in the zeros polynomial gives

Aþ Bþ Cð Þz2 þ β1zþ β0 ¼ 0
β1 ¼ − A e0T þ eb2T

� �þ B e0T þ eb1T
� �þ C eb1T þ eb2T

� �� �
¼ − Aþ Bð Þ þ eb1T Bþ Cð Þ þ eb2T C þ Að Þ� �
β0 ¼ Aeb2T þ Beb1T þ Ce b1þb2ð ÞT

The coefficient of the highest power of z is A + B +C which is zero. It must be zero in
order to produce the one time step delay needed from input to output. The characteristic
polynomial becomes

β1zþ β0 ¼ 0 ð7Þ

Property 3: Using A + B = −C, B +C = − A, and C + A = − B in the second form
of β1 produces β1 ¼ Aeb1T þ Beb2T þ C. Therefore the coefficient of the highest
power in the characteristic polynomial is equal to the unit step response evaluated
at the sample time T

β1 ¼ S Tð Þ ð8Þ

Numerical experience suggests that this is a general property. Note that if the first
sample time in a non-minimum phase system happens to coincide with the time at
which the unit step response is crossing zero, then the coefficient of z is zero, increasing
the time delay through the discrete time system to two time steps.

Property 4: The zero location inG(z), z = − β0/β1, is the image of the zero location
a1 inG(s). The value of a1 appears in A, B, C, and hence in β0 and β1, but so do the
locations of the poles b1 and b2. Furthermore the poles appear in the exponentials
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eb1T and eb2T . Unlike the mapping of the poles that exactly satisfy z = esT, the zeros
in G(z) are functions of both the zero locations and the pole locations.
Property 5: If G(s) is asymptotically stable with all poles in the open left half
plane, then the zero location of G(z) will tend to zero as the sample time T tends to
infinity. This is clear from the fact that A, B, C are constants, and that the
exponentials in β0 tend to zero, while β1 will tend to C, the steady state response
to a unit step input.
Property 6: Reference [7] presents the following result. A zero s in G(s) approx-
imately satisfies the same mapping as the poles, z ≈ esT. For an nth order system
G(s), the Taylor series expansion of esTwill match the actual zero location through
terms in T to the power n. Terms after that do not match and can involve the pole
locations. The expansion for the problem considered here is

z1 ¼ 1þ a1T þ 1

2!
a21T

2 þ 1

4
a31−

1

12
a1 b1 þ b2ð Þa1 þ 2 b21 þ b1b2 þ b22

� �� �� �
T 3 þ⋯ ð9Þ

The coefficient of the T3 term should have been 1
3! a

3
1. Since T3 is always positive, taking

the difference of the coefficients tells one in which direction the zero location will
deviate from the z = esT mapping as T increases from zero. For example, if b1 and b2
approach zero, then a zero in the right half plane will initially be displaced by in the
positive direction by 1

12 a
3
1T

3 compared to the expected location z = esT.

Zeros Root Locus as a Function of T for Systems with One
Non-minimum Phase Zero

Stable System with Real Poles Having established various properties of the mapping of
zeros from continuous time to discrete time, let us examine possible forms of the
resulting locus of the zeros as a function of sample time interval T. Start with non-
minimum phase systems, and consider a stable system with one zero on the positive
real axis and two real poles

G1 ¼ −
2 s−9ð Þ

3 sþ 2ð Þ sþ 3ð Þ ð10Þ

As with all of the future systems considered, the unit step response is unity. This
response is shown in Fig. 2 which illustrates that the unit step response initially goes
negative, then crosses zero on its way to +1. Figure 3 shows the corresponding zero
location as a function of T, and we see that there is a singularity when T crosses the time
of the zero crossing. Thus, as the sample time T is increased from zero, the location of
the discrete time zero goes to +∞, then appears at −∞ and starts moving to the right,
converging to zero as sample time T tends to infinity. Of course, the usual root locus in
classical control will never go to infinity and then come back again. This is the first case
of the zeros locus behaving in unexpected ways, violating the behavior of the classical
root locus for poles. Figure 4 gives the corresponding root locus, although it is not so
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easy to display it. The plot starts with sample time 0.001 and continues to 1 s. Z1 labels
the start point at 1.009 and the end point is at −0.2908. Of course, most of the locus
does not correspond to sample time intervals that one would pick for the system, but if
the time interval for which the unit step response is negative is very short, it could be
reasonable to pick a T that is not small compared to the zero crossing time, in which
case the location of the discrete time zero can be very volatile, moving a long distance
with a very small change in sample time. If the zero crossing is very fast, one might
consider it a reasonable model to have the first time step beyond this small number in
which case the discrete time zero is perhaps unexpectedly on the negative real axis. In
the sequel we consider the complete root locus for each system, and aim to understand
what the range of possible root loci plots can look like.

Lightly Damped System Having understood the role played by zero crossings in the
conversion of intrinsic zeros, we consider the following damped system having a
damping ratio of 0.4

G2 ¼ −
6πð Þ2 s−1ð Þ

s2 þ 0:4 6πð Þsþ 6πð Þ2 ð11Þ

This damping ratio is somewhat small, but not at all extreme although the zero has a
large effect on the behavior. The unit step response in Fig. 5 has 5 zero crossings, and
each crossing corresponds to the location of the zero going from plus or minus infinity
and then appearing at minus or plus infinity. Of course, to do this, the root locus must
reverse its direction of travel and back track on top of its previous path – something that
no classical root locus would ever do. The points at which the direction of motion of the
root reverses is given by the points with zero slope on the plot in Fig. 5. Figure 6
presents the location of the zero as a function of T, and exhibits the expected 5
singularities.

Figure 7 is the root locus plot for the zero location in this problem as a function of T.
Clearly, it is difficult to show an easily understood locus for this problem. The locus
was created for T going from 0.001 to 1 s. Considerable description is necessary to
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Fig. 2 The unit step response of G1(s)
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understand the locus. The start point corresponding to label Z1 and A is at 1.001. Of
course, as T tends to zero this value converges to +1. As sample time T increases going
through 0.162 the zero goes to +∞, then reappears at −∞, and starts moving in the
direction of the origin along the negative real axis. When the T tends to infinity, the zero
must converge to the origin. But the locus this time goes toward the origin, and then
goes past it and turns around and returns to −∞. The point at which it turns around is
+0.8829 at T = 0.284 s indicated by point B. After T reaches 0.347 it is back at −∞ and
switches to +∞, and starts moving toward +1. It stops before getting there at +1.2859 at
T = 0.394 s at which point it reverses direction again, point C. This process continues 5
times. The next time it reverses direction on the positive real axis it does so at location
9.0442 with T = 0.751, point E, further from +1 than before. The points at which the
direction reverses inside the unit circle decrease from 0.8829 for the first reversal of
direction, point B, 0.6700 for the second, point D, and 0.3641 for the third, point F. The
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Fig. 3 Discrete time intrinsic zeros location vs. sampling period in G1(s)

Fig. 4 Root locus plot of the zeros of G1(s) as a function of sample time T
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plot quits at G for the slowest sample rate considered, but if Twere increase further, the
curve would converge to the origin coming in from 0.3641 on the right.

Undamped System After seeing the results for a somewhat lightly damped system,
consider what happens when there is no damping

G3 ¼ −
6πð Þ2 s−1ð Þ
s2 þ 6πð Þ2 ð12Þ

Figure 8 shows the unit step response which has an infinite number of zero crossings.
Figure 9 shows the zero location as a function of T. Note that this plot has a
fundamentally different character than the corresponding plot with damping, there are
no points at which the locus reversed direction. Hence the only points that are
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Fig. 5 Unit step response of G2(s)
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Fig. 6 Discrete time zero location for G2(s)
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singularities are the zero crossings in the unit step response that go from negative to
positive, labeled H, I, J, K, L, M. Figure 10 gives the root locus plot for T from 0.001 to
2 s. Again the sampled values start at 0.001 and go to 2 s, but for T = 0 the plot would
be at +1. Increasing T through 0.162 the plot goes to +∞ and then switches to −∞ and
goes toward the origin. But for this problem the motion does not reverse direction,
instead it continues through the origin, then goes through +1 and continues to +∞, and
does this repeated path an infinite number of times.

Negative Damping To complete the picture, consider what happens when the damping
becomes negative making an unstable system

G4 ¼ − 6πð Þ2 s−1ð Þ
s2−0:05 6πð Þsþ 6πð Þ2 ð13Þ

Figure 11 gives the unit step response and Fig. 12 plots the zero location versus sample
time to be compared to Figs. 5 and 6 for positive damping and Figs. 8 and 9 for zero

Fig. 7 Root locus plot of the path of the discrete time zero as a function of T for G2(s)
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Fig. 8 Unit step response of G3(s)
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damping. Singularities at B, D, F are hard to capture in the sampling but in each case
the plot shifts from negative infinity to positive infinity. The plot has the same form as
for the lightly damped Fig. 6. In the no damping case, very close examination fails to
reveal any singularity at these points, perhaps related to going though a pole on the unit
circle which produces a 180 degree sign change in the frequency response. The
resulting root locus plot is fundamentally different for zero damping, appearing to have
no reversals in directions.

Root Locus of Zeros for Systems with Two Non-mimimum Phase Zeros:
Complex Conjugate Pair and Repeated Zeros

Complex Conjugate Pair Consider a pair of complex conjugate non-minimum phase
zeros

G5 ¼ 3 s2 þ 4sþ 8ð Þ
sþ 2ð Þ sþ 3ð Þ sþ 4ð Þ ð14Þ

The unit step response has a new shape as seen in Fig. 13, first going in the positive
direction, then to negative values, and back to positive values, producing two zero
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Fig. 9 Plot of zero location vs. T for undamped system G3(s)

Fig. 10 Root locus plot of the zero for the undamped system G3(s)
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crossings. The corresponding root loci are given in Figs. 14 and 15 which are drawn for
the range of T from 0.001 to 2 s. At the very small initial T the zero locations both look
the same to 5 digits at 1.0020, but of course they are different and slightly complex.
Increasing T makes the two loci follow what looks like a circle both ending on the real
axis when T = 0.345. So what originally were complex conjugate zeros in continuous
time and at smaller sample rates, can map to real zeros in discrete time, and also to
repeated real zeros, perhaps an unexpected result. Since experience with routine root
locus plots tells us that one can easily have loci that make a perfect circle, we examine
this and establish that it is not a perfect circle. After reaching the real axis, one root goes
to the right getting to infinity very quickly at T = 0.351, after a very small change in T.
The other root goes left. This is a standard phenomenon in routing root locus plots,
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Fig. 11 Unit step response for system G4(s) having negative damping
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Fig. 12 The zero location as a function of T for negative damping system G4(s)
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arriving on the real axis and one root goes to the right and the other goes to the left.
What is not routine is that after progressing to the left to 3.8408 from the entry point at
8.7147, the locus turns around and goes back the other direction to plus infinity,
chasing the other root through plus infinity and then chasing the other root toward
the origin from negative infinity. When sample time reaches 2, one root is at −0.0028
while the chasing root is at −0.2324.

Repeated Real Zeros or Two Real Zeros Now consider two real zeros outside the unit
circle, both at the same location

G6 ¼ 6 s−2ð Þ s−2ð Þ
sþ 2ð Þ sþ 3ð Þ sþ 4ð Þ ð15Þ
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Fig. 13 Unit step response of system with a complex conjugate pair of non-minimum phase zeros G5(s)
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The unit step response is given in Fig. 16 showing two zero crossings. The two
corresponding root locations are given in Figs. 17 and 18. Obviously the two zeros
that were identical in continuous time choose to follow different paths in discrete time.
The root locus for T from 0.001 to 2 s is given in Fig. 19, which tries to show the paths
of both roots. The values of each discrete time zero at T = 0.001 are identical to four
digits at 1.002 but are not the same. At the final sample time of 2 s, one of the roots is at
−0.0031 and the other is at −0.4451. As T increases the zeros will both end approaching
the origin from the left. Meanwhile, all poles are moving monotonically to the origin
from the right. So the two loci are in fact the same, but the time history for one root is
different than for the other root. We comment that when we separate the zeros in
continuous time, so that the zero is no longer repeated, there is no qualitative difference
between the results.
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Zeros inside the Unit Circle

The above results exhibit many unexpected characteristics for the zeros loci as a
function of T for non-minimum phase systems. Now consider corresponding results
to minimum phase systems.

Real Zeros The following minimum phase system, has a zero in continuous time that is
between the two real poles

G7 ¼ sþ 1ð Þ
sþ 2ð Þ sþ 0:5ð Þ ð16Þ
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Fig. 17 One of the zero loci for the repeated zero problem G6(s)
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The paths of the zero location and the two poles are displayed in Fig. 20. And they all
simply move toward the origin as T increases. If the zero is larger than both poles or
smaller than both poles, the corresponding plot looks very similar, just reorder the
labels on the curves to correspond to the new order.

Complex Conjugate Pair As with the non-minimum phase zero loci, the root locus for
complex conjugate minimum phase zeros exhibits interesting behavior. Figure 21 gives
the locus of the discrete time zeros associated with

Fig. 19 Root locus plot of the two zeros of G6(s) as a function of sample time T
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Fig. 20 Path of both zero and poles vs. T for G7(s) having one real zero inside the unit circle
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G8 ¼ 3 s2 þ 4sþ 8ð Þ
sþ 2ð Þ sþ 3ð Þ sþ 4ð Þ ð17Þ

for T going from 0.001 to 2.000 s. The locus starts very near +1, with two complex
roots that are indistinguishable to 3 digit accuracy, appearing as if real and located at
0.998. This time the curves are clearly not parts of a circle. Again, two complex
conjugate zeros can map to real zeros as seen in the more detailed plot of Fig. 22,
which exhibits the two zeros joining the real axis at −0.0132. One root goes toward the
origin reaching −0.0068 when T is 2. The other root goes away from the origin reaching
−0.0166 when T is 2. Of course, as T increases further it must reverse direction and go
to the origin as T tends to infinity. Figure 23 gives a still more detailed view, and shows
that the loci enter the real axis perpendicularly.
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The Journal of the Astronautical Sciences (2020) 67:164–187182



Sampling Zeros Together with Intrinsic Zeros

All of the above examples included only intrinsic zeros. If there are only sampling
zeros, then the zeros locus plot starts at the locations given in the Table, and move
toward the origin along the negative real axis as T increases. Figure 1 is a plot of the
loci for a third order system with only sampling zeros, with one outside the unit circle,
and one inside at the reciprocal location asymptotically as T tends to zero. One might
ask, when there are both sampling zeros and intrinsic zeros, are there any new
phenomena to be discovered. The unit step response of the following system

G9 ¼ 24 0:1s−1ð Þ
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ sþ 4ð Þ ð18Þ
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Fig. 23 A further close up of the root locus of Fig. 21 for G8(s)
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is given in Fig. 24, and the sampling zero as a function of T is given in Fig. 25 with one
singularity to transfer the zero from the positive real axis to the negative real axis. After
this transfer, it proceeds monotonically toward the origin, while the sampling zeros do
the same, Fig. 26. We comment that the two kinds of zeros never cross over each other,
and that the form of the plot is just the combination of the separate behaviors for each
type of zero without any apparent interaction between the two (Fig. 27).

Intrinsic Zero Location as a Function of Pole Locations

The locations of the discrete time zeros were shown in Eq. (9) to be a function of the
pole locations. We examine this dependence for a stable non-minimum phase system
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G10 ¼ 2b21 sþ 9ð Þ
9 sþ b1ð Þ sþ 2b1ð Þ ð19Þ

Figure 28 shows the discrete time zero locus as a function of b1 going from 0.1 to 10
with a fixed sample time T = 0.01 s. The image in the z-plane of the b1 pole moves to
the left from 0.999 to 0.905. The image of the minimum phase zero as a function of b1
is given in Fig. 29. The motion of the zero is small going between 0.91387 to 0.91394.
An interesting property is that when the zero reaches that location, it reverses direction
and finally ends at 0.91392. Another interesting property is that clearly there is some
sample time T for which the intrinsic zero is mapped on top of one of the poles. With
two poles in the system there can be two such points. Therefore, it is possible for a
continuous time system with distinct zero and pole locations to map to discrete time
and produce in a system with pole-zero cancellation.

If the (s + 9) is changed to (s − 9) no new properties are introduced, the pole inside
the unit circle moves monotonically toward the origin between the same values, while

Fig. 27 Root locus plot of the intrinsic and sampling zeros for G9(s)

Fig. 28 Locus of the discrete time zero location of G10(s) as a function of the pole location −b1
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the zero outside the unit circle moves monotonically in the opposite direction from
1.0942 to 1.0946. If one considers a non-minimum phase system that is unstable, the
same interesting properties observed for Eq. (19) occur again.

Conclusions

The locus of the zero locations of discrete time transfer functions as a function of the
sample rate can exhibit unexpected behavior:

(1) A non-minimum phase system in continuous time can be a minimum phase
system in discrete time.

(2) In particular, a zero on the positive real axis of the s-plane can map not only to the
expected positive real axis in the z-plane outside the unit circle, but can map to: (i)
a zero on the negative real axis outside the unit circle, (ii) a zero on the negative
real axis inside the unit circle, and (iii) a zero on the positive real axis inside the
unit circle.

(3) A complex conjugate pair of zeros can map not only to complex conjugate zeros
in discrete time, but also to: (i) distinct real valued zeros, (ii) and to repeated real
zeros.

(4) Poles and zeros in continuous time that are distinct, can result in pole zero
cancellation in discrete time.

(5) Loci of zeros can easily move in one direction and then decide to go back the
direction they came.

(6) There are singularities in the zero location as sample time interval T is increased
for non-minimum phase systems. This can be of practical importance. For a
system that crosses the real axis very quickly, the zero location can be vary
volatile, changing by a large amount for a very small change in T.

(7) One can create a system where a non-minimum phase zero mapped to discrete
time goes to plus infinity, re-appears at minus infinity, comes in toward zero or
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even past zero, turns around and goes out to negative infinity, then appears at
positive infinity, comes in, turns around – and repeats this an infinite number of
times as T goes to infinity.

This paper develops an understanding of how these unexpected results can happen.
And gives a general idea of what the possible zero loci can look like for the whole locus
from T equal zero to T equal infinity.
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