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Abstract
The control of a spacecraft equipped with a six-degree-of-freedom robot manipulator
is studied in this paper. The objective is to rendezvous and synchronize with a satel-
lite to facilitate inspection, servicing or de-orbiting. The space manipulator dynamics
model with global parameterization on the configuration manifold is derived and used
for designing asymptotically-stable control laws, so that they are valid globally in the
configuration manifold. The control system consists of a sliding-mode rendezvous
controller as well as a geometric attitude synchronization and a model-based servo
control for the robot manipulator. The gains of the sliding-mode controller dictate a
user-defined upper-bound on the thrust force. The attitude synchronization controller,
concurrently with the rendezvous controller, is capable of micro-orbiting the space
manipulator around spinning or tumbling satellites. It is observed through the simu-
lations that the controller consumes limited amount of propellant, and it is feasible
to use it for either a re-fueling (larger mass) or a de-orbiting (smaller mass) space
manipulator.
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Nomenclature
i, j, k : Indexing variables
R

n : n-dimensional real numbers
ei : Standard basis of Rn

SO(3) : special orthogonal group in 3-dimensions (3D)
so(3) : group of 3 × 3 skew-symmetric matrices
T

n : n-dimensional torus
i
j vk : A vector vk measured with respect to the frame j and expressed

in the frame i
i
j Jk : The Moment-of-inertia of the object with index k measured with

respect to frame j and expressed in frame i
i
jFk,

i
jMk : A force Fk or moment Mk applied on the origin of frame j ,

measured with respect to the inertial frame and expressed in the
frame i

i
pFk,

i
pMk : A force Fk or moment Mk applied on the point p, measured with

respect to the inertial frame and expressed in the frame i

ω̂ : Skew-symmetric representation of a vector ω ∈ R
3

A∨ : Vector representation of a matrix A ∈ so(3)
jRi : Rotation matrix for representing vectors in frame i into frame j
jRi(0) : Rotation matrix between frames i and j at a default configuration
‖ v ‖ : 2-norm of a vector v ∈ R

n

v × w : Cross product of vectors v, w ∈ R
3

θi, τi : Joint angles and torques
pi, vi, ωi : Linear positions, linear velocities and angular velocities
Rx(·)
Ry(·)
Rz(·)

⎫

⎬

⎭

: Principal rotations in 3D

In : n × n identity matrix

Introduction

The in-orbit inspection and servicing of satellites, as well as de-orbiting them at the
end of their lifetime, are quickly becoming as vital missions for reducing space debris
and reusing working entities. Such missions may involve a space manipulator, which
encompasses a base spacecraft with one or more multiple degree-of-freedom (DOF)
robot manipulators aboard. The inspection and servicing tasks often require a space
manipulator (chaser) to rendezvous and synchronize attitude with the satellite (tar-
get), in order to minimize the relative motion between the target and the chaser. Such
control problems are now addressed in [10, 11, 16, 17, 23, 27, 28]. With minimal rel-
ative motion, the robot manipulator can be utilized more conveniently for docking,
inspection or servicing. The nature of such applications implies that the target coop-
erate or at least communicate with the chaser, hence target state estimates be known.
The de-orbiting task, on the other hand, could be approached differently; the chaser
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rendezvouses with the target, but no attitude synchronization is performed. After ren-
dezvous, the chaser is in free-floating mode, i.e., no position or attitude control for
the base spacecraft, and the end-effector of robot manipulator is used to grasp the de-
commissioned target and de-tumble it. The authors [2, 6, 7, 14, 19, 21, 22, 24, 30]
have developed such controllers. The target in this case is assumed to neither communicate
nor cooperate with the chaser. Hence, the target states are obtained from the ground
stations and/or estimated using onboard sensors [4, 25] when in close proximity.

The models presented in [6, 7, 10, 11, 16, 17, 19–23, 28, 30] use Euler angle
parameterization of the attitude of the base spacecraft, which introduces singularity
in the dynamics model and restricts the domain of rotation space (SO(3)) for both
control and analysis. In general, this is overcome by patching together the model
in different regions of SO(3) using different Euler angle representations. However,
such patching approach does not preserve the smoothness (infinite differentiability or
C∞ ) nature of the dynamics model. Alternatively to avoid singularities, the rotation
matrix representation of the base attitude can be used. The dynamics model of a
base spacecraft with a six-DOF serial robot manipulator is obtained in this paper
using the rotation matrix representation for kinematics and Newton-Euler equations
for dynamics. The obtained model is valid globally on the configuration manifold of
the 12-DOF space manipulator, hence can be analyzed and simulated globally. The
global nature of the model is useful in achieving attitude synchronization with a target
having attitude variation throughout SO(3). The rotation matrix representation has
long been presented in the literature (e.g., [1]) for analyzing the rigid body spatial
motion, including spacecraft (e.g., [5].) Such a representation has been extended to
space manipulators in this paper.

Focusing on short and long range rendezvous, the main contribution of this paper
is a sliding-mode controller for position control of the base spacecraft along a desired
rendezvous trajectory, combined with an attitude synchronization control law (during
final approach to the target). The globally parameterized dynamics model derived in
this paper is used in the control design. In addition to the inherent robustness char-
acteristics, the sliding-mode technique allows for user-definable bounds on control
magnitude to consider the limits in the thruster force. The use of propellant-based
thrust devices in the base spacecraft is the most practical choice for low-earth-orbit
(LEO) missions (see [8, 13]), and the bounded nature of the controller presented
here results in reduction of propellant consumption. Reducing the initial propellant
mass is a critical necessity of space manipulators, as heavier spacecraft need big-
ger rockets to launch, resulting in higher costs as elaborated in [8]. Finally, for the
robot manipulator, a standard PD controller is adopted to perform end-effector track-
ing for grasping/docking concurrently to the attitude synchronization and rendezvous
position control.

The paper is organized as follows: in “Modelling of Space Manipulator” a
globally-parameterized dynamics model of the space manipulator is presented.The
concurrent control strategy is developed in “Control of Space Manipulator”. The sim-
ulation results are discussed in “Simulations”. Some concluding remarks are made in
“Conclusions”.
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Modelling of SpaceManipulator

The modelling aspects of multi-body dynamic systems have been extensively covered
in the literature. For a space manipulator, the kinematics of the arm (see for e.g., [18])
can be appended to a globally-parameterized kinematic model of the base spacecraft
to make the system’s kinematic equations valid globally on SO(3). The dynamics of
the 12-DOF system can be obtained using the Newton-Euler formulation as presented
in [26].

Kinematics

The schematic of a space manipulator, shown in Fig. 1, illustrates base and link
coordinate frames, joints and Centre of Mass (CoM) position vectors. The origin of
coordinate frames is located at the CoM of the respective rigid bodies. The CoM of
Earth is assumed to be the origin of the inertial frame. The position and velocity of
base CoM, with respect to and expressed in the inertial frame, are

(

I
I p0,

I
I v0

)

, and
those for link i are

(

I
I pi,

I
I vi

)

, i ∈ {1, 2, 3}. It is assumed that the manipulator has a
spherical wrist. Hence, the last three joint axes have a common intersection, which is
assumed to coincide with the CoM of the last three links:

I
I p4 = I

I p5 = I
I p6

I
I v4 = I

I v5 = I
I v6 (1)

The base attitude is represented by IR0 ∈ SO(3), and its angular velocity is 0
Iω0.

The axes of joints 1 and 5 are parallel to their respective Z-axis, and those of joints
2, 3 and 4 are parallel to their respective X-axis. The axis of joint 6 is parallel to

Fig. 1 Schematic of space manipulator
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its respective Y -axis. The attitude of each link coordinate frame with respect to its
previous frame is:

0R1 = 0R1(0)Rz(θ1)
1R2 = 1R2(0)Rx(θ2)
2R3 = 2R3(0)Rx(θ3)
3R4 = 3R4(0)Rx(θ4)
4R5 = Rz(θ5)
5R6 = Ry(θ6) (2)

where, i−1Ri(0) is the rotation matrix relating the adjacent frames at the default con-
figuration (θi = 0). The link attitudes with respect to the inertial frame are calculated
as:

IRi = IR(i−1)
(i−1)Ri, i ∈ {1, 2, 3, 4, 5, 6} (3)

The joint positions calculated with respect to the inertial frame are:

I
I h1 = I

I p0 + IR0
0
0r0 ; Joint 1

I
I hi+1 = I

I hi + IRi(
i
irib − i

i ria) ; Joint (i + 1), i ∈ {1, 2, 3} (4)

where vectors r0, ria and rib are shown in Fig. 1, and they are with respect to and
expressed in their own coordinate frame. The joint linear velocities measured with
respect to and expressed in the inertial frame are:

I
I ḣ1 = I

I v0 + IR0
0
I ω̂0

0
0r0 ; Joint 1

I
I ḣi+1 = I

I ḣi + IRi
i
I ω̂i(

i
irib − i

i ria) ; Joint (i + 1), i ∈ {1, 2, 3} (5)

where I
I v0 is the base COM velocity with respect to and expressed in the inertial

frame, and i
I ω̂i is the skew-symmetric representation of link i (base for i = 1) angular

velocity with respect to the inertial frame and expressed in the link (base) coordinate
frame. The links CoM positions with respect to and expressed in the inertial frame
are:

I
I pi = I

I hi − IRi
i
iria ; Link i, i ∈ {1, 2, 3}

I
I pi = I

I h4 ; Link i, i ∈ {4, 5, 6} (6)



The Journal of the Astronautical Sciences (2019) 66:100–120 105

The links CoM linear velocities with respect to and expressed in the inertial frame
are:

I
I vi = I

I ḣi − IRi
i
I ω̂i

i
i ria ; Link i, i ∈ {1, 2, 3}

I
I vi = I

I ḣ4 ; Link i, i ∈ {4, 5, 6} (7)

The links angular velocities with respect to the inertial frame and expressed in their
own coordinate frame can be calculated from the base angular velocity with respect
to the inertial frame and expressed in the base frame 0

Iω0, as follows:

1
Iω1 = θ̇1e3 + 1R0

0
Iω0

2
Iω2 = θ̇2e1 + 2R1

1
Iω1

3
Iω3 = θ̇3e1 + 3R2

2
Iω2

4
Iω4 = θ̇4e1 + 4R3

3
Iω3

5
Iω5 = θ̇5e3 + 5R4

4
Iω4

6
Iω6 = θ̇6e2 + 6R5

5
Iω5 (8)

For obtaining the dynamics, the joint linear velocities (5) are rewritten using Eq. 7,
as follows:

I
I v0 + IR0

0
I ω̂0

0
0r0 = I

I v1 + IR1
1
I ω̂1

1
1r1a ; Joint 1

I
I vi + IRi

i
I ω̂i

i
i rib = I

I vi+1 + IRi+1
i+1
I ω̂i+1

i+1
i+1r(i+1)a ;

Joint (i), i ∈ {2, 3}
I
I v3 + IR3

3
I ω̂3

3
3r3b = I

I v4 = I
I v5 = I

I v6 ; Joint 4, 5, 6 (9)

Dynamics

The accelerations of the space manipulator can be obtained from Newton-Euler equa-
tions detailed in [26]. The mass and moment-of-inertia matrix of the base spacecraft
are m0,

0
0J0, and those of link i are mi,

i
iJi, i ∈ {1, 2, . . . , 6}. The force and moment

acting at the origin of the base coordinate frame are denoted by 0
0Fb,

0
0Mb ∈ R

3, and
the joint torque by ui, i ∈ {1, 2, . . . , 6}. For the ease of modelling using Newton-
Euler equations, the joint torque for the given coordinate frames can be represented
as:

τ1 = u1e3

τ2 = u2e1

τ3 = u3e1

τ4 = u4e1

τ5 = u5e3

τ6 = u6e2 (10)
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The forces acting on the links at their joints are denoted as I
hi

Fi ∈ R
3, i ∈ {1, 2, 3, 4}.

The Newton-Euler equations for the space manipulator are: (The product of universal
gravitational constant and mass of Earth is c = GM1 = 398600.4418Km3s−2.)

0
0J0

0
I ω̇0 = 0

0Mb − 0R1τ1 − 0
I ω̂0

0
0J0

0
Iω0 + 0

0r̂0
0RI

I
h1

F1

1
1J1

1
I ω̇1 = τ1 − 1R2τ2 − 1

I ω̂1
1
1J1

1
Iω1 + 1

1r̂1b
1RI

I
h2

F2 − 1
1r̂1a

1RI
I
h1

F1

2
2J2

2
I ω̇2 = τ2 − 2R3τ3 − 2

I ω̂2
2
2J2

2
Iω2 + 2

2r̂2b
2RI

I
h3

F3 − 2
2r̂2a

2RI
I
h2

F2

3
3J3

3
I ω̇3 = τ3 − 3R4τ4 − 3

I ω̂3
3
3J3

3
Iω3 + 3

3r̂3b
3RI

I
h4

F4 − 3
3r̂3a

3RI
I
h3

F3

4
4J4

4
I ω̇4 = τ4 − 4R5τ5 − 4

I ω̂4
4
4J4

4
Iω4

5
5J5

5
I ω̇5 = τ5 − 5R6τ6 − 5

I ω̂5
5
5J5

5
Iω5

6
6J6

6
I ω̇6 = τ6 − 6

I ω̂6
6
6J6

6
Iω6 (11)

and

m0
I
I v̇0 = IR0

0
0Fb + I

h1
F1 − 1

‖ I p0 ‖3 cm0
I
I p0

m1
I
I v̇1 = I

h2
F2 − I

h1
F1 − 1

‖ I p1 ‖3 cm1
I
I p1

m2
I
I v̇2 = I

h3
F3 − I

h2
F2 − 1

‖ I p2 ‖3 cm2
I
I p2

m3
I
I v̇3 = I

h4
F4 − I

h3
F3 − 1

‖ I p3 ‖3 cm3
I
I p3

(m4 + m5 + m6)
I
I v̇4 = −I

h4
F4 − 1

‖ I p4 ‖3 c(m4 + m5 + m6)
I
Ip4 (12)

where i
I ω̇i and I

I v̇i are the link (base for i = 0) angular acceleration and its COM
linear acceleration, respectively, with respect to the inertial frame. Angular accelera-
tions are expressed in the link (base) coordinate frames, whereas linear accelerations
are expressed in the inertial frame.

The time derivative of Eq. 9 gives constraints on the accelerations:

− I
I v̇0 + I

I v̇1 + IR0
0
0r̂0

0
I ω̇0 − IR1

1
1r̂1a

1
I ω̇1 = −IR1(

1
I ω̂1)

21
1r1a + IR0(

0
I ω̂0)

20
0r0

−I
I v̇1 + I

I v̇2 + IR1
1
1r̂1b

1
I ω̇1 − IR2

2
2r̂2a

2
I ω̇2 = −IR2(

2
I ω̂2)

22
2r2a + IR1(

1
I ω̂1)

21
1r1b

−I
I v̇2 + I

I v̇3 + IR2
2
2r̂2b

2
I ω̇2 − IR3

3
3r̂3a

3
I ω̇3 = −IR3(

3
I ω̂3)

23
3r3a + IR2(

2
I ω̂2)

22
2r2b

−I
I v̇3 + I

I v̇4 + IR3
3
3r̂3b

3
I ω̇3 = IR3(

3
I ω̂3)

23
3r3b (13)

The Eqs. 11, 12 and 13 are combined as:

⎡

⎣

J 0 P
0 M I
P� I� 0

⎤

⎦

⎛

⎝

ω̇

v̇

F

⎞

⎠ =
⎛

⎝

�

F
G

⎞

⎠ (14)
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where,

ω = (0Iω0,
1
Iω1,

2
Iω2,

3
Iω3,

4
Iω4,

5
Iω5,

6
Iω6)

v = (II v0,
I
I v1,

I
I v2,

I
I v3,

I
I v4)

F = (Ih1F1,
I
h2

F2,
I
h3

F3,
I
h4

F4)

J = diag(00J0,
1
1J1,

2
2J2,

3
3J3,

4
4J4,

5
5J5,

6
6J6)

M = diag(m0I3, m1I3, m2I3, m3I3, (m4 + m5 + m6)I3)

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0Mb − 0R1τ1 − 0

I ω̂0
0
0J0

0
Iω0

τ1 − 1R2τ2 − 1
I ω̂1

1
1J1

1
Iω1

τ2 − 2R3τ3 − 2
I ω̂2

2
2J2

2
Iω2

τ3 − 3R4τ4 − 3
I ω̂3

3
3J3

3
Iω3

τ4 − 4R5τ5 − 4
I ω̂4

4
4J4

4
Iω4

τ5 − 5R6τ6 − 5
I ω̂5

5
5J5

5
Iω5

τ6 − 6
I ω̂6

6
6J6

6
Iω6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

G =

⎛

⎜

⎜

⎝

IR0(
0
I ω̂

2
0)

0
0r0 − IR1(

1
I ω̂

2
1)

1
1r1a

IR1(
1
I ω̂

2
1)

1
1r1b − IR2(

2
I ω̂

2
2)

2
2r2a

IR2(
2
I ω̂

2
2)

2
2r2b − IR3(

3
I ω̂

2
3)

3
3r3a

IR3(
3
I ω̂

2
3)

3
3r3b

⎞

⎟

⎟

⎠

I =

⎡

⎢

⎢

⎢

⎢

⎣

−I3 0 0 0
I3 −I3 0 0
0 I3 −I3 0
0 0 I3 −I3
0 0 0 I3

⎤

⎥

⎥

⎥

⎥

⎦

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
‖I p0‖3 cm0

I
I p0 + IR0

0
0Fb

− 1
‖I p1‖3 cm1

I
I p1

− 1
‖I p2‖3 cm2

I
I p2

− 1
‖I p3‖3 cm3

I
I p3

− 1
‖I p4‖3 c(m4 + m5 + m6)

I
Ip4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0
0r̂0

IR�
0 0 0 0

1
1r̂1a

IR�
1 −1

1r̂1b
IR�

1 0 0
0 2

2r̂2a
IR�

2 −2
2r̂2b

IR�
2 0

0 0 3
3r̂3a

IR�
3 −3

3r̂3b
IR�

3
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

Reduced Dynamical Equations

The configuration of the space manipulator can be described by the states

x
�= (IR0, θ, I

Ip0,
0
Iω0, �, I

I v0) ∈ Q, where θ = (θ1, θ2, θ3, θ4, θ5, θ6),
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� = (θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6), andQ
�= SO(3) ×T

6 ×R
3 ×R

3 ×R
6 ×R

3. The space
manipulator is a 12-DOF system, and will have a state-space dimension of 24. But,
the particular parameterization of the base attitude adds 6 more equations (which
are dependent on other equations.) The parameterization of the base attitude by IR0
is advantageous for both control design and simulations, because the equations are
valid globally on Q. The attitude control design using this particular parameteriza-
tion can be performed using the procedure in [5]. We now extract the accelerations
(0I ω̇0, �̇, I

I v̇0) from the Eq. 14. The equations for (0I ω̇0,
I
I v̇0) are obtained from (ω̇, v̇).

The joint angular accelerations are related to body angular accelerations from Eq. 8
as:

θ̈1 = e�
3 (1I ω̇1 − 1R0(0)

0
I ω̇0)

θ̈2 = e�
1 (2I ω̇2 − 2R1(0)

1
I ω̇1)

θ̈3 = e�
1 (3I ω̇3 − 3R2(0)

2
I ω̇2)

θ̈4 = e�
1 (4I ω̇4 − 4R3(0)

3
I ω̇3)

θ̈5 = e�
3 (5I ω̇5 − 4

I ω̇4)

θ̈6 = e�
2 (6I ω̇6 − 5

I ω̇5) (16)

The state-space equations of space manipulator dynamics are:

I Ṙ0 = IR0
0
I ω̂0

θ̇ = �
I
I ṗ0 = I

I v0
⎛

⎝

0
I ω̇0

�̇
I
I v̇0

⎞

⎠ = g1(x) + g2(x)u (17)

where g1 : Q → R
12 is the drift vector field, g2 : Q → R

12×12 is the control vector
field, and u = (00Mb, u1, u2, . . . , u6,

0
0Fb) is the control vector.

Control of SpaceManipulator

A model-based concurrent control law is presented in this section. For the purposes
of control design, the paper focuses on fully-actuated space manipulators, with a
complete control vector u, and does not consider manipulator singular configurations.
Hence, the system is controllable (with known states,) which means that for the sates
x ∈ Q the matrix g2(x) is full rank, thus invertible, in order to be able to compute for
the control vector.
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Partial Feedback Linearization

The state-space model (17) is further simplified by eliminating some of the nonlin-
earities through control. Consider the following control law:

u = g2(x)−1(−g1(x) + ū) (18)

where, ū ∈ R
12 is the new control input vector. Let ū = (ū1, ū2, ū3), ū1 ∈ R

3, ū2 ∈
R
6, ū3 ∈ R

3. The state-space Eq. 17 with control (18) will then become:

I Ṙ0 = IR0
0
I ω̂0

θ̇ = �
I
I ṗ0 = I

I v0
0
I ω̇0 = ū1

�̇ = ū2
I
I v̇0 = ū3 (19)

Full State Trajectory Tracking

The rendezvous, attitude synchronization and end-effector contact are achieved
through trajectory tracking. The sliding-mode rendezvous controller is designed
based on the procedure described in [15], the attitude synchronization based on [5],
and the end-effector contact based on [18]. The reference trajectories are assumed
to be at least twice differentiable, and are denoted by (Rd, ωd, ω̇d) for the attitude,
(θd, �d, �̇d) for the joint angles, and (pd, vd, v̇d) for the base spacecraft CoM posi-
tion. The reference trajectories can be constructed in real-time, provided that they
satisfy the differentiability condition. The concurrent control law is as follows:

ū1 = Kr(R
�
e − Re)

∨ − Kwωe
︸ ︷︷ ︸

f eedback

+ R�
e ω̇d

︸ ︷︷ ︸

f eedf orward

ū2 = −Kp1(θ − θd) − Kd1(� − �d) + �̇d

ū3 = −Kp2tanh(
I
Ip0 − pd) − Kd2tanh(

I
I v0 − vd) + v̇d (20)

where Kr, Kw, Kp2, Kd2 ∈ R
3×3 are positive definite and diagonal, Kp1, Kd1 ∈

R
6×6 are positive definite and diagonal, Re = R�

d
IR0, and ωe = 0

Iω0 − R�
e ωd . The

tanh(·) function is used to eliminate the chattering problem associated with sign(·). In
implementation, the tanh(·) function can be modified as | tanh(·)|αsign(·), α ∈ (0, 1),
to achieve a very close approximation of sign(·), hence achieving sliding mode. The
asymptotic stability of the states to the respective reference trajectories is proved
through the following proposition.

Proposition 4.1 The control (20), applied to the system (19), asymptotically stabi-
lizes the states x to the reference trajectory (Rd, θd, pd, ωd, �d, vd). The domain-of-
attraction is global for the position and almost-global for the attitude of the space
manipulator.
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Proof The asymptotic stability is proved by using the concepts of Lyapunov stability
and LaSalle’s invariance principle. Consider the Lyapunov functions:

V1 = (3 − tr(Re)) + 1

2
ω�

e K−1
r ωe > 0

V2 = 1

2
‖ θ − θd ‖2 +1

2
(� − �d)�K−1

p1 (� − �d) > 0

V3 =
3

∑

i=1

log
(

cosh((IIp0 − pd)�ei)
)

+ 1

2
(II v0 − vd)�K−1

p2 (II v0 − vd) > 0

The time-derivative of Lyapunov functions along the state trajectories of the closed-
loop system (19) with the control (20) is:

V̇1 = −ω�
e K−1

r Kwωe ≤ 0

V̇2 = −(� − �d)�K−1
p1 Kd1(� − �d) ≤ 0

V̇3 = −(II v0 − vd)�K−1
p2 Kd1 tanh(

I
I v0 − vd) ≤ 0

where, the fact d
dt

(tr(Re)) = ω�
e (R�

e − Re)
∨ is used in differentiation. The residual

set is given by:

S
�= {x ∈ Q : V̇1 = V̇2 = V̇3 = 0}
= {x ∈ Q : ωe = 0, � = �d, I

I v0 = vd}

Since the derivatives are negative semi-definite, the set S is positively invariant and
Lyapunov stable. Since S is invariant, �̇ = �̇d, I

I v̇0 = v̇d , ω̇e = 0, which com-
bined with the closed-loop equations reveal that S is composed of two disconnected
invariant sets:

S1 = {x ∈ S : Re = I3, θ = θd, I
Ip0 = pd}

S2 = {x ∈ S : Re = R�
e , θ = θd, I

Ip0 = pd}

The set S1 implies that the state x is following the desired trajectory, the set S2 implies
that only the attitude of the base frame is exactly a distance π (Riemannian metric)
apart from the desired attitude. From LaSalle’s invariance principle, the set S1 ∪ S2
(the largest invariant set) is asymptotically stable.

The minima of V1 + V2 + V3 is S1, combined with the fact that the set S2 is of
measure zero inQ, implies that S1 is asymptotically stable. The domain-of-attraction
for attitude is almost-global, and for position it is global.

Without loss of generality, the reference trajectory can be the state of another sys-
tem in space. The applications of servicing or de-orbiting can indeed be approached
considering the states of the target in space as a reference trajectory.
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Pursuing an Entity in Orbit

The target in an orbit around Earth is modelled as a free rigid-body whose state-space
dynamical equations are:

I Ṙp = IRp
p
I ω̂p

I
I ṗp = I

I vp

p
I ω̇p = −p

pJ−1
p

p
I ω̂p

p
pJp

p
I ωp

I
I v̇p = − 1

‖ I pp ‖3 cI
Ipp (21)

where, p
pJp is the moment-of-inertia, (IIpp, I

I vp) are the position and linear velocity
of the pursuit object CoM, (IRp,

p
I ωp) are the attitude and body angular veloc-

ity of the pursued object. Let p
prp be a constant unit vector, and d1 > 0 be the

desired distance of chaser CoM from the CoM of target. The reference trajectories
are constructed as:

pd = I
I pp + d1

IRp
p
prp

vd = I
I vp + d1

IRp
p
I ω̂p

p
prp

v̇d = I
I v̇p + d1

IRp(
p
I ω̂p)2

p
prp + d1

IRp
p
pr̂p

p
pJ−1

p
p
I ω̂p

p
pJp

p
I ωp

Rd = IRpRf

ωd = R�
f

p
I ωp

ω̇d = −R�
f

p
pJ−1

p
p
I ω̂p

p
pJp

p
I ωp (22)

where, Rf ∈ SO(3) is an attitude offset with respect to IRp, such that the robot arm
is facing the pursued object. The reference trajectories for the base object attitude
and position have been obtained. For performing inspection, servicing or de-orbiting
tasks on the pursued object, a trajectory has to be assigned to the robot arm end-
effector. The robot manipulator is actuated to grasp or dock with the target after
the rendezvous and attitude synchronization are accomplished. Let (ep, ėp, ëp) and
(Rt , ωt , ω̇t ) be the position and attitude errors between the end-effector and a pre-
defined point (and a frame with origin at the point) on the target (grasping handle
or fuel port,) where ep, ėp, ëp, ωt , ω̇t ∈ R

3 and Rt ∈ SO(3). The joint angle tra-
jectories (θd, �d, �̇d) can be obtained from inverse kinematics on the end-effector
trajectory (e.g., [29]):

(23)

The trajectories (22), (23), combined with the controller (20), are used to achieve the
desired performance.

Design of Sliding-mode Controller

The magnitude of the last three components of control vector u, i.e., 00Fb, is influ-
enced by three terms, g1, g

−1
2 and ū. By using an orbital insertion manoeuvre, such
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as the one proposed in [9], or even using Hohmann transfer, along with optimal self
de-tumbling (e.g., [3],) will render a stable system dynamics, ultimately reducing the
term g1 to near zero (only gravity influence remains.) Hence the maximum thrust
magnitude during rendezvous is dependent on Kp2, Kd2 and g̃ ∈ R

3×3, where g−1
2 =

[ ∗ ∗
∗ g̃

]

. Based on the parameters of space manipulator (g̃), the gains Kp2, Kd2 can

be numerically selected, and is indeed solvable for an arbitrary bound on 0
0Fb. The

gains Kp2, Kd2 also influence the amount of uncertainties that can be handled. The
uncertainties in (e�

10g1, e
�
11g1, e

�
12g1), which are less than min(Kp2, Kd2), will not

affect the asymptotic stability of the controller (20) (see [15]).
During attitude synchronization, the term v̇d can be high, depending on the micro-

orbiting around the target. Since the force of gravitational attraction between chaser
and target is negligible, the chaser has to apply thrust forces to stay in a micro-orbit
around the target until docking or servicing is complete. This thrust value is depen-
dent on d1,

p
I ωp,

p
pJp, hence will be higher for targets with large angular velocities.

This will be demonstrated in the simulation.

Simulations

We present simulations for four scenarios, and discuss the features of the control
strategy. The parameters that are kept the same through all simulations are:

mp = 2000Kg

d1 = 8m
p
pJp = diag(3000, 2000, 6000)Kgm2

0
0r0 = (0, 1, 0)m
1
1r1a = (0, −0.4, 0)m
1
1r1b = (0, 0.4, 0)m
2
2r2a = (0, −1, 0)m
2
2r2b = (0, 1, 0)m
3
3r3a = (0, −1, 0)m
3
3r3b = (0, 1, 0)m
p
prp = (1, 0, 0)m
0R1(0) = 1R2(0) = 2R3(0) = 3R4(0) = I3

Rf =
⎡

⎣

0 −1 0
1 0 0
0 0 1

⎤

⎦

The chaser is selected in two different configurations: first one is a re-
fuelling/servicing six-degree-of-freedom space manipulator with a base mass of
2550Kg as considered in [30], and the second one is a de-orbiting space manipulator
with a base mass of 450Kg. The first one is assumed to contain 2000Kg of propellant,
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Table 1 Chaser parameters

Masses in Kg and Moments-of-inertia (assuming diagonal matrix) in Kg m2

m0
0
0J0 m1

1
1J1 m2

2
2J2 m3

Chaser 1 2550

⎛

⎜

⎜

⎝

6200

3540

7090

⎞

⎟

⎟

⎠

35

⎛

⎜

⎜

⎝

2

0.2

2

⎞

⎟

⎟

⎠

22

⎛

⎜

⎜

⎝

3

0.2

3

⎞

⎟

⎟

⎠

22

Chaser 2 450

⎛

⎜

⎜

⎝

350

500

400

⎞

⎟

⎟

⎠

15

⎛

⎜

⎜

⎝

1

0.2

1

⎞

⎟

⎟

⎠

10

⎛

⎜

⎜

⎝

2

0.2

2

⎞

⎟

⎟

⎠

10

m4
4
4J4 m5

5
5J5 m6

6
6J6

3
3J3

Chaser 1 10

⎛

⎜

⎜

⎝

0.15

0.2

0.1

⎞

⎟

⎟

⎠

10

⎛

⎜

⎜

⎝

0.15

0.2

0.3

⎞

⎟

⎟

⎠

10

⎛

⎜

⎜

⎝

0.2

0.25

0.3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

3

0.2

3

⎞

⎟

⎟

⎠

Chaser 2 5

⎛

⎜

⎜

⎝

0.15

0.2

0.1

⎞

⎟

⎟

⎠

5

⎛

⎜

⎜

⎝

0.15

0.2

0.3

⎞

⎟

⎟

⎠

5

⎛

⎜

⎜

⎝

0.2

0.25

0.3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

2

0.2

2

⎞

⎟

⎟

⎠

and the second one 350Kg. Assuming about 60% propellant consumption for orbital
insertion as reported in [9], the chaser 1 is left with 800Kg of propellant, and chaser
2 with 140Kg. The chaser and robot manipulator parameters are listed in Table 1.

The initial conditions common to all simulations are:

� = 0
IR0 = I3

θ = (0, −π/3, 2π/3, −π/3, 0, π/2)
IRp = exp

(

π
4

ê2−ê3√
2

)

I
I v0 = I

I vp = (0, 7612.628, 0)ms−1

I
I pp = (6878100, 0, 0)m

The initial conditions which differ in the simulations are listed in Table 2.

Table 2 Initial conditions of simulations

Simulation No. Chaser No. I
I p0

0
I ω0

p
I ωp

1 1 I
I pp − (0, 100, 0) 0 0

2 1 I
I pp − (0, 1000, 0) 0 0

3 2 I
I pp − (0, 1000, 0) 0 0

4 1 I
I pp − (0, 30, 0) (0.1,0.1,0.2) (0.7,-0.5,0.2)
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Fig. 2 Simulation 1: Time response of states and control

The control gains used in all simulations are:

Kr = 0.0082 × diag(1, 1, 1)
Kw = 0.128 × diag(1, 1, 1)
Kp1 = diag(1, 1, 1, 1, 1, 1)

Kd1 = diag(2, 2, 2, 2, 2, 2)

Kp2 = 0.3162 × diag(1, 1, 1)
Kd2 = 0.8558 × diag(1, 1, 1)

The sliding-mode gains Kp2, Kd2 are chosen based on the procedure in “Design
of Sliding-mode Controller”, to achieve a bound (on 0

0Fb) of 1000N for chaser 1
and 150N for chaser 2. The attitude synchronization gains Kr, Kw are obtained
using linear quadratic regulator (LQR) (see [12]), to limit the moments during sta-
bilization to 100Nm for chaser 1 and 10Nm for chaser 2. The LQR gain tuning is
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Fig. 3 Simulation 2: Time response of states and control

performed assuming a scalar double-integrator control system and the obtained gains
are used in the diagonal entries of Kr, Kw. The robot arm gains Kp1, Kd1 are chosen
to achieve a critically damped response, with the damping frequency less than the
typical resonance frequency of industrial manipulators (5 − 20Hz).

For evaluating the propellant mass expelled, a simple model presented in [8] is
adopted for instantaneous mass flow out of the thruster:

ṁf = |T |
ve

where T is the thrust (the entries of 0
0Fb) and ve is the effective exhaust velocity of

the gases exiting the thruster nozzle. The hydrogen/oxygen mixture or hydrazine is
considered, which have the specific energy of 10MJ/Kg, resulting in ve = 4472m/s
(see [8]). The integration of mass flow for all thrusters is the total propellant expelled,
the absolute value represents mass expulsion irrespective of direction of thrust. Since
ve is almost constant for a given nozzle in a fixed atmospheric pressure, varying
levels of thruster efficiency just scales the overall integration.
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Fig. 4 Simulation 2: Orbital view

Fig. 5 Simulation 3: Time response of states and control
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Fig. 6 Simulation 4: Time response of states and control

Discussions

The thrust limiting of chaser 1, to 1000N, can be observed from Figs. 2 and 3. It can
also be observed that the peak thrust does not monotonously increase with distance
from target, which is a desirable feature achieved from sliding-mode. The propellant
consumption from Figs. 2 and 3 is in few Kg, starting from the earlier propellant
mass of 800Kg. Since the target is assumed to have no angular velocity in simulations
1,2, the attitude synchronization happens to a constant value, and the base object
moments in Figs. 2 and 3 are limited to 70Nm. The joint torque values represent
the holding torque (no joint motion) when the space manipulator turns for attitude
synchronization. The time of rendezvous is higher because of small pursuit thrust and
almost half Earth orbit is completed by the time of rendezvous, as seen in Fig. 4.

The chaser 2 rendezvous is considered in simulation 3 (Fig. 5). With the same
choice of gains as for chaser 1, the force and moments are significantly lower because
of lesser mass and moments-of-inertia. The fuel consumption for 1Km rendezvous
is lower than that of chaser 1 (Fig. 3), following the trend of change in mass. Since
chaser 2 is a de-orbiting space manipulator, the approach of simulation 3 can be used



118 The Journal of the Astronautical Sciences (2019) 66:100–120

Fig. 7 Simulation 4: Rendezvous and attitude synchronization

even for targets having angular velocities (no attitude synchronization is needed).
Many solutions exist in the literature to capture a rotating target and de-tumble it,
and can be adopted at the end of rendezvous. Further, there is 140Kg of propellant
remaining.

In simulation 4 (Fig. 6), we demonstrate the effect of attitude synchronization
with a rotating body. Much of the control effort is due to the feedforward terms and
is unavoidable, as explained in “Design of Sliding-mode Controller”. An effective
strategy would be to approach the rotating target at constant attitude as in simula-
tions 1,2, and to enable the attitude synchronization in short distance followed by
docking. The fuel consumption of 160Kg is still not severe, as there is 640Kg of fuel
remaining to be used for re-fuelling the target or servicing purposes. The thrust and
moment magnitudes in Fig. 6 are within practical device limits described in [8]. The
rendezvous, attitude synchronization and docking are illustrated in Fig. 7 for simula-
tion 4. The end-effector position and velocity errors converge in a continuous way to
zero (Fig. 6), which is necessary to avoid damaging impact forces.

Conclusions

A globally parameterized dynamics model of a space manipulator was presented,
which is important for the analysis and simulations. To achieve a concurrent arm-base
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control strategy, a combination of a sliding-mode rendezvous controller, a geomet-
ric PD control law for attitude synchronization, and a standard PD controller for
robot manipulator was proposed. The asymptotic stability of the overall controller
was shown. The selection of parameters for the three control segments was illustrated
through simulations. The established equivalence of servicing and de-orbiting appli-
cations through a concurrent controller is an interesting and desirable outcome. The
assumption of all axes, bidirectional thrusters is expensive to implement in the prac-
tical applications, hence under-actuation in the base object force will be considered
in our following work.

References

1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings Publishing Company
Reading, Massachusetts (1978)

2. Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and
detumble a noncooperative satellite. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, St. Louis, USA (2009a)

3. Aghili, F.: Time-optimal detumbling control of spacecraft. J. Guid. Control. Dyn. 32(5), 1671–1675
(2009b)

4. Aghili, F., Kuryllo, M., Okouneva, G., English, C.: Fault-tolerant position/attitude estimation of free-
floating space objects using a laser range sensor. IEEE Sensors J. 11(1), 176–185 (2011)

5. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, volume 49 of Texts in Applied
Mathematics. Springer, New York (2004)

6. Chu, Z.Y., Cui, J., Sun, F.C.: Fuzzy adaptive disturbance-observer-based robust tracking control of
electrically driven free-floating space manipulator. IEEE Syst. J. 8(2), 343–352 (2014)

7. Chu, Z., Li, J., Lu, S.: The composite hierarchical control of Multi-Link Multi-Dof space manipulator
based on Ude and improved sliding mode control. In: Proceedings of the Institution of Mechani-
cal Engineers, Part G: Journal of Aerospace Engineering. https://doi.org/10.1177/0954410015581652
(2015)

8. Czysz, P.A., Bruno, C.: Future Spacecraft Propulsion Systems: Enabling Technologies for Space
Exploration. Springer, Berlin (2006)

9. Darby, C.L., Rao, A.V.: Minimum-fuel low-earth orbit aeroassisted orbital transfer of small spacecraft.
J. Spacecr. Rocket. 48(4), 618–628 (2011)

10. Ellery, A.: An engineering approach to the dynamic control of space robotic on-orbit servicers. Pro-
ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 218(2),
79–98 (2004)

11. Guglieri, G., Maroglio, F., Pellegrino, P., Torre, L.: Design and development of guidance navigation
and control algorithms for spacecraft rendezvous and docking experimentation. Acta Astronaut. 94(1),
395–408 (2014)

12. João, P.: Hespanha. Linear Systems Theory. Princeton University Press, Princeton (2009)
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